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Analytic and combinatoric aspects of Hurwitz
polyzétas

par JEAN-YVES ENJALBERT et HOANG NGOC MINH

RESUME. Dans ce travail, un codage symbolique des séries généra-
trices de Dirichlet généralisées est obtenu par les techniques com-
binatoires des séries formelles en variables non-commutative. Il
permet d’expliciter les séries génératrices de Dirichlet généralisées
‘périodiques’ — donc notamment les polyzétas colorés — comme
combinaison linéaire de polyzétas de Hurwitz. De plus, la ver-
sion non commutative du théoreme de convolution nous fournit
une représentation intégrale des séries génératrices de Dirichlet
généralisées. Celle-ci nous permet de prolonger les polyzétas de
Hurwitz comme des fonctions méromorphes & plusieurs variables.

ABSTRACT. In this work, a symbolic encoding of generalized Di-
richlet generating series is found thanks to combinatorial tech-
niques of noncommutative rational power series. This enables to
explicit periodic generalized Dirichlet generating series — particu-
larly the coloured polyzétas — as linear combinations of Hurwitz
polyzétas. Moreover, the noncommutative version of the convo-
lution theorem gives easily rise to an integral representation of
Hurwitz polyzétas. This representation enables us to build the
analytic continuation of Hurwitz polyzétas as multivariate mero-
morphic functions.
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1. Introduction

Technologies of generating series (g.s.) and of generating functions (g.f.)
on one variable are basic tools required for asymptotic, complexity and
probabilistic analysis of combinatorial and discrete structures. These tech-
nologies play a central role in several application areas like in arithmetics,
statistic physics, algorithmic information theory [8], analytic combinatorics
[10] and analysis of algorithms, .... This makes the natural link between
these structures and complex analysis and exploits intensively the associa-
tion between ordinary generating functions (o.g.f.) and exponential gener-
ating functions (e.g.f.).

In this paper, we will study the association of o.g.f. and of a general-
ization of Dirichlet generating functions (D.g.f.) [22]. The value at 1 of a
D.g.f is a Dirichlet generating serie (D.g.s); for example Riemann polyzétas
[26], defined by

1
(1) C(81500s8) = Z ma
ni>..>ny
are D.g.s and Hurwitz polyzétas [27], defined by
1
(2) C(Sla"wST;tl?"'atT): Z

n1>..>n, (nl - tl)sl s (nT - tT)ST7

are Parametrized D.g.s. Reciprocally, we show that "periodic’ Parametrized
D.g.s. (and so periodic D.g.s.) can be written as a finite combination of
Hurwitz polyzétas (see Proposition 3.3). It is notably the case for the
coloured polyzétas as described by Equality (49). This equality enables us
to give the expression of any Hurwitz polyzéta as a finite combination of
coloured polyzétas (Proposition 3.4).

On the other hand, the moment sum of index [ of basic sign algorithm
is given by [17]

1 2 1
(3) P =1+_+—= >
2@ 2,
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But
1 1 1 1
Do odi T 2 dg a2 g
d<c<2d c<2d c c<d
1 —in L+ ()¢
Z g =2 Z del
c<2d c<e
1
(=1 1
(4) Z =2 Z (=1)° Z I I
0<c<e ce a—b,b=0 n>m>0 (Tl T CL/2) (m T b/2)

Hence, the moment sum of index [ can be expressed in terms of polyzétas :

S

=g -1+02'-2 2@
1
-1 - aC(l7 l; —CL/2, —b/2)
(5) + 2 a%b::()( 1) C(zl) :

This motivates this study of polyzétas. First, we recall some combinato-
rial aspects : bi-algebra structure of Riemann polyzétas and of Hurwitz
polyzétas [27], shuffle relation of Hurwitz polyzétas (equality 44). This
combinatorial study give easily rise to an integral representation of Hur-
witz polyzétas [21]. From this integral representation of Riemann and Hur-
witz zéta function [7], we can deduce their analytic continuation and the
structure of their poles. Unfortunately, in the multivariate case, several
singularities appear and the ’classic’ method can only treat one of them.
In a preprint [20], Goncharov remarks that continuing with only one vari-
able in turn by turn is not admissible because the result depends on the
selected path. He suggests so to use a distribution to obtain the analytic
continuation. This method operates in the univariate classic case with only
singularities near zero [18], and still remains to be adapted in the mul-
tivariate case. Goncharov builds a tensor product of distributions, each
distribution having to regularize each variable. But, in the multivariate
case, there appear two singularities for any variable, and Goncharov use
a product of distributions in same variable to expand these singularities.
Moreover, to get the structures of the poles, he works with a formal de-
velopment in an infinite multi-sum without considering the “problems of
convergence”. We define and study the distribution (the regularized distri-
bution) which enables to get the continuation of Hurwitz polyzétas. We
also give the structure of their poles. Thanks to the decomposition of peri-
odic D.g.s. into sums of Hurwitz polyzétas (Proposition 3.3), we can derive
the continuation of periodic D.g.s. and the structure of their poles. In [15],



598 Jean-Yves ENJALBERT, HOANG NGoC MINH

Ecalle suggests to use the equality

3+k —s—k
(n—1)% Z ['(s n

to get a relation between ((s) and its translates, in order to build the
analytic continuation of the Riemann polyzétas. So have we, in a similar
way, calculated a relation between Hurwitz polyzétas and its translates.

(6)

This paper is a continuation of [26, 27]. It is organized as follows :

e Section 2 gives the background of the classic case of single Dirich-
let series (Subsection 2.1) as the guide for our developments in the
next sections and the combinatorial techniques on formal power se-
ries (Subsection 2.2) as technical support for our results. We give the
encoding of iterated integrals by noncommutative variables (Subsub-
section 2.2.2) : to encode the polylogarithms (Equality 30) and the
Riemann polyzétas (Equality 32). In particular, we describe the con-
volution theorem in noncommutative version (Equality 25) in order
to obtain in the next section the multiple integral representation of
some special functions.

e In Section 3, we introduce the generalization of the Dirichlet gen-
erating series (D.g.s.) from Definition 3.1, of Parametrized D.g.s.
(Definition 3.1), of Dirichlet generating functions (D.g.f.) in Propo-
sition 3.1 and of Parametrized D.g.f. (Proposition 3.2), associated
to sequences of complex numbers. When the sequences are peri-
odic with same period, we give the explicit expression of generalized
Parametrized D.g.f. as finite sums of Hurwitz polyzétas (Proposition
3.3). So, we obtain the explicit expression of coloured polyzétas as a
finite combination of Hurwitz polyzétas (Equality 49). Reciprocally,
we calculate the explicit expression of Hurwitz polyzétas as finite sum
of coloured polyzétas (Proposition 3.4). Next, we use the convolu-
tion theorem to get the integral representation of generalized D.g.f.
(Proposition 3.5) and generalized D.g.s. (Corollary 3.2) : in par-
ticular these combinatorial techniques give easily rise to an integral
representation of Hurwitz polyzétas.

e Section 4 contains the main results. In Subsection 4.1, we show the
Hurwitz polyzétas have a meromorphic continuation over the entire
space. For that, we define (Definition 4.1.2) and study (Subsubsection
4.1.2) the regularization near 0, aiming at building the regularization
between 0 and 1. This study enables to know the localization and
the multiplicity of the poles (Theorem 4.1). In Subsection 4.2, we
calculate the regularization in some case in order to get the structure
of Hurwitz polyzétas poles (Theorem 4.2). Lastly, in section 6, we
note that this result give the analytic continuation of the periodic
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Paramatrized Dirichlet generating series, so of the colored polyztas
functions.

e We give the relation between translates of Hurwitz polyzétas (Propo-
sition 5.1) in Section 5. Then we discuss about the possibility to
deduce the analytic continuation from this relation.

2. Background

2.1. The univariate zéta function.

2.1.1. Ordinary and Dirichlet generating series. Any complex numbers
sequence { f }x>1 can be associated to the ordinary generating series (0.g.s.)
and to the Dirichlet generating series (D.g.s.)

(7) F(z) = kazk and Di(F;s) = Z %

k>1 k>1

We associate also {fi}r>1 to the following power series generalizing the
o.g.s. F(z) as well as the D.g.s. Di(F's) [22, 27] :

(8) Dis(F|z) ka o <t

k>1

Example. If F(z) =
rithm Lig(z) and Di(1;

1(z) = z/(1—z) then Di4(1]2) is the classic polyloga-
s
in the region {s € C: R

) is the Riemann zéta function {(s) which converges
(

s)>1}:
Dig(1]z) = Lis(z) = Z Z—z and Di(1;s) =((s) = is
n>1 1

In particular, if {fg}r>1 is periodic of period K then Di(F;s) can be
expressed as a linear combination of classic Hurwitz zéta functions,

) Di(F:s) = 222 > ficlsi o).
=0
where
(10) C(sit) = (n_lt)s and t¢ N,
n>1

Recall also that this Hurwitz zéta function ((s;t), converging in the region
{s € C: R(s) > 1}, is the special value at z = 1 of the classic Lerch
function verifying ®,(z;0) = Lis(2),

ZTL
(11) (ps(Z,t) :Zm7 for t¢N+

n>1
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Example. Let j be a primitive cubic root of unit. Then

3 7 PP L vl
=k B S Bn-2p S @Bn-1) £ (3n)°
= 1G5 2) + (55 3) + )

2.1.2. Singular expansions and Mellin transform. To get an asymptotic
expansion of the meromorphic function F', defined over an open set con-
taining the set S of its poles, we use

Definition ([16]). The singular expansion of F' is defined by the formal

Suim
-1
Z Z Ck,p(z_p)k7

pES k=—00
where ¢y, is the k-th coefficient of the Laurent series of F' at the pole p,

and we note
-1
F) =S S aplz - p)t,

pES k=—00

Example.
1 1 1 1
— =+ — .
2z-12" 2z (2—-1)2 2z2-1
In fact, the D.g.s. Di(F;s) can be obtained as the Mellin transform of
F(e™®)/I(s) :

Lo [P F(e™) du  [Tlog®'(1/r) dr
DitF) = [ s e FOT

Example. Let F(z) = z and G(z2) = z/(1 — z). The Gamma function,
I'(s), and the Riemann zéta function, {(s), can be then defined as a Mellin
transform of F'(e~%) and G(e~?)/I'(s) respectively :

I'(s) :/Oooe“ du :/0110g31(1/7’)dr,

ul—s
[ Ge™) du [tlog*Tl(1/r) . dr
= S, e

There is a correspondence between the asymptotic expansions, via Mellin
transform, of F' at 0 and oo and the singularities of Di(F';s). Conversely,
under some conditions, the poles of Di(F; s) induce the asymptotic expan-
sions of F'. This mapping properties are conveniently expressed in terms of
singular expansions [16].
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Example. Since e™* =3 4 (—2)"/n! and G(e™) = ut > k>0 BuF k!,
where By, is the k-th Bernoulli number, then I'(s) and ((s) can be expressed
as follows

(=™ 1 By, 1
['(s) < E —_— and ((s) < .
| | —
= o ostn = ET(s)s—1+k
Therefore, I'(s) has no zeros and the residue at the pole s = —n of I'(s) is

(—=1)"/n!. By cancellation, one can deduce the Riemann’s result saying that
((s) has an analytic continuation to the complex plane as a meromorphic
function, with only one simple pole of residue 1 at s = 1.

2.2. Symbolic computations on special functions.

2.2.1. Formal power series. Let X be a finite alphabet. The free monoid
generated by X is denoted by X*. It is the set of words over X. The empty
word is denoted by "€”. We denote by X+ the set X*\ {e}. The shuffle of
two words u and v is the polynomial recursively defined as

(12) cwu=vwe=1u and auwbv = a(uwbv)+ blauwv),

for a,b € X and u,v € X*. The shuffle product is extended by distributiv-
ity to the shuffle product of formal power series. Let A be a commutative
C-algebra. We denote by A(X) (resp. A{X))) the ring of noncommuta-
tive polynomials (resp. formal power series) with coefficients in A. The
C-module A{(X)) equipped with the shuffle product is a commutative A-
algebra, denoted by Sha(X). A formal power series S in A{(X)) can be
written as

(13) S= Y (S|w) w

weX*
Let S be a proper formal power series (i.e. (S|e) = 0), the formal power
series S* and ST are defined as S* =1+ ...+ S"+... =1+ SS* and
S+ = §S5* respectively. The polynomials are defined as formal power series
with finite support. The shuffle product is extended by distributivity to
the shuffle product of formal power series as follows

(14) SwT= > (Slu)(T|v) uwv.

u,veX*

2.2.2. Words and iterated integrals. Let us associate to each letter x; in X
a 1-differential form w;, defined in some connected open subset U of C. For
all path zp~+z in U, the Chen iterated integral associated to w = x;, - - - x;
along zp~»z is defined recursively as follows

(15) /wwk / wir (1) / Wiy -y

zZo0~2 zZ0~r2 Z0~21

k
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In a shortened notation, we denote this iterated integral by of (w) with

aZ (¢) = 1. More generally, if F'(z) is analytic, and vanishing at zo, one
puts
(16) ok, F) = [ wnaly (o i F)

20~Z
and o (¢; F) = F(z).

Observe that these notations are related to a choice of the differential
forms w; associated to ;. Recall also that af(e) # ag’(€) + o, (€) (this
could imply 1=1+1!). Thus iterated integral is not ordinary integral since
additivity, in particular, is not satisfied for w = € and it is replaced by the
rule (17) of the following properties :

e Rule of concatenation of paths. For any word w € X*, one has, for
any p €U,

(17) aGw)= Y al(uap(v).
u,vEX* uv=w

e Rule of integration by parts. For any words u € X* and v € X*, one

has
(18) o (uvww) = o (u)aZ (v).
e Rule of inversion of path integration. For any word w € X*, one has
(19) o, (w) = (=1)*laz ().

Here, @ stands for the mirror of w and (—1)*|@ is the antipode of w.
e Rule of change of variables. For any word w € X*, one has
(20) ol (w) = g*aZ, (w),
where g*a  is the iterated integral of the path zp~z with respect to
the differential forms g*w (the reciprocal image ¢g* of w).

2.2.3. [Iterated integrals and moncommutative convolution theorem. For
any polynomial S (resp. formal power series up to convergence [30]), one
defines [21]

(21) o5, (8) = 3 (Slwhaz, (w).

weX*
With the previous notations, according to the rule of integration by parts,
one has

(22) oz, (SwT) = a2, (S)as, (T).

20
Indeed, it is true if S and 7" are two words, it is also true (by distributivity)
if S'and T" are two noncommutative formal power series. In other words,aZ
is an homomorphism from (A{(X)),w) to A.
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Let ¢; be a primitive of w;, for j = 0,...,m. For any exchangeable formal
power series H, the iterated integral associated to H can be expressed as
follows [21]

29 He Y gt e ewaly,
10, ;Nm >0
0 Nom
(24) OZ(H) - Z hnOv“' yIim, nO! . nm' :

N0, ,Mm =0

Example. For any letters z;,x; € X, and any n € N,

- pi(z) —pi(s)]"
azo(%’xk): [ J )n' J )] wk(s)
202
n l n—l
. SOJ(Z) [_4/73(3)]
=0
20~2
oz, (Tiry) = e?i(2)=2i(S) iy (s)
202
_ i@ / =21y (s).
20~2

More generally, if F' is analytic and vanishing at zy, the convolution
theorem yields [21]

(25) o, (H: F) = / Blgo(z) — @o(s)s-+ + om(z) — om()|dF(s).

20~Z

Example. For any letters z;, z; € X, and any integers n, m,

or, (@ F) = 3 4 / 2100 oy

P il e (n—1D)!
L R e R T SRR P
a§0($?wa;F)=l0;0%(l3;z( )/[ o ar(s),
20~z
o (23 F) = e¥i(2) / e ¥R (s),
20~z
o (x5 wal; F) = e¥i(2)+pi(2) / e~ %) =) g (s).

20~>2Z



604 Jean-Yves ENJALBERT, HOANG NGoC MINH

2.2.4. Polylogarithms, multiple harmonic sums and polyzétas. The com-
position s = (s1,...,8.), i.e. a sequence of positive integers, is said to
have depth equal to r and weight equal to Y ;_; s;. The empty composi-
tion is denoted by e = (). The quasi-shuffle product of two compositions

r=(ry,...,rt) = (r,v') and s = (s1,...,8) = (s1,8') is defined as
(26) rue=ewr=r
and
(27) rws=(r,r' ws)+ (s;,rws’) + (r; + 51,1’ ws).
s1—-1 sr—1

To s we can canonically associate the word u = 23! ™21 ... 25" 21 over the
finite alphabet X = {z¢, z1}. In the same way, s can be canonically associ-
ated to the word v = ys, ...ys, over the infinite alphabet Y = {y1,v2,...}.
We obtain so a concatenation isomorphism from the A-algebra of compo-
sitions into the algebra A(X)z; (resp. A(Y)). We shall identify below the
composition s, the correspondent word u € X*z; and the correspondent
word v € Y*. The word u € X* (resp. v € Y*, resp. the composition s) is
said to be convergent if s; > 1.
The polylogarithm associated to the composition s is defined as

z™M

(28) Lis(z) = Z ———, for |z| <L

S1 S0
ni>..>n>0 1 T

Let wg and w; be the following differential forms

dz dz
(29) wo(z) = ~ and wi(z) = T

One verifies that the polylogarithm Lig is the iterated integral with respect
to wo and w1 :

(30) Lis(z) = af(u), forall |z] <1,

where © = xSl_lzl ) ..x(‘;r*lxl is the word corresponding to s in X*z;.
From this representation integral provides the meromorphic continuation
of Lig for z over the Riemann surface of C \ {0,1}. Note that the polylog-
arithms, as iterated integrals, verify the shuffle relation :

(31) Lis s (2) = Lig(z) Lig (2), for all |z| < 1.

If s is a convergent composition, the limit of Lig(z) when z — 1 exists and
is nothing but the Riemann polyzéta ((s) [41] :

(2)  ImDie)=ab) = Y o =)

Sr
ni>..>n>0 1 T

One thus has a encoding of the polyzéta ((s) in term of iterated integrals.



Analytic and combinatoric aspects of Hurwitz polyzétas 605

For 1 <r < N, let s = (s1,...,8;). The finite polyzétas (or multiple
harmonic sums) (n(s) is defined as (see [30])

1
(33) (n(s) = Z Y TE——
nit...ny
N>n1>...>n,>0
and (y(s) =0 for 1 <N < r. For r =0, we put (p(s) = 0 and (n(s) = 1,
for any NV > 1. These can be obtained as the specialization in the quasi-
monomial functions (see [38])

(34) Mty = S et

niy>...>n,>0
at t; = 1/iif 1 < ¢ < k and t; = 0 if i > k. Let us extend linearly the
notation My when s is a linear combination of compositions. If r (resp. s)
is a composition of depth r and weight p (resp. of depth s and weight ¢),
My 45 is a quasi-monomial function of depth r + s and of weight p+ ¢, and
one has

(35) Mg \or = Mg M,.
Therefore,
(36) (N(swr) = (N (s)CN(T).

For s; > 1, the limit when N — oo of {x(s) is nothing but the polyzéta
¢(s) [41], and thus by an Abel’s theorem,

1

S
any”

=((s):

(87)  lim (y(s)=limLis(z) = ) =

n1>...>n,>0
The asymptotic expansion of (y(s), for N — oo, was already treated by use
of Euler-Mac Laurin summation [12] or by use of a full singular expansion,
at z = 1, of its generating series > o (n(s)zY [11].

Let us come back to Equality (37). On the one hand, the polyzétas ¢(s),
as limits of the polygarithms Lig(z), verify the shuffle relation. On the
other hand, the polyzétas ((s) can be obtained also as the specialization of
the quasi-monomial functions at ¢; = 1/i, for i > 1. So, if two compositions
r, s correspond respectively to the two convergent words 1, l2, then we get
on the convergent polyzétas the three families of relations (see [23]) :

(38) C(lrwla) = ¢(l1)¢(l2),
(39) C(lhwla) = ¢(11)¢(l2),
(40) ((ZL‘l uull — 1 ll) =0.

The first two families are called the double shuffie structure. The third
family involves the polynomials x1 wly — 1 wl; that are convergent, even
when the two sums ((z1 wl;) and {(x; wly) are divergent. These divergent
terms can be regularized syntactically with respect to the associated shuffle
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products as explained in [27, 28]. Note that we only have to study that
point over a generator family : the set of Lyndon word [23].

3. Generalized D.g.s. and their integral representation

By now, r stands for a positive integer. Let T = {t1,---,t.} and T =
{t1,--- ,t,} two families of parameters connected by the change of variables
ti=t+ -+, =t —to,
to=ta+ -+ 1, ty =ty —t3,
(41) . — ,
t, = t,. t, =t,.

For i = 1..m, let us consider the locally integrable function' F; and the
following associated differential 1-forms

dz dz dz
(42) wo(z) =, wilz) = Fi(2) >, wig,(2) = Filz) 5
For any composition s = (s, ..., s,) and for any formal variables t1,. ...,

we use the short notations t for (¢1,...,t), (s;t) for (si;t1),..., (sr;ty)
and F for (F;,,..., F;).

3.1. Definitions and basic properties. Here, we consider the case

(43) Fi(z) = Z finz", for i=1.m.

n>1

Definition. The D.g.s. associated to {F}}i—1. ., given in (43) is the sum

Di(F; S) — Z fihm—m s fir—lmrq—nrfi,«,m .

nyt..oonp

n1>...>n>0

We get the following iterated integral interpretations :

Proposition 3.1 ([22]). Letiy,...,i, = 1,..,m and let w = 2§ "2y, ...
...:B(s{_lzvir associated to s. With the differential forms wg,w1,...,wm of

(42), we get

aé(w) — Z fil,mfnz e fi7.,1,n7-,17anz‘T,nr an‘

nyt.ong

ny>...>ny

We call Generalized D.g.f. Dig(F|z) associated to {F;}i=1.m given in (43)
this previous iterated integral. In particular, Di(F;s) = Dis(F|1) = of(w).

INote that, here I is not necessary the function (1 — 2)~! except when m = 1 and it is in
the case of (29).
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Example. Let z = (z1,..., 2 ). For the o.g.f.

2z . .
Fi(z) = — with |z;] <1, for i = 1..m,
1—2zz2
with the differential forms wp, w1, . ..,wn, we have [22, 27]
ny—ng Ner—1—Nr _n.
. B 2] ceeZpq 20 o
ad(w) = el B
n1>...>n,>0 Lo

and Di(F},..., Fy;s) is nothing but the multiple polylogarithm [4, 19]
ni n9 Ny
Lis(z) = Lis(z1,...,2,) = Y a e/z) - Crf2ro)™

Sr
ny>...>n,>0

nt...ny

Definition. The Parametrized D.g.s. associated to {F;}i—1.,, given in (43)
is the sum

])1(:5‘1:7 S) — Z fi17n1—n2 A fiT‘—lvnT—l_nrfir,nr '

(77,1 — t1)81 - (nr — tT)ST

niy>...>n,>0
Proposition 3.2 ([22]). Letiy,...,i, = 1,..,m and w = z5' 'z, ...
.agr e, associated to s. With the differential forms wo, W1gs - Wi

Of (42); we get
§(w) = Z fivmi—no - - fir—1nr—1-n, Jir e it
n>.sn, (m — t1)51 . (nr _ tr)ST

We call Parametrized D.g.f. associated to {F;}i=1.m given in (43) the

previous iterated integral. In particular, Di(Fy;s) = af(w).

Example. Let z = (z1,..., 2 ). For the o.g.f.

Fi(z) = “T with |zi] <1, for i =1..m,
1—2zz
with the differential forms wo,w; 7, ..., w,, 3, , we have [22, 27]
ni—n9 Nr—1—Nr _n,
2] 20T 2
af(w) = pmtn
0( ) Z (n1 —tl)sl.‘.(nr—tr)‘%

ny>...>ny
and Di(F},..., Fy;s) is nothing but the multiple Lerch function

a(l)(W) — Z 21 (z2)/z1)™ . .. (zr/zr_l)nr.

- (n1 — t1)81 - (nr — tr)ST

ny>...>n,>0

Therefore, as iterated integral, the generalized and the parametrized
D.g.f. and the generalized Lerch function verify the shuffle relation (38)
over the alphabet {xq, ...,z } [22]. In particular, their special values verify
this kind of relation.



608 Jean-Yves ENJALBERT, HOANG NGoC MINH

3.2. Periodic D.g.s and Hurwitz polyzétas.

Definition. The generalized Lerch function is defined as follows

ni

z
B0 2 for 2] < 1.
ni>-->np>0 (nl - t1)81 tt (n'f' - t'l’)sr

The associated Hurwitz polyzéta is defined by

sty = 0 ! — 0,(13t).

ni>-->n,.>0 (nl - tl)sl - (n’f’ — t,r,)s’r

With the notation of Example 3.1, z1 = ... = z. and for t fixed, the
generalized Lerch function appear as an iterated integral and so verify the
shuffle product. Consequently, as z tends to 1, for any convergent compo-
sitions s and s’,

(44) C(sws'st) = ((s;t)((ss t).

Note that the Hurwitz polyzétas can be also encoded by noncommutative
rational series

(45) xgl_l(tlxo)*slxl ... xgr_l(trxg)*&xl

as given in [27] with two differential forms wp and w;.

These polyzétas contain divergent terms which are looked at via syn-
tactic regularizations of divergent Hurwitz polyzétas with respect to the
associated shuffle products as in [27, 28]. Note also that if t; =to =--- =0
then ®4(z;0) = Lig(z) and ((s;0) = ((s).

Proposition 3.3. If the {fin}n>1 for i = 1..N, are periodic of the same

period K then with the differential forms wo,wy g, ;... ,wy,3, , we have

] K-1
Di(F¢;s) = [T Z fiv by -+« fiyobr
- b1,...,b-=0

t. — b,
]

t =Y Y
C[(Sl; 1%(21_1)7 SRR (87";
Proof. Let us sketch the proof in case of r =2 :

. . - fil,m—nz fi2,n2
Dl(Ft7S) - Z (nl — tl)sl (77,2 — t2)52

ni>n9s >0

— Z fil,m1 fig,mz
(m1 +mg — t1)%1 (mg — t2)%2”

m1,m2>0
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The assumption of periodicity gives f; y4+x = fir forallk > 1 and i = 1,2.
Therefore,

Di(Ft; )

Z Z le,m1K+b1 flg,m2K+b2
ml +mo)K 4+ by + by — tl]sl (mQK + by — t2)52

b1,b2 0mi,ma>1

1
Z RIS (1K + by + by — t1)°1 (ng K + by — £9)*2

b1,b2=0 n1 51250
K-1
1 t1 — (b1 + b9) ty — by
= Ksits2 Z fil,blfig,bQCKsl;K 51 - .
b1,b2=0
The proof is easily generalized for any positive integer r. 0

In other words, if { f; » }n>1 are periodic of the same period K then gen-
eralized D.g.s. is a linear combination of Hurwitz polyzétas. In particular,
if fiin=...= fi,n =1, for n > 1, then one can generalize the well known
result for the Riemann and Hurwitz zéta functions.

Corollary 3.1. For K € N+, one has

O > LY

17 ’b’V‘_O

C(s;t) = KZZ "

Now let ¢ = €2™/™ be a m-th primitive root of unity. For any inte-
gers iy, ...,i,, we will use the notation ¢! for ¢'*,... ¢"". Let Q(q) be the
cyclotomic field generated by gq.

Let us introduce also the o.g.f.

(46) qu " for i=1.m.

The coloured polyzétas are a partlcular case of periodic D.g.s. Di(F;s) and
they are defined as follows (for 0 <iy < ... <i, <m—1) [3, 4, 19]

S qil”1 o q”"”"
(47) ¢ < i) = D>
q n1>...>n,>0 e

In other terms, these can be obtained as a special value at z = 1 of the
following D.g.s. associated to {F;}i=1, m given in (46)

° ! 1 r—1
) ¢ <qi1 yqizTih ,qir—ir1> - aO(:E(SJl Liy IES x;,).

So these verify the first shuffle relation (38) over the alphabet {xo, ..., xm}.
By Proposition 3.3, the periodicity of {¢"},>1 enables then to express the
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coloured polyzétas as linear combinations of Hurwitz polyzétas with coef-

ficients in Q(q) [27] :

s 1 e v a
(49) ¢ <qi> = m Z q21:1 “aC(s; _E)
a1—a2,...,ar—1—ar,ar=0

Here, a/m stands for (ai/m,...,a,/m). Consequently, these coloured
polyzétas ¢ (qsl) (with 0 < 4, < m — 1) are linear combinations, with coef-
ficients in Q(q), of the rational parameters Hurwitz polyzétas ((s; —a/m)
with a; — a9,...,a,—1 — ar,a, = 1..m. They can also be viewed as the
evaluations, at the m-th primitive root of unit ¢ of some commutative
polynomials on the QQ-algebra of Hurwitz polyzétas. The reader can find
the shuffle structures of Hurwitz polyzétas in [27] inducing then the shuffle
structures of Riemann polyzétas. Conversely, by the distribution formula,
we have a partial result [30] :

Proposition 3.4. Let a = (aq,...,a,) be a composition. If the parameters
a; satisfy the conditions 1 < ay — as,...,a,—1 — ar,a, < m then
a e s
((s;——) = m>i=1 %" q Zl—”””(( )
m i17-§0 ¢

Proof. Let us set s and let

. 1 81,825...,Sp
f(l) - qi1~~-+irc<qil7qi2_i1 . ’qir—irfl ’
g(C) :C(‘Sl)'"asr;ial/mv"')iaT‘/m)7

with a; = (¢; + 1)+ (¢j1+1)...4+ (¢, +1), for j =1...7. Let us consider
the lexicographical order on the index set

IZ={i=(i1,...,%,) €{0,... m—1}"}
and on the index set
C={c=(c1,...,¢)€{0,... m—1}"}.

Then (f(i))iez (resp. (g(c))cec) can be viewed as the entries of a column
vector F (resp. G) of dimension mr.

Let M(q) be the matrix (qij>0<ij<m,1 of determinant
(50) det M(q)= [[ (' —¢)#0
0<i<j<m~—1

The inverses of M (q) and of the r-th tensor product of M(q) are given by
(51) M(q)"'=m"'M(¢"") and [M(q)*"]""=mTM(¢ """
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By Corollary 3.1, we get
(52) F = mf(51+...+5r)M(q)®TG and G = msl+...+sTer(q71)®7«F'
Or equivalently,

m—1 qilcl‘l’u-“l’i'rc'r
f(i) = Z Wg(c)a

Clye..,cr=0

m—1 mS1ttsr—r

g(c) = Z Wﬂl)

i14eeyir=0

Hence, by setting b; = c;+1 (thus, by = ag—aq,...,bp—1 = ar_1—a,, b, = a,
and bj=1...m) :

P girbittirbe 2\ git gi2—i1  gir—ir—1
By changing the indexes j; = ¢1 and jy 11 = ipt1 — in, O equivalently i, =
Ji4. . A jn (mod m) We get qilb1+~--+i7‘b7‘ — qjlbl+(j1+j2)bg+...+(j1+..-+jr)bT —
¢g/ra1tHirar Jeading to the final result. O

Example. We get in particular :

m—1__ s 1
eltorl <a< m,C(s;—g> = Zm C<S> Thus, some con-
m

¢ ql(l qZ

=0
stants like Catalan number which can be expressed as numerical
parametrized Hurwitz polyzétas

_ (-nm 1 1 1
G;MH}K(Q’_ZL)_C(Q%)]

can so be expressed on coloured polyzétas.
e For 1 <aj; —as, ag < m,

m—1 _
(srsms =2, -2) = Y 2<<31’52)
1,92y = — = a1 dioao ; i .
m m Lt qz1a1+12a2 qll’q12
11,i2=0

Moreover, we now can express the D.g.s. of periodic sequences { fi n}n>1
as coloured polyzétas, as a direct consequence of propositions 3.3 and 3.4
[30] :

1 = fz b1 - fz,,br
ﬁ Z Z lqil 1 hay C <qi> ’

bi,....,br=111,...,3-=0

(53)  Di(F;s) =
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where the parameters a; are defined as the sum by +...+b;, for j =1...7.
Note that the same expression holds in the case of the first member of
(53) is a coloured polyzéta. It can be viewed also as the consequence of
Corollary 3.1.

3.3. Integral representation of Hurwitz polyzétas. Let F' be an o.g.f.
vanishing at z = 0. The associated D.g.f. Dis(F|z) can be obtained from
of F(z) via the polylogarithmic transformation as follows [22, 27|

Lemma 3.1. The Dirichlet function Dig(F|z) can be represented as
/1 logsfl(l) F(zr)dr _ /OO F(ze™) du ‘
0 r’ T(s) r 0 L(s) wul=s

“log®(z/t) dt

DiL(Fl2) = aj(ay ' F) = [ BP0

Proof. Since

then the changes of variables ¢t = zr and r = e~ lead to the expected
expressions. [

Example. If fi(z) = z'7t/(1 — z) then Dis(f;|z) is linked to the Lerch
function ®g(z;t) by Dig(fi|2) = 2 1®Pg(z;t). We deduce the expression of
the Lerch function

1 u
<I>s<z;t):zt/0 log™~ (1>f12” & / f”e

r r

uls

so the D.g.s Di(f; s) is nothing but the Hurwitz zéta function

g‘(s;t):/ollo (1 ft dr ft .y

Recall also that

e—u(l=t) _ Z By (t) =

1—eu k! ’

k>0

where By(t) is the k-th Bernoulli polynomial. Thus, by the Mellin’s trans-
formation, one obtains, for ¢ < 1, the regular expansion for the Hurwitz
zéta function

By (t) 1

ET(s)s—1+k’

C(s5t) =

k>0

saying that ((s;t) has also an analytic continuation to the complex plane
as a meromorphic function with only one simple pole of residue 1 at s = 1.
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We first have to consider the D.g.s. with integer arguments. But this
can be studied as a complex function of s; = o; + i1, for ¢ = 1,..,7,
with 01 > 1,00 + 09 > 1,...,01 + -+ + o, > 1. Either, if the power
series F;(e™ %) has a suitable asymptotic expansion at 0 and at oo then the
Dirichlet generating functions associated to the sequences { fin }n>1,i=1, .~
are meromorphic functions in C" and are given by

Proposition 3.5. The functz’on Dis(F|z) can be represented as

[0,1]"

J [(sy) Uj

Uu,
/H le du,
1—s;°
r : .]
55) U,

+ j=1

where w41 = 1.

Proof. The proof can be obtained by induction on r and by use of Lemma
3.1. [

Therefore, by taking z = 1, one finally gets
Corollary 3.2. The generalized D.g.s. can be represented as

1, 1 F (Hl L) duj
F S / lo g87 1 J ]
0 H T w

zl 1ul) de
/T H 1—s;"

+ j=1 uj

where U411 = 1.

For z = 1, the polylogarithmic transformation corresponds to the Mellin
transformation and one obtains the D.g.s. Di(F/T'(s);s) associated to

F(r)/T'(s) with F(1) =35, frq® and ¢ = e 7.

Example. Let s’ = (sg,...,s,) and F' = (F,,,..., F;, ). By Lemma 3.1, the
Dirichlet function Dig(F|z) is a polylogarithmic transform of the function
Fy () Digi(F']2) -

1 : !
. 1,1, Fj, (2t) Dig (F'|2t) dt
Dlst:/lo511 L —
(Fl2) = [ 1oge1(4) PR S
_/°° F; (27" Dig (F|ze™t) dt
—Jo I'(s1) st

and the D.g.s. Di(F;s) is a Mellin transform of Fj, (e=%) Dig (F'|e™*)/T'(s1).
Therefore, by Corollary 3.2, Di(F;s) can be viewed as a multiple Mellin
transform of the multivariate function [];_; Fi (e” Tl ) /T (s;).
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Corollary 3.3. Let f(z;t) = 2'7t/(1 — 2). We have

C(s:t) / Hlogsjq (Hl  w;t) du
[0,1] Uj L'(s;) Uy

/ Hf Zuzt)du,-
1—51-'

+ i=1

Therefore, in this way, the Hurwitz polyzéta ((s;t) can be viewed as a
multiple Mellin transform of the multivariate function

f Zz 1 Y. t r 1 6(1—@)2?:1“1
(54) H !

U=
Its poles are Z;:l uy, for i € {1,...,r}. To isolate the poles, we use the
next proposition.

Proposition 3.6. Let s be a composition of depth r > 2 and t €] — oo, 1[".
Then,

+00 o—(1=T)ay y2oi=1 % 7!
dz,
0

C(SSt) = 1 — eor F(ST)

7
—i %5 ij:l Sj -1

; (1 — .’L‘i)s”l*l
7 t dzx;.
/017" 1H 1—e" sz F(Sl) v

=1

Remark 3.1. Since 1 —e L= ~ H;:z x;j near 0, the equality of Propo-
sition 3.6 gives an holomorphic expansion of the polyzéta ((s;t) over the
set of tuples (s,t) € C"x] — 0o, 1[" such that R(s;) > 1 and R(s;) > 0,
?R(E;Zl sj) > i for any i € {2,...,7}.

Proof. We use the substitution
U =2a1...2p, ug = (1 —x1)x2. .. Zpy ..oy Up = (1 — zp_1) 2y

Note that Z;Zl uj = [[;_;z; for all i € {1,...,r}. The Jacobian J, =

I ur,...,up)/0(x1,. .., 2 is equal to [[;_, xk -1 (see Lemma 6.1 in appen-
dix). The change of variable is so admissible for (ui,...,u,) in [0, +oo["
i.e. when (21,...,2,) is in D, = [0,1]"~! x [0, +-o00].



Analytic and combinatoric aspects of Hurwitz polyzétas 615

e i 511 si— : i—1 g
<}]2_em< H”” BN IERE

1
[
/ T —6_(1_ti)1};:i %j xzé 1%~ 1(1 — :Ui)siﬂ_ldxi.
-1 1-— elli=izi °
O
4. Analytic continuation and structure of poles
In this section we assume that t €] — oo, 1[".

4.1. Analytic continuation of Hurwitz polyzétas.

4.1.1. Generality over the regularization near 0.

Notation. We denote by fx’fl...zf’" the partial differentiation 8316? (;: fs

and by Z.¢ the set of negative integers.

Definition. Let f be a function C° over an interval I which contains 0,
and C* at 0. For all s = s, +is; € C\ Z<0,
phs+l

Rp[f](S)Z/Ofﬂs[f(iv)—kZ_ofzk( ) +ka' k+s+1

is defined for any positive real p € I independently of any integer ng >
—8, — 2. In particular, if s, > —1, then

P
Rolfl() = [ a*f(a)da.
0
Remark 4.1. Moreover, for any positive reals p1, p2 and A in I,

P2
Ronlf](5) = / 2 () + Ry [£](5),

p1

A A
/ 2 f(2)dz + Ry f](5) = / 2 (@) + R f1(5).

P1 P2
One can find this definition in some books about Distributions as [18].

Remark 4.2. Over any open set R(s) > —ng, the expression of definition
4.1.1 show that s — R,[f](s) is holomophic over C\Zq and that the poles
are simples.

Proposition 4.1. Let I be an interval which contains 0, let J be a real
open set, and let f be a continuous function defined over I x J. For any
positive real p € I and for any s € C\ Z<o,
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(i) Rplf(z,y)|(s) is defined for anyy € J such that f(.,y) is indefinitely
differentiable at 0.

(ii) of moreover J is an interval, and if f € C*°(I x J), then the function
y— R,[f(z,y)](s) is C* over J and

;pr[f(x, Y)(s) = RA;yf(% y)l(s)-

Proof. (i) comes from the definition 4.1.1. Let s € C\ Z«g, and an integer

ns > —R(s) — 2. The function g(x,y) = 2°[f(z,y) — Dop2g for (0,y)2* /K]
is differentiable at y over [0, p] x J and the partial derivative

dg 0 8’“ xk
V(l',y) erlx J7 @(xvy) Z ay amk ]{7‘

of o of  at
= a*y(%@/) - k:o%@(ojwﬂ

is continuous over [0, p] x J. So, the function g

- p . N xk B 14
7 yH/O z (f<oc,y>—kzofmohwk!)dﬂﬂ—/0 9(z,y)dz

is C! over J, with derivative

Ay
0o 9y
Moreover, h(y) = Y12 for (0,y)pF 511 /(Kl(k+s+1)) is differentiable over
[0, p] x J and its derivative is
oh,) 1 0 or,
Ay — k! 0xk Oy

k+s+1
) LA

k+s+1

The (ii) follows. O

By recurrence, we deduce :

Corollary 4.1. Let I be an interval which contains 0, let J be a real interval
and let f € C°(I x J). Then, for any s € C\ Z<o and any positive real
p € I, the function y — R,[f(x,y)](s) is C* over J, and, for any k € N,

k k
;yknp[ o )l(s) = Rp[aaykf(fﬂay)](s)-

Corollary 4.2. Let U be an open of C, let f € C*°([0,1] x U) and let
p €]0,1[. Suppose f(x,.) is holomorphic over U for each x € [0,1]. Then,
for any a € C\ Z<o, the function s — R,[f(x,s)|(a) is holomophic over U.
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Proof. Thanks to the proposition 4.1, z, — R,[f(z, 2. +iy.)](a) and y, —
Rolf(x,z, +iy.)|(a) are continuously differentiable and,

5o Rolf (2,22 + 1)) = Ryl o+ )]0
= Ryl (o + )]0
i aiznp[f@, 22 +iy.)](a).

O

Lemma 4.1. Let f € C*([0,1]), let M be an integer and let p €]0,1][.
Then, the function

- P M zF
meAxum—gmwm)

is holomorphic over the open set Upy = {s € C/R(s) > —M — 1}.

Proof. Given a compact set K C Uy, and the function
M .fL'k
g:(x,8)— ;Us(f(ib) - mek(())g)
k=0

e For any z € [0, p], the function s — g(x, s) is holomorphic over K.

e For any s € K, the function = — g(z, s) is integrable over [0, p].

e The function g is continuous over the compact [0, p] x K, so there
exists Mk € Ry such that

V(ZEaS) € [O,P] x K, |g($,8)| < Mk.

The function z — M is integrable over [0, p.

So the function f = fop g(x, s)dz is holomorphic over each compact included
in Ups and so, over Uy, . O

Lemma 4.2. Let f € C*([0,1]?). We have the equality
R [Ropu [f (2, 9))(a1))(a2) = Rpy [Rp, [f (2, y)] (a2)] (a1)

as meromorphic function of (a1, az) over C2.
Proof. The functions

fiz2 : (a1,a2)

[d
foq : (a1,a2) +—

R [Rps [ ()
Rps[Rps[f (2, )](a1)] (a2)
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are meromorphic in C? with set of poles (Z<0)2 so discrete. But, over the
open set R(ay) > 0, R(az) > 0, we have

fio(ar, a2) = Rp,[Rp, [f(2,y)](a1)](a2) = / "y f(z,y)dzdy

[0,1)2
= Rpu [Rpalf (2, 9)](a2)](a1)

= fa,1(a1,az).
So functions fi 2 and fo; are equal [32]. O
4.1.2. Regularization between 0 and 1.

Lemma 4.3. Let f be a function C° over the interval [0,1], and C*° at 1
For all s = s, +1is; € C\ Z<o,

1 —
/ (1—2x)° fo (= 1) ———|dx
p !

+Z kfa: p)k—I—s-‘rl
! k+s+ 1

is defined for any p € [0, 1] independently of any integer ng > —s, — 2 and
is egal to Ri—,[f(1 — x)](s).

Proof. The function z — (1 — 2)*[f(z) — Y_1g for (1)(z — 1)¥ /K] is con-
tinuous over [1 — p,1[, equivalent to (z — 1)¢ Wlth a > —1 at 1, so the
expression is defined. The change of variables x — (1 — z) shows that its
egal to Ri_,[f(1 — x)](s), so its is independent of n. O

We have to study integral of type fol f(z)z*(1 —x)’dz, with a function f
in C*°([0,1]). It is defined for R(a) > —1, R(b) > —1. To continue for any
(a,b) € C2, we decompose the integral between the singularities and use of
regularized : for R(a) > —1 and R(b) > —1 (where the integral is defined),
and with p; and pg in |0, 1]

/ f(x 1—:U)bdx—/p?c“(f( )(1—x) )dw—l—/pff(x)wa(l—x)bdx
1
1—z)b x%)dx
(55 +/p( )2%)
R [f(2)(1 = 2)")(a) + f( )z (1 — x)’da

(56) + Ripp[f(1 = 2)(1 = 2)%](b).
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Definition. Let J be an interval of R. Let f € C°([0,1]) and indefinitely
differentiable at 0 and 1. The expression

P2
Rou[f(2)(1 = 2)")(a) + f(a)a(1 = 2)°da +R1—p[f(1 = 2)(1 — 2)](b)
pP1
is defined for all (a,b) € ((C \ Z<0)2 independently of any reals p; and po
in ]0,1[. We call it R{[f](a,b).

For sake of simplicity, we will always use the above definition with p; =
p2 = p. Note that if R(a) > —1 and R(b) > —1, then

(57) RAIf](a,b) = / F(@)ae(1 — z)lda.

Remark 4.3. ;From Remark 4.2, we deduce that (a,b) — R[f](a,b) is
holomorphic over ((C \ Z<0)2 and these poles are simples.

Proposition 4.2. Given f € C*([0,1] x J). Then, for any (a,b) € (C\

Z<0)2, the function y — R}[f(z,v)](a,b) is C* over J, and, for any k € N,
we have

0 0
87,.@735[]‘(% y)l(a,b) = Ré[a?kf(x, y)l(a;b).

Proof. It comes from

Rolf (2, 9))(a,b) = Ry[f (x,y)(1 = 2)")(a) + Ri-p[f (1 = z,y)(1 — 2)"](b)
for p €]0, 1], and from Corollary 4.1. O
Corollary 4.3. Let U be an open set over C and let f € C*°([0,1] x U).
Assume f(x,.) is holomorphic over U for each x € [0,1]. Then, for any
(a,b) € ((C \ Z<0)2, the function s — R§[f(z,3)](a,b) is holomorphic over
U.

Proof. According to Proposition 4.2, z, — R}[f(z, . +iy.)](a,b) and y, —
R (@, x» + iy.)](a, b) are continuously differentiable and,

SR+ i) b) = R fa . + i) (a.)
0
= Rific (o + i)l (0.D)
= lai R(l)[f(wv T+ iyz)](a7 b)

g

Lemma 4.4. Given f € C*([0,1]?). We have the equality of meromorphic
functions of (a1, b1, as,by) over C* :

Ro[Ro[f (z,y)](a1, b1)](az, ba) = RG[RG[f (, y)](ag, b2)] (a1, b1).
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Proof. It comes from

Rilg(@)](a,0) = Rylg(2)(1 = )°)(a) + Ri—plg(1 — 2)(1 — 2)*](b)
for p €]0, 1], and from Lemma 4.2 as show in appendix (Lemma 6.2). O

4.1.3. Analytic continuation of Hurwitz polyzétas. In order to simplify the
expression of ((s,s) found in proposition 3.6, let h(x,t) = me_(l_t)””/(l
e™®). The function h(.,t), as product of z/(1 —e~%) and e~ can be
developed, for any real ¢, in a power series of radius of convergence 27 :

+oo
By (t

(58) h(z,t) = o

k=0
where the Bj are the Bernoulli polynomials. To simplify the expression of
h(.,t;) as a power series, we use the notation :

Notation. 3], = By (%;)/k!.

The function A(.,t) is so in CT°°(] -2, 27[), but its definition shows that
h(.,t) € CT*(R\ {0}); consequently, the function h(.,) is in CT*°(R).
For R(s1) > 1, R(s;) > 0 and R(3_%_; si) > foralli € {2,...,r},

too yz;zl sj—r—1
st _/ Wy Iy,
i) = [ hn )
ZJ 1 55—i—1
(59) / TIA Tt gty
oty g D)
By splitting the integral fo onto fol and f1+°°,

1

(60) ((s;t) = . TG

(<I)1( t) + Daofs; t))

where, with s,41 =1,

(61) / [ Hyz,tz e
0,1]"

=1 k=i
and,

+OO S;i—r—
Py(s; t) :/ h(yr, t, )yrZJ v 1dyr

si—1—1 Siaq—
o /[01] 1H Hy Zm T ey,

=1 k=i
Lemma 4.5. The function ®1 defined in (61) can be extended in a mero-
morphic function over C". Its set of poles is s; € —N, Z;:l sj €i1—N, for
i€{l,...,r—1}. These poles are all simple.
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For i € {1,...,r}, we put g;(x,y) = h(zy,t;). Note that all g; are in
C>(R?). In this way, ®; can be written, for R(s1) > 1, R(s;) > 0 and
%(Z] 18) >iforallie{2,...,r},

Oy(sst) = Ro[h(yr,fr)Ro[h(yryr_l,ir_l)Ré[- CRYr -y, o)
Reh(yr ... y1,11)] (51 — 2,89 — 1)](s1 + 52 — 3,83 — 1) ...
(63) st spmr—rsr = D](s1+ .o s — 1 —1,0)
=Ro[9r Wr, DRG[gr—1 (r—1, ¥ )RG[- - - Rolg2 (2, yr - - - y3)
Ro[91(y1, Yr - - y2)] (51 — 2,892 — 1)](51 + 52 — 3,83 — 1) ...
(64) st s — s —D](s1 4.+ s — 7 —1,0)

Proof. Thanks to proposition 4.2, y — R[g1(y1,y)](a1,b1) exists and is in
C*(R) for (a1,b1) € (C\Z<0)2. So

(y2,9) = 92(y2, ) Ro[91(y1, y2v)] (a1, b1) € C>([0,1] x R)
and so (proposition 4.2)

y — Rolg2(y2, ¥)Rolgr (yr, y2y)) (a1, b1)] (az, b2)

exists and is in C*°(R). Step by step this process checks that the expression
(64) is defined — and so gives an expansion of ®; —for s1—2, sg—1, s1+s2—3,

ss—1,..,8-1—1,s14+...+s —r—1in C\ Zg. Moreover, thanks to
Remark 4.3 and proposition 4.2, these poles are simples. O
Notation. Let g(y1,...,yr) ng Yir Yr - - - Yit1) Hh o Yir i)

Remark 4.4. The equality (64) extended to C" gives the expression of the
meromorphic continuation of 4, thus

Oy (s;t) = Ro[Ry. - -
RO[R [9(y1, .- yr)](s1 — 2,80 — 1)](s1 + 82 — 3,83 — 1) ...
..](sl+...+57~_1 —rs—D(s1+...+s —r—1,0),

fors1 —2,8—1,81+8—2,83—1,...,8_1—1,81+...+s8—r—1in
C\ Z<o. Note that, thanks to lemma 4.4, this expression is independent
of the order of the regularized R(l]. In other term, any variable is privileged
because the operator

fr—=Ro[--Rolf (s - - - un)(@o 1), bo(1)) - - J(@o(r) bo(r))

is the same for all permutation o in &,.
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Lemma 4.6. The function ®o defined in (62) can be continued as a mero-
morphic function over C". Its set of poles is s; € =N fori € {2,... 7},
Z;’:l sj€i—N forie{l,...,r—1}. These poles are all simples.

Note that @y verify, for R(s1) > 1, R(s;) > 0 for i € {2,...,r} and

%(Z;Zl si) >idforallie{2,...,r},

+oo
Do(s, t) =Ry Rtl)[/ 91, yr)dyr](s1 — 2,80 — 1)
1
(65) s A s — s — 1),

Proof. The function g is C*° over R", and, for any compact, each partial
derivative gy’fl gt is absolutely majorized over R’ by a function Me™r,
with M € Ry (the function z — x/(1 — e~ %) is C* so the derivatives are
bounded over any compact - in particular ones containing 0 - and their
expression is P(z,e™%)/(1—e~%)¥, where P is a polynom; so by multiplying
by the derivatives of e=(1=9% we get the announced form). So the function

+o0
(yl,-..,yr—l)H/ 9W1s- - yr)dyr,
1

is C'°° over ]Ri_l and the use of Proposition 4.2, applied step by step, shows
that ®2 can be defined by equality (65) for s; —2, sa—1, s1+s2—3, s3—1,

o Sp—1,814... 48,1 —7rin C\Z<o. Moreover, Remark 4.2 and Corollary
4.3 show step by step that this extension is holomorphic over this domain,
and, thanks to Remark 4.3 and Proposition 4.2, these poles are simple. [

Remark 4.5. The equality (65) gives the expression of the meromorphic
continuation of ®, over C". Note that this expression is independent of the
order of the operator R}.

Theorem 4.1. Given t €] — oo, 1[", there exists an analytic continuation
of the function ((s;t) over C", which is holomorphic over the set of s € C”
such that s # 1, 335y s; ¢ i—N for alli € {2,...,r}. Moreover, the poles
of this continuation are simple.

Proof. This comes from the fact that the poles of ®; and ®5 are simple,

and so the poles s; € N, i € {1,...,r} disappear since
1
C(s;t) = =———(P1(s;t) + Pao(s; t)).
H::l INER) ( )
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4.2. Structure of poles.

Notation. We say that a series 3" 2o fn(2) verifies the Weierstrass M-test
over X if there exists a positive real M such that
+o0

Z sup | fn(2)] < M < 4o0.

n=ng TE€EX

4.2.1. Calculation of the reqularization near 0. To know the value of the
regularization for “good” power series, we need this following lemma :

Lemma 4.7. Let E?ﬁg anz™ be a power series with radius of convergence
r >0 and let s = s, +is; € C. Let ng be an integer such that ng > —s,.
Then

(i) :st an 2" verifies the Weierstrass M-test over any closed disc of

radius strictly smaller than r.

(ii) If the series converge absolutely at z = r, Zn . anz"tS wverify the
Weierstrass M-test over the closed disc of radius 7.
Proof. For any p €]0,r[, and for any integer N > ng + 1,
N
Z sup a2t < Z lan | p" 5 because n + s, > 0!
n=mnsg D(O,p) n=nsg
< p'r Z lan|p" which converges
n=ns
We have (i7) thanks to the same calculation with p = r. O

So, now we can calculate the regularized for “good” power series :

Proposition 4.3. Let f(z) = 3720 an,2" be a power series with radius of
convergence r > 0 and let p €]0, r[. Then, for all s € C\ Z<o,

k+s+1

Z kk—i—s—l—l

Proof. Let ng be an integer such that ns > —R(s) — 1, then

9= [ 5 S o
aiz kdr + ap———
k=ns+1 k +ts+1
—+00
Thanks to lemma 4.7, we know that the series Z a2 is uniformly
k=ngs+1
convergent over [0, p| and that
k+s+1 +oo kts+1

k+sd p _
Z /akz x+zakk+ e DL ey
k=ns+1 k=0
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O
Corollary 4.4. Let p be a positive real, let f(z) = :O% anz" and g(z) =
Z"'OO bn2™ be two power series with radius of convergence strictly greater

than p. Then, for all s € C\ Z<o,

n1+ng+s+1

p
Rolf(x)g(x a
plf(2)g(x)](s Z n1 n2n1+n2+8+1
n1,n2>0
Proof. f(2)g(z) is the power series > 7°% S°"_ axb, 12" and its radius of
convergence is strictly greater as p, so thanks to Proposition 4.3,

too n n+s+1
R =
AF@g(@))(s) = 32 3 awbas s
n=0 k=0
Z pn1+n2+s+1
= anl na
ny a0 ni+ne+s+1°

g

4.2.2. Regularization between 0 and 1. Near 0, we have to calculate
R,lf(z)(1 — z)b]. To use result of subsubsection 4.2.1 we have to develop
(1 —z)°, so we note :

Notation. Let s € C and n € N. We note (s), = [[}Z5(s + k) =
(s+mn—1)and [s], = (—=1)"(—=8),/n!.

Let us recall that the Taylor series of (1 — 2)* is 30 [s],2", which has
1 for radius of convergence (so they coincide for |z| < 1).

Lemma 4.8. Let f(z) = Zi% anz" be a power series which verifies the
Weierstrass M-test over [O 1]. Then, for any (a,b) € (C\ Z<0)2,
(1) R(l)[f(x)](a,b) = n= Oa’nRO[ ](a’ b),
(ii) If the power series g(2) = 3120 b, 2™ verifies the Weierstrass M-test
over [0, 1] then,

Rolf (@)g(@))(a,0) = D an,bpy Rola™+"2](a,b).

n1,m2>0
Proof. Let (a,b) € ((C\Z<0)2.

(i) For any p €]0,1[, we have Rq[f(2)](a,b) = Rp[f(2)(1 — 2)"|(a) +
Ri-plf(1 —2)(1 — x)%(b). But, f and (1 — z)® are power series of
radius of convergence greater than 1, so, thanks to Corollary 4.4, we
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have

—+00

+oo
Rolf(@)(1 = 2)")(a) = Rp[>_ ana™ Y _[blnz"](a)
n=0

n=0
= ) anft]

pn+k+a+1
p—————————
e n+k+a+1

“+oo

+o0
=D anR[D Bz (a)
n=0

k=0
“+oo
= Z anRplz" (1 — ﬂf)b](a)'
n=0

In the same way, because f(1—z) = > 0 [(=1)" 372 (})aklz™ and

(1 — x)* are power series radius of convergence strictly greater than
p, we have

But R§[z"](a,b) = R,[2"(1 —z)%)(a) + R,[(1 — )" (1 — x)%](b), so the
(i) is proved.

(i) (fg)(2) = 3025 (X ho akbn_k)z" is a power series which verify the
Weierstrass M-test over [0, 1] : so we just have to apply (i).

O
To explicit the series given by lemma 4.8 we need the following lemma :

Lemma 4.9. For any (a,b) € (C\ Z<0)2 and any k € N,

- ¥ prthtatl oo (1 — p)ato+l
R b) = bly————— k

for any p €]0,1].
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Proof. Let p €]0,1[ and let (a,b) € (C\ Z<0)2. Then,

Ri[2*)(a,b) = Ry[2"(1 — 2)°)(a) + R,[(1 — )" (1 — 2)7](b)
+oo +oo

= RP[Z[b]qkaq](a) + R,;[Z[a + Kqz9)(b).

q=k q=0

The power series Z;:OZ[ l,—kz? and S°F%(a + k],29)(b) have 1 for radius
of convergence and p < 1. So, we can apply Proposition 4.3 and get the
announced result. 0

4.2.3. Structure of ®1. Moreover, we can have an explicit expression of
this continuation thanks to the following lemma.

Lemma 4.10. Let j be a positive integer, and let a1,...,a;j,b1,...,b; be
complex numbers in C\ Z«g. For all :Uj+1 eR,,

ki kj
RS A et AL RIS AL b ..

J_l k1=1

J(aj-1, b]—l)](ajv bj)

L[kt th kit
SN0 8101 TR PR
ki, k>0 =1
Proof. The power series > ( ,13:'2‘“‘) x7 verifies the Weierstrass M-test over

[0,1] (the radius of convergence is 27), so, thanks to Lemma 4.8 (i),

RO Z ﬂklxl a;2 (a1,b1) RO Z 5k1x2 ml (a1,b1)

kll kll

= Z ﬁkl 1R0 xl ](al,bl).

k1=1

This proves the lemma in the case j = 1. Now, assume it is true for an
integer j > 2. Then,

Rol Z 5k x]+1x]+2) MR
k=1

- Rl Zﬁkzlml (@) (a1, b))
k1= ].
- J(aj—1,b5- 1)](%7 b;)

J
- Z Hﬁk HR k1+ Hha (ai;bi))(xj+1$j+2)k1+'”+kj
=1

k1,..,k; >0 =1
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J
k ko—...—k; ; 1 k—ko—..—k;
—Z( S BT T8 R (e, 1)
kgyerinki >0 i=2
Jkat.. Ak <k

J
-
< [ Rl J](aivbi)))x§+1x§+2-
=2

Consequently, thanks to Lemma 4.8 (ii),

“+00
j+1 +1_kj+151 1 1 ..k k
R Z 7 JzH 2ROl RED . Bt 2 (ar,by)

kjr1=1 k=1
](ajvb )](a]+17b]+1)
_Ro[
= k; = k—k k /
j+ +1, Fj+1 2—...—k; i
PONC D DY (D DR sl | 9
kjr1=1 k=0 kg5 >0 j=2
Jkat..+k;<k

J
k—ko—...—k; k—kit1..—k;
(R[gjl 2 J](al,bl)HR(l)[% +1 ]](ai,bi))l‘?—l&)xﬁ-“l

J(@j+1,bi41)

=X k k k; J
e
= X alan( X Gem e
kjr1=1k=0 ko,....k;>0
/k2+ Ak <k
k—ko—...—k; k—kiy1..—k;
(RIS ar, ) [ RAfa (i, b))k )
i=2
k+k;
R(lJ[xjHHl](ajHaijrl)
Replacing k by k; = k — Zgzl k; gives the result for j + 1. O

Proposition 4.4. The function ®1 defined by (61) can be continued as a
meromorphic function over C" x| — oo, 1[" with

di(s,t) = _ .
> =18 kit

r r—1 +o0o P
s ()] (z[sm—u% L
ki,.. ,kr>0 < i=1 \g;=0 Do si— it kit a
' 1 _ pi)si+1+qi>

+Zzsj+2k —i= U

=0 j=1

X
D18 =Tk
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where pi1,...,pr—1 can be arbitrary chosen in |0, 1].

Proof. Thanks to Equality (64) and using Lemma 4.10 with j = r and
Tjp =1,

@1(8, t) =
T ) T [
> (H%) (HR3[$51+"'W](Z sj—i—1,8i41 — 1)>,
ki,..0kr>0 =1 i=1 j=1
with the convention s,y; = 1. Lemma 4.9 ends the proof. g

4.2.4. Structure of ®o. Let i € {1, e, = 1}, ai, b1, a;i—1, bi—1, ai+1, bi+1,
ar—1, by—1 € C and define the function r; from [0, 1] to C by

+o00
g R RYRY R gl u)duanb) -
(66) .. .](ai,l, bi,l)](aiﬂ, bi+1) .. .](arfl, brfl).

In Proposition 4.2, the function r; is C* over [0, 1] for any a1, b1, a;—1,
bi—1, Gi+1, biy1, ar—1, bp_1 € C\ Z<y. By now, let us suppose this is
verified. Then, R{[ri](ai, b;) exists and, for any positive integer M, when
§R(CLZ) > _M7

= Rpl(1 = 2)"ri(2))(a:) + Ri—pl(1 = 2)"7i(2))(b)

M v :
1 8kz b paz+k1+1
- Z T A ki (1 =) 7ri(yi)) (0)———~
kim0 kz- 6yl a; + kz +1
P ) M 81@ uki
+/ v <(1 —y)"rilyi) = D o (1= wa) i) (0) 25 )dyl
0 k;=0 8yz v
(67)  +Rip[(1 —2)%ri(2)](bi),
for any p €]0,1[. But the function 7
M . ufl

P
riia; /0 Y; < 1 - yz 7'2 yz Z
(68) FR1-p[(1 = 2)"7i(x)](bs)

is holomorphic when R(a;) > —M (lemma 4.1 and corollary 4.2).
On the other hand, the first terms are given by
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Lemma 4.11. For anyi € {1,...,r — 1} and any k; € N,

Nbiga ().
ki!@((l—yﬂ ri(9:)) (0)
ki
= (H’B]’><HRO i=1 J alybl))R(l)[y,]fl...
k=0 ki+..+kl=k ~j=1
+
..yf+273(1)[?/§+1/1 H Hyl, Vdyr] (i1, big1)] - .

J=i+l I=j
cJ(ar—1,br—1) [bi]k, k-

Proof. For any k € N,

. Byl .y i gy i<
h(H yl7tj)(0) = B (t )yz—i-l yf lf.] =1
=Jj 0 if 7 > .

SOJ with Y? - (y17"‘ 7yi—1707yi+17"‘ 7y7“)7
ok 0
Tyfg(yhﬁ%’)(yz)

Kl
= > - Hyz,

|
ki+...+kr=k For Jj= 18 =5
k!
= Z k ]C' a Hyl7tj Y'L H Hyl7tj
ki+...+k;=k ] 1 l=j Jj=t+1 l=j

=K > Hﬁinyzkj H H?ﬂvtﬂ

k1+“.+ki:k)j=1 =3 j =i+1 :
14

=& [T r(QLwt) D Hﬂj H Yi

j=itl  I=j k1t thi=k j=1 =1
l#1

1nf(l z)

In the proof of Lemma 4.6, we verified the conditions of differentiation
under the sum sign so

1 o
Tl 9y k
k! oy

mf(l L)

- Z HﬁkHz ]/ H Hyz, )y,

ki+4...+ki=k j=1 =1 j=i+1 =j
1 j= =

Y g(yr, - yr)dyr(yY)



630 Jean-Yves ENJALBERT, HOANG NGoC MINH

Thanks to proposition 4.2, we deduce,

1 ak‘,rl 1 1 mf(l z)
g O =Ral-Rol D Hﬂk H i

ki+4...+ki=k j=1 =1

1#1
/ H Hyl’ )dyr](a1,b1)] .. J(ai-1,bi—1]
Jj=i+1 I=j
= Z HIBJ HRl i1k (ar, by) 721[ k
k; oY 1,01 0lYr—1---
kitotki=k ~j=1
YR l/z+1/ H (Hyhfj)dyr](aiﬂ,biﬂ)]---
Jj=i+l I=j
J(ar—1, br—1].

We only have to use this result in

1 ok _
gy (79 r) O
k'.
~ 19 1 0F k(1 -y,
=2 oy O = =
= K oy; y;
U
Proposition 4.5.
_Ba(sit)
H; 1P( )

ki
T(s) Zzszﬂ—lk K, Z <Hﬁj>
ki>0k;=0 =k “j=

l1+...+1;

. k,
(HRl Y5 =t (51 +. +Sj3175j+11)>R(1)[yT11"'
T

“+00
RO z+2RO y@+1/ H Hylvt] dyr s1+

Jj=i+1 I=j
coFSip1 — i — 2,842 — D)](s1+ ...+ Siye — i — 3,8i43 — 1)] ...

L T T e R e

si+... s —i+k

Proof. Any pole of ®3(s)/ [, T'(s;), can be writen Zl 181 =1—q, with
i€{l,...,r—1} and ¢ € N (Lemma 4.6). Thanks to Lemma 4.4, ®5(s)
is R[ril(a;,b;) when aj = 37 sy —j—1land bj = sj;q — 1 forall j €
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{1,...,r}. Equality (67) shows that the singular part of R}[r;] over R(a;) >
—q — 2 is the sum

4 ri(x — )b &

— a;i+k+1

a;+k+1

The singular part of Laurent series at Z§:1 8§ = —1% —qis so
q! ai+q+1’
and Lemma 4.11 ends the proof. O

a;+q+1

4.2.5. Structure of . Using Proposition 4.4, Proposition 4.5 and Lemma
4.9, we obtain

Theorem 4.2. The analytic expansion of (s;t) has for set of poles s; =1
and E;:l 5j €1 - N for alli € {2,...,r}. These poles are simple and
the residue at Z;’:l si=q,r>i1>1andq€i—N, is

miwmyi.ﬂﬂ%>

Y
[5l+1 - 1]!11 1 1
;:1' 2=0 DS — L kit
T
i1 — 1]' i
(1- pl)51+1+m> [Si+1 i—g=Y Lk
+ 5i + kj —1—1] 2
Zo 321 ! Z TSt a D18 =T+ 2 K
St ¥ (1)
k=0 ki+...+ki=i—q
i +oo pZL:1 SL*JJFZL:l ki+q;
(T s
j=1 q]—O 1= ISL_]—I_ZL—lkL_I_qj
/ s]+1+q] .
+ s,—j—1+Y k] >R1yﬁ:q
z:() ; L Z SJ+1 ¥ 4 0[ 1
' i+1
..Ré[yﬁrf/ I » Hyl,tj S
Jj=1+1 l=j

r—1
..(ZSL—T,ST—1)>,

=1
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the residue at s1 = 1 is

e, =, (4114)

250 kir >0
r—1 , 4oco PZ§:2 5j+1_l+22‘:2 kj+a
H Z[SZH — o= l I
lQ(qZO Zj 25j+1*l+2j:2kj+%
1 _ pl)51+1+qz>
+ s;+1+ kj—1—-1)y———F"——
ZO JZ2 ! Z st

X
Z; 98 +1— r—l-zj 2

+oo T

+BoRql. - 720/ Hh Hyh )dyr](s2 — 2,53 —1)]..
.(Zsb—kl—r,sr—l)),
1=2

the residue at 3% s; =q €r—Nis

le<>< 2 (H%)

ki+...+kr<r—q

r—1 , +oo p22:1 Si— H‘Zé‘:l kj+a
H Z[Sl—H — g, 1 l 1
ll< 0 Zj 18j7l+2j:1kj+cﬂ
1 _ pl)81+1+th>
+ si+ kj—1— —_— ],
Zo JZI ! Z st
where
- Bi(ti —t; W0k —
g = Bty g, = L=

k!
forallkeN,ie{l,...,r} (t,4+1=0),s€C, neN.

n!

5. A translation relation and prospects
5.1. The translation relation of Hurwitz polyzétas. Recall that, for
seC, (s)o=1and

Cs(sH 1) (s+k—1) TIFg(s+i)  D(s+k)
() = k! TR T RT(s)
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for all k£ € N*. To adapt Ecalle’s idea to Hurwitz polyzétas [15], we use the
relation, with ¢ < 1 and n > 2,
+00

1 1
(69) 1=t Z(S)km

k=0

we obtain (see Lemma 6.3 in Appendix) :

Lemma 5.1. Lets be a convergent composition of depth r. If t €]—o0;1[",

((s;t) =
! 1
> (G| X = -
ki, kr>0 \j=1 ni>..>np>1 (1 —ta)s R (g =)ot

We can express the right member in Lemma 5.1 in term of polyzétas,
which gives raise to the following equality :

Proposition 5.1. Let s be a convergent composition of depth r and let
t €] —oo; 1[". Then,
r—1

(~1)r (1)
0= siiti) +
(L= typ)s (1= tT)SrC( i ) (L—t1)s ... (1 —t,)r
+ ) [T | (¢s+%s5t)
k1. kr>0 7j=1
(k1;e.3kr)#(05...50)
r—1

(1
" z:: (1 —tjqq)Sirthin (1 —t,)srthr ¢(

7j=1
(="

Sj + kj;tj)

* (1—ty)sith (11— tr)5r+kr>’
r k
where (s) = k(:('gl“—i(_s)) for all k € N.

5.2. Translation equality and analytic continuation. We want see
now if the equality of Proposition 5.1 can give the analytic continuation of
((s;t) by induction over the depth r. So, let us have a first look at what
happens with r = 2.

Example. When r = 2, Proposition 5.1 becomes :
-1 1
0= —— it
(1 _ t2)82 <(327 2) + (1 _ tl)sl(l — t2)82

D SRR YN (ST IR
k1,ko>0
(k1;k2)#(05...50)
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-1 1
+WC(SQ+k2;t2) + A _tz)sz)

S0,

> (s0)k (52 (51 4 ko, 52+ ks t)

k1,ko>0
(k13k2)7#(05...50)
1 1
= 't —_
(1 —tg)%2 C(s2:t2) (1 —t1)51(1 —tg)s2

1
+ Y <s1>k1<S2>k2(m<<sQ+k2;tz>
k1,ko>0 2
(k13k2)#(0;...50)
1

(1 —t)m(1 —t2)52>'
Remark 5.1.

(1) The right part of the last equality can be continued as a meromorphic
function over C2. Unfortunately, no term of the left part is in principle
continuable as a meromorphic function over C2, and we can’t isolate
this terms with the equality only. We can not define ((s;t) for s
with negative values in Z too because the (s); cancel each other out
(which is in agreement with our assertion that there are poles for
these values).

(2) Thanks to the integral representation, we can define the function
((s;t) for Re(s1) > 1 and Re(s2) > 0. We can try to progress by
stripe : for example, for 1 > Re(s1) > 0 et Re(s2) > 0, the terms
C(s1+kq, sa+ko;t) are defined for all ko and all k3 > 1. Unfortunately,
there are still the terms ((s1,s2 + ko;t), for all ko € N* which can
not be defined in principle over C2.

(3) The remarks still remain true for r > 2.

6. Conclusion

This article gives the analytic continuation and the structure of poles
of the Hurwitz poyzéta function. Thanks to Proposition 3.3, this result
gives too the analytic continuation and the structure of poles of the peri-
odic Parametrized Dirichlet generating series (so of the coloured polyzéta
functions).

Howerever, some coeflicients of this analytic continuation are not ex-
plicit : it would be nice to have an algorithm given explicit coefficients.

An other way is to start with a translation relation. A development of all
variables simultaneously (as Proposition 5.1) gives an infinite sum of terms
with same depth prevent from obtaining directly the analytic continuation.
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It seems that we need woork with a development in only one variable, and
make a induction variable by variable and stripe by stripe.
We will study these differents points in a next article.
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Appendix

Lemma 6.1. Consider the substitution

(70) x1=y1--- Yy w2=1—y1)Y2- - Yry -y Tr = (L — yp—1) Y-

Its Jacobian J, = O(x1,...,27)/0(Y1,- .., Yr) is equal to H T

k=2
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Ir
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T K
Hyk _Hyk 0
kil k=2
[ G=w) J] v o 0
k#£2 kg{1,2}
H yi (L—m) H Yi —Yn—1Yn 0
k#n—2 kZ{1,n—2}
T K
[Tv a-v ][] w (1 = yn—2)yn —Un
k#n—1 kZ{l,n—1}
H?/z‘ 1-9) H Yi (I =Yn—2)yn-1 1—yn-
k#n kZ{1,n}
T T
H Yk _Hyk- 0
kg{1,2} k=3
I v O-w) I w ~Yn—1Yn
Yk | gt n—2} kg{1,2,n—2}
2 T T
I v O-v) I w (1= Yn—2)yn
kZ{1,n—1} kgZ{1,2,n—1}
M -v I (I = Yn—2)yn—
kZ{1,n} kZ{1,2,n}
k=1
Yo -

Lemma 6.2. Let f € C*([0,1]?). We have the equality

637

—Yn

1- Yn—1

Ro[Ro[f (. y)](a1, b1)](az, ba) = RE[Ro[Sf (, )] (az, b2)](az, b1)

as meromorphic function of (ay, b1, as,bs) over C*.

Proof. Using Lemma 4.2, for any p1, p2 €]0, 1],

Ro[Rolf (z,y)](a1,b1)] (a2, b2)
= RY[Rp, [f (2, y)(1 — 2)"](a1)

+R1—P1 [f ( 1

— z,y)(1 — )" (b1)](az, b2)
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= Ry [(Rp, [f (2, 9)(1 — 2)"](a1)
+R1-p [f(1 = 2, 9) (1 — 2)"] (b)) (1 — y)*](a2)
+R1-p[(Rpy [f (.1 = ) (1 — 2)"](a1)

[F(1 =2, 1 —y)(1—2)"](b1))(1 - y)*2](b2)
= R [Rp [f (2, 9)(1 = 2)" (1 — )] (a1)] (a2)
R [Ri—p [f(1 = 2, y)(1 = 2)™ (1 = )*](b1)] (a2)
AR po[Rp, [f (2,1 = y)(1 = )" (1 = y)*](a1)] (b2)
FR1-py [Ri—py [f(1 = 2,1 = y)(1 — 2)" (1 = y)*] (b1)](b2)
= R [Rps [f (2, 9) (1 = 2)" (1 = )] (a2)] (1)
+R1-p [Rpp [f(1 = 2, 9)(1 = 2)™ (1 = )] (a2)] (b1)
+ R, [Ri—pp [f (@, 1 = y)(1 = 2)" (1 = y)*](b2)] (1)
FR1-py [Ri—py [f(1 — 2,1 = y)(1 — 2) (1 — y)*] (b2)] (b1)
= R§[Rps £ (,9)(1 = y)*)(a2)) (a1, b1)
+Ro[Ri—ps[f (2,1 = y)(1 = y)2](b2)] (a1, b1)
= Ro[Ro[f (z, )] (az, b2)] (a1, b1).

+R1 P1

O

Lemma 6.3. Let s be a convergent composition of depth r. If t €] —oo; 1[",

. 1
C(sit) = Z (H(Sj)ka) Z (N1 — t1)51 R . (ny — t,)sr ke

k1,..,kr>0 \j=1 ni>..>n>1
r
where (s), = IE;SF_‘(_ I;) for all k € N.
IT(s

Proof. Note that, if t < 1, for all n > 2,

1 1 1 1 ¥ 1

e A R T i D T

(72) = Z(s)km
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and the serie verify the Weierstrass M-test for n > 2 (thanks to the in-

equalities
0<1l/(n—t)<1/(2—-1t)<1).
So, if t in | — oo; 1[", for any convergent composition s,
1
((sit) =
n1>.Z>:nT>O (n1 — tl)sl . (nr — tr)ST
= 1
s T o1 (np—tg — 1)t ... (ny —t, — 1)
= Z H Z Sj . S]'+kj
n1>..>np>1j=1k;>0 nj — ])

(73) - > ZHW

k1yeekr>0n1 > >0, >1 j=1

thanks to the Weierstrass M-test. The lemma follows.

g

Proposition 6.1. Let s be a convergent composition of depth r and let

t €] —oo;1[". Then,

r—1 ;
(=) (="

0= sjiti) +

= (1 —tjp1)%+ .. (1— tr)SrC( i) (1—ty)5 ... (1 —t,)sr
+ > [T, | (s +Xst)

Kqyseeerkr>0 j=1
(k17 1k:7”)?£(0’ 70)
r—1 ( 1)7" j

+ Z 1 _ t +1)S]+1+kj+1 . (1 _ tr)sr—l-kT C(SJ + k]7t])

j= 1
(="
+ (1 —ty)srthk (1 — tr)8r+kr>
r k
where (s)k = lfjf‘j(Ls)) for all k € N.

Proof. For all convergent composition s of depth r, for all integers k1, . . .

and all t €] —oo; 1[",

1
Z (n1 — t1)51+k1 oo (ny — tT)errkT

ny>..>n>1

> 1
- ny>...>n,>0 (nl o tl)SH_kl T (TLT - tT)Sr'H‘?r

s kers
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> :
ny>..>n._1>1 (nl o tl)SH_kl e (nr o tr)Sr"l‘kr
ny=1

=((s+k;t)
1

1
(1 —ty)srthr n1> ; 51 (ng —t)s1tk L (np_q — tp_q)sr—1thr—1’

C(s+k;t) + Z (-1

1 —t +1 8J+1+kj+1 o (1 _ tr)swkrc
(—1)’”

(1 —ty)sithkr (1 —t,)srthr’

(sj +kjit;)

+
(74)

Injecting equality (74) in equality of lemma 6.3, we obtain, for t €] —oo; 1["
and for convergent composition s,

T

sty = > (e | (<s+Kt)

ki,....,kr>0 \j=1

(1 |
+ Z 1 —t +1 Sj+1+kj+1 . (1 _ tT)ST‘HW C(SJ + k], tj)

(75) + (=1 )

(1 —tq)srthe (1 —¢,)srthr
Note that, if k; = ... =k, =0, H(sj)kj =1and ((s+k;t) = ((s;t). The
lemma follows. g
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