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Special values of symmetric power L-functions
and Hecke eigenvalues

par EMMANUEL ROYER et JIE WU

RESUME. On calcule les moments des fonctions L de puissances
symétriques de formes modulaires au bord de la bande critique
en les tordant par les valeurs centrales des fonctions L de formes
modulaires. Dans le cas des puissances paires, on montre qu’il
est équivalent de tordre par la valeur au bord des fonctions L de
carrés symétriques. On en déduit des informations sur la taille
des valeurs au bord de la bande critique de fonctions L de puis-
sances symétriques dans certaines sous-familles. Dans une deux-
iéme partie, on étudie la répartition des petites et grandes valeurs
propres de Hecke. On en déduit des informations sur des con-
ditions d’extrémalité simultanées des valeurs de fonctions L de
puissances symétriques au bord de la bande critique.

ABSTRACT. We compute the moments of L-functions of symmet-
ric powers of modular forms at the edge of the critical strip,
twisted by the central value of the L-functions of modular forms.
We show that, in the case of even powers, it is equivalent to twist
by the value at the edge of the critical strip of the symmetric
square L-functions. We deduce information on the size of sym-
metric power L-functions at the edge of the critical strip in sub-
families. In a second part, we study the distribution of small
and large Hecke eigenvalues. We deduce information on the si-
multaneous extremality conditions on the values of L-functions
of symmetric powers of modular forms at the edge of the critical

strip.
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1. Introduction

The values of L-functions at the edge of the critical strip have been
extensively studied. The work on their distributions originates with Lit-
tlewood [Lit28]. In the case of Dirichlet L-functions, his work has been
extended by Elliott [EI73] and more recently by Montgomery & Vaughan
[IMV99] and Granville & Soundararajan |[GS03]. In the case of symmet-
ric square L-functions of modular forms, the first results are due to Luo
[Luo99], [Luo01]. They have been developed by the first author [Roy01]
and the authors [RWO05| in the analytic aspect and by the first author
and Habsieger & the first author [HR04] in the combinatorial as-
pect. These developments have been recently widely extended by Cogdell
& Michel [CMO04] who studied the distribution for all the symmetric power
L-functions.

The values of L-functions of modular forms at the centre of the critical
strip are much more difficult to catch. The difficulty of the computation of
their moments increases dramatically with the order of the moments (see,
e.g., [KMV00]) and these moments are subject to important conjectures
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ICFKRS03], [CFKRS05]. Good bounds for the size of these values have
important consequences. A beautiful one is the following, due to Iwaniec
& Sarnak [IS00]. Denote by H3(NV) the set of primitive forms of weight 2
over I'y(IN) (this is the Hecke eigenbasis of the space of parabolic newforms
of weight 2 over I'H(IV), normalised so that the first Fourier coefficient is
one) and let €7(N) be the sign of the functional equation satisfied by the
L-function, L(s, f), of f € H5(N). Our L-functions are normalised so that
0 < Res <1 is the critical strip. Then it is shown that
#{feH;(N):ep(N)=1,L(3,f) > (logN)~?} 1

lim inf >c=—.

N—oo #{f S H;(N) 8f(N) = 1} o 2

If we could replace ¢ = 1/2 by ¢ > 1/2, then there would exist no Landau-
Siegel zero for Dirichlet L-functions. It is expected that one may even take
¢ = 1. The meaning of this expectation is that, if L(1/2, f) # 0 (which is
not the case when e¢(N) # 1), then L(1/2, f) is not too small.

In this paper, we compute (see Theorem @ and Proposition |B|) the mo-
ments of symmetric power L-functions at 1 twisted by the value at 1/2 of
modular forms L-functions, that is

) > w0 (50) LS e

feH3(N)

where w* is the usual harmonic weight (see (12))). Comparing (see The-
orem [C| and Proposition @ with the moments of symmetric power L-
functions at 1 twisted by the value of the symmetric square L-function
at 1, that is

(2) > Ww(f)LQA,Sym® £)L(1,Sym™ £)* (2 € C),

feH3(N)

we show in Corollary [Ef that and have asymptotically (up to a
multiplicative factor 1/{(2)) the same value when the power m is even.
This equality is astonishing since half of the values L(1/2, f) are expected
to be 0 whereas L(1,Sym? f) is always positive. Since it is even expected
that L(1,Sym? f) > [loglog(3NN)]~!, it could suggest that L(1/2, f) is large
when not vanishing.

Our computations also yield results on the size of L(1,Sym™ f) when
subject to condition on the nonvanishing of L(1/2, f) (see Corollary
or to extremality conditions for another symmetric power L-function (see
Propositions [J| and .

Before giving precisely the results, we introduce a few basic facts needed
for the exposition. More details shall be given in Section 2] Let f be an
element of the set H3(N) of primitive forms of weight 2 and squarefree
level N (i.e., over IH(N) and without nebentypus). It admits a Fourier
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expansion

+oo
(3) F(2) =) Ap(n)v/ne?™
n=1

in the upper half-plane H. Denote by St the standard representation of
SU(2),
St : SU(2) — GL(C?)
c? — C?
Moo= r — Mz

(for the basics on representations, see, e.g., [Vil68]). If p is a representation
of SU(2) and I is the identity matrix, define, for each g € SU(2)

(4) D(X, p,g) = det[I — Xp(g)] .

Denote by x, the character of p. By Eichler [Eic54] and Igusa [Igu59], we
know that for every prime number p not dividing the level, |A¢(p)| < 2 so
that there exists 6, € [0, 7] such that

Ar(p) = xstlg(rp)]

where

o) o0 = ()

(in other words, A¢(p) = 2cos 0, this is the special case for weight 2 forms
of the Ramanujan conjecture proved by Deligne for every weights). Denote
by P the set of prime numbers. Consider the symmetric power L-functions
of f defined for every integer m > 0 by

(6) L(s,Sym™ f) = [ ] Lp(s, Sym™ f)

peEP

where
Ly(s,Sym™ f) == D[p~*,Sym™, g(01,)]
if p is coprime to the level N and

Ly(s,Sym™ f) == [1 = Ap(p™)p~*]

otherwise. Here Sym™ denotes the composition of the mth symmetric
power representation of GL(2) and the standard representation of SU(2).
In particular Sym®(g) = 1 for all g € GL(2) so that Sym? is the trivial
irreducible representation and L(s, Sym" f) is the Riemann ¢ function.

We shall give all our results in a restrictive range for m. If we assume
two standard hypothesis — see Section [2.1] — the restriction is no longer
necessary, i.e., all results are valid for every integer m > 1.
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1.1. Twisted moments. For each squarefree positive integer N, each
positive integer m and each complex number z, define

) X =3 ) Z gLl

n=1

where 7, and Oy are defined by

—+00

ORI SRa 2 yIh
n=1
<~ On(n) _ L C2s) R
) el =)= e "E;(l p%) ’
p|N

and

=X,(N) ] /SU D(p~'/2,8t,9)D(p~", Sym™, g)* dg

where dg stands for the Haar measure on SU(2). In the special case N =1
write

1
(11) LY <2, 1; St, Symm>

=] / D(p~'/?,8t,9)D(p™", Sym™, g)* dg.
S

pEP u(2)
We also use the usual harmonic weight on the space of cuspidal forms
1 N
12 W (f) = :
- D=5 o)

where (f, f) is the Petersson norm of f and ¢ is Euler’s totient function.
We slightly change the usual definition to obtain
lim Z wi(f)=1

N—+oc0 -
fEH5(N)

as N runs over squarefree integers (see Lemmal[I0|with m = n = 1) in order
to obtain an asymptotic average operator. We note log,, for the logarithm
iterated n times: log; := log and log,,; = logolog,. Our first result
computes the twisted moments as in .
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Theorem A. Let m € {1,2,4}. There exist two real numbers ¢ > 0 and
0 > 0 such that, for any squarefree integer N > 1, for any complex number
z verifying

log(2N)
|z| < e
log,(3N) logs(20N)

the following estimate holds:
* 1 m z
> w0 (5f) L s )
feH;(N)
1 log(2N
=L (2, 1; St, Symm;N> + On (exp [_50g()}>

log,(3NV)

with an implicit constant depending only on m.

Moreover, we obtain an asymptotic expression as N tends to infinity in
the next proposition. Define, for each function g: Z~o — R™T, the set

(13) N (g) == {N € Zog: u(N)? = 1, P~(N) > g(N)}

where P~ (V) is the smallest prime divisor of N with the convention P~ (1) :
= +00, w(N) is the number of distinct prime divisors of N and pu is the
Mobius function.

Proposition B. Let & be a function such that {(N) — 400 as N — +o0.
Then

1 1
LY <2, 1;St,Symm;N> =LY <2,1;St,Symm> [1+ om(1)]

uniformly for

(14) N e N (&() max{w(-), [(]z] + Dw ()3, (|2] + 1)w(')1/2}) ,
2| < clog(2N)/[log,(3N) logs (20N)).

Remark. Condition is certainly satisfied for
NeN (10g3/2> and  |2| < clog(2N)/[logy(3NV) logs(20N))].

For a comparison of the behaviour of L(1/2, f) and L(1,Sym? f) we next
compute the moments of L(1,Sym™ f) twisted by L(1,Sym? f). Define

“+o00

(N) =(n(2)) EWEE)

1,z
(15) X meyprs

2,m
n=1
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and
(16) L'# (l,l,Sym Sym™; N)

=X (N ] / p~ ', Sym?,g)D(p~",Sym™, g)* dg.
pGP
(p,N

For the special case N =1 we get
(17) LY (1,1;Sym2 Symm)

=1] /SU p~!,Sym? g)D(p~ !, Sym™, g)* dg.

peP

Theorem C. Let m € {1,2,4}. There exist two real numbers ¢ > 0 and
6 > 0 such that, for any squarefree integer N > 1, for any complex number
z verifying

log(2N)

<
12l = e BN Togs (20N

the following estimate holds:

> Wi ()L (1,Sym? f) L(1,Sym™ f)*
feHZ(N)

log(2N)
_ Ll,z 1.1: 2 m-N " "100,(3N)
( ’ ,Sym 7Sym ) ) +0 (eXp |: 6log2(3N)}>

with an implicit constant depending only on m.
Again, we obtain an asymptotic expansion in the following proposition.

Proposition D. Let § be a function such that §(N) — 400 as N — +o0.
Then

LY (1, 1; Sym?, Sym™; N) =LY (1, 1; Sym?, Symm) [14 om(1)]

uniformly for

(18) N € N (&()max{w(-)V/2, [(|2] + Dw ()] 42})
|| < clog(2N)/[logy(3N) logs (20N)).

Remark. Condition is certainly satisfied for

NeN (10g4/3) and |z| < clog(2N)/[logs(3N) logs(20N)].
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From Theorems [A] and [C] and

H/ p~t,Sym®™, g)*D(p~ /%, St, g) dg

peEP SU(2
H/ p~ ', Sym®*™, g)*D(p~", Sym?, g) dg
pGP SU(2

(see Lemma |3]), we deduce the following astonishing result.

Corollary E. Let m € {2,4}. For any N € N (log) and f € H5(N), for
any z € C, the following estimate holds:

NeN (log) fEHE(N)
1
2

= hm
NEN log

> W ()L, Sym® f)L(L, Sym™ f)*.

feH5(N)

This identity is not valid when considering an odd symmetric power of
f. For example,

19)  m Y w*(f)L(27f)L(1,f)

N—oo
NeN (log) fEHS(N)

and
. " 1
(20 Jim ) WH(HL(LSym® ) L f) = [] (1 +0 <p2>>
NeN(log) fEHZ(N) peP
so that the quotient of by is
1 1
I (1540 ()
peEP P
whereas

(21)  lim > w*(f)L (;f> L(1,sym® /) = ] <1 +0 (p12>>

N—oo
NeN (log) fEH5(N)
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and

(22) lim )

—00
NeN (log)

> W)L, Sym? f)L(1,Sym® f)

feH5(N)
S0

peEP

so that the quotient of by is

I1(1+0(z))

pEP

The key point of Corollary [E] is the fact that the coefficients appearing
in the series expansion of D(X,Sym?™, g) have only even harmonics — see
equations and . See Remark {4 for further details.

1.2. Extremal values. The size of the values L(1,Sym™ f) in the family
H%(N) is now well studied after works of Goldfeld, Hoffstein & Lieman
IGHL94], Royer & Wu [RWO05|, Cogdell & Michel [CM04] and Lau & Wu
[ILW07] (among others). The aim of Proposition [F| and Corollary |Gl is to
study the extremal values in some smaller family. More precisely, we study
the extremal values in families determined by the nonvanishing of L (%, f)
and show that the extremal values are the same than in the full family.

We begin in studying the asymptotic behaviour, as the order z tends to
+00 in R, of the values

1
Lt (27 1St Symm) and L' (1, 1; Sym®, Sym"™)

in the following proposition. Denote by v* the constant determined by
1 1
Y= =logyz+9"+0 () (z > 2).
P log x
p<zT
If ~ is the Euler constant, we have
1 1
(23) 7*:7+Z[log<1—)+}
peP p p
Proposition F. Let m € {1,2,4}. As r — 400 in R, the following esti-

mates hold:

1
log LY+ <2, 1; St, Symm> = Sym?' rlogy r + Symi”’1 4+ O (1 ; )
ogr

and

log LY*" (1,1; Sym?, Sym™) = Sym rlog, r + Symg;’1 r+ On <1 ! >
ogr
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where

24 Sym™* == max -+ m
(24) ymE = max EXsym (9)
and

(25) Sym’"! = ~4* Sym” +

Z {:tlog <:|: max +D(p !, Symm,g)> _ SymE } .
veP g€eSU(2) p

m 2 4 even odd
Sym'[" 3 5 m+ 1 m+1
Sym™ 1 5/4 m+1
Sym’}"! 3y 5y [ (m+1)y (m+1)y
Sym™" | v — 2log ¢(2) (m+ 1)[y —log{(2)]
m,1

TABLE 1. Some values of Sym’" and Sym/

Remark. Some values of Sym!' and Symz’l may be easily computed (see

table . The reason why Sym™ is easy computed in the case m odd but
not in the case m even is that the minimum of the Chebyshev polynomial
(see (34])) of second kind is well known when m is odd (due to symmetry

reasons) and not when m is even. For Sym’f’l, see also Remark (1l Cogdell
& Michel [CM04, Theorem 1.12] found the same asymptotic behaviour for
the non twisted moments.

Since L(1/2,f) > 0, we may deduce extremal values of L(1,Sym™ f)
with the extra condition of nonvanishing of L(1/2, f).

Corollary G. Let m € {1,2,4} and N € N <log3/2>. Then there exists
fm € HY(N) and g, € H3(N) satisfying

L(1,Sym™ fn) > 1 (m) logoBN)™™F and L (;fm> >0,

m 1
LSy g0) < 1) Qo 30> and L (G4 ) >0,
where ne(m) = [1 4 0y, (1)] exp(SymI’l).

Remark. The hypothesis N € N (10g3/ 2) is certainly crucial since we can

prove the following result. Fix m € {1,2,4}. Denote, for allw € Z~¢, by N,
the product of the first w primes. Assume Grand Riemman hypothesis for
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the mth symmetric power L-functions of primitive forms. Then, there exist
Ay, > 0 and By, > 0 such that, for all w € Z~¢ and f € | H3(N,) we
have

wEZ>0

Ap < L(1,Sym™ f) < By,

1.3. Hecke eigenvalues. The Sato-Tate conjecture predicts that the se-
quence of the Hecke eigenvalues at prime numbers of a fixed primitive form
is equidistributed for the Sato-Tate measure on [—2,2]. More precisely, for
all [a,b] C [—2,2], it is expected that

. #{p€P:p<xand As(p) € [a,b]}
(26) xEI-iI-loo #{peP:p<uzx}

1/ t2

Note that in , the primitive form f is fixed and hence, the parame-
ter x can not depend on the level of f. The Sato-Tate conjecture is
sometimes termed horizontal Sato-Tate equidistribution conjecture in op-
position to the vertical Sato-Tate equidistribution Theorem (due to Sarnak
[Sar87], see also [Ser97]) in which the equidistribution is proved for a fixed
prime number p. For all [a,b] C [—2,2], it is proved that

lim {f €H5(N): As(p) € [a,b]}
N—+o0 #H;(N)

= Fgr(b) — Fsr(a)

with

= FST(b) — FST(a).

In vertical and horizontal distributions, there should be less Hecke eigen-
values in an interval near 2 than in an interval of equal length around 0. In
Propositions [H and [, we show that, for many primitive forms, the first few
(in term of the level) Hecke eigenvalues concentrate near (again in term of
the level) 2. To allow comparisons, we recall the following estimate:

1 1
) (v (o)
Let N e N <log3/2>. For C' > 0, denote by
H;(N; G, Sym™)
the set of primitive forms f € H3(N) such that
(27) L(1,Sym™ f) > C [logy(3BN)¥™" .

For C' > 0 small enough, such a set is not empty (by an easy adaptation of
[CM04, Corollary 1.13]) and by the method developed in [RW05] its size is
large (although not a positive proportion of #H5(IV)).
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Proposition H. Let m € {1,2,4} and N an integer of N (logg/g). For

all e > 0 and {(N) — oo (N — o0) with §(N) < logs(20N), for all
f € HyT(N;C,Sym™) such that Grand Riemann Hypothesis is true for
L(s,Sym™ f), the following estimate holds:

3 ]13 — log,(20N) {1 + O (@) } .

p<[log(2N)]*
Af(p™)2Sym] —§(N)/ logz(20N)

Our methods allow to study the small values of the Hecke eigenvalues.
Denote by H3™(N;C,Sym™) the set of primitive forms f € Hj(N) such
that

L(1, Sym™ f) < C[logy(3N)] ™ .

Proposition I. Let N € N<10g3/2). For all e > 0 and £(N) — oo

(N — 00) with £(N) < log4(20N), for all f € Hy™(N;C,Sym?) such that
Grand Riemann Hypothesis is true for L(s,Sym? f), the following estimate

holds:
> ; = logz(20N) {1 + 0. (5(1N)> } .

p<[log(2N)]®
A7 (p)<[E(N)/ logg (20N)]1/2
Remark. (1) Propositions [H| and [I| are also true with the extra condition
L(1/2, f) > 0.
(2) The study of extremal values of symmetric power L-functions at 1
and Hecke eigenvalues in the weight aspect has been done in [LW06]
by Lau & the second author.

1.4. Simultaneous extremal values. Recall that assuming Grand Rie-

mann Hypothesis for mth symmetric power L-functions, there exists two

constants D,,, D, > 0 such that for all f € H}(N), we have
Din[logy(3N)]”®™= < L(1,Sym™ f) < D, [logy(3N)]*™*

(see [CMO4, (1.45)]). We established in Section a link between the
extremal values of L(1,Sym™ f) and the extremal values of A¢(p™). If we
want to study the simultaneous extremality of the sequence

L(1’ Sym2 f)’ A 7L(17 Sym2£ f)
(as f varies), we can study the simultaneous extremality of the sequence
2 20
Ar(%), - A (0.
This is equivalent to the simultaneous extremality of the sequence of Cheby-

shev polynomials
Xoy ooy Xog
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(defined in ) But those polynomials are not minimal together. An
easy resaon is the Clebsh-Gordan relation

L
X7 =) Xy
j=0

(see ): the minimal value of the right-hand side would be negative if
the Chebyshev polynomials were all minimal together. Hence, we concen-
trate on L(1,Sym? f) and L(1,Sym® f) and prove that L(1,Sym? f) and
L(1,Sym?* f) can not be minimal together but are maximal together.

Proposition J. Assume Grand Riemann Hypothesis for symmetric square
and fourth symmetric power L-functions. Let C' > 0.
(1) There exists no N € N (log) for which there exists f € H5(N) satis-
fying simultaneously

L(1,Sym? f) < C [logy(3N)]~ ™=

and \
L(1,Sym" f) < C floga(3N)] ™" .
(2) Let N € N (log). If f € H3(N) satisfies

L(1,Sym? ) > C [logy(3N))™%

then .
L(1,Sym? f) > C [logy(3N)]>™+

Proposition K. Let m > 1. Assume Grand Riemann Hypothesis for sym-
metric square and mth symmetric power L-functions. Let C; D > 0. There
exists no N € N (log) for which there exists f € H3(N) satisfying simulta-
neously
L(1,8ym™ f) > C [logy(3N)]¥™*
and ,
L(1,Sym? f) < D [logy(3N)] %™~ .

1.5. A combinatorial interpretation of the twisted moments. The
negative moments of L(1,Sym? f) twisted by L(1/2, f) have a combina-
torial interpretation which leads to Corollary [E] Interpretations of the
same flavour have been given in [Roy03] and [HR04]. An interpretation
of the traces of Hecke operators, implying the same objects, is also to
be found in [FOP04]. We shall denote the vectors with boldface letters:
a= (o, ,ay). Define trae=3"7" | a; and |a| = [[;"; o. Let p be the
Moebius function. Suppose n € N and define

by--- b 2
gn(b> = {d S Zggl: dZ ’ (M?bi-f-l) ,V’L € [1777’_ 1]}7
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won(r)= > [Hu(aibwz’)u(bz')] >
d

: |abl
ab,ceZt, Li=1 €&n(ab)
lab2c3|=r

and
= Won(p")
W= 112 =

Using the short expansions of L(1,Sym? f) (see (7I)) and L(1/2, f) (see
(70)) with Iwaniec, Luo & Sarnak trace formula (see Lemma[10]) we obtain

1

li * - 2 p\—n -n )

Gim o> WL (2,f> L(1,Sym?® f)™" = ((2) " W_,
NeN (log) fEHS(N)

The method developed in [Roy03), §2.1] leads to the following lemma.

Lemma L. Let n > 0 and k € [0,n] be integers. Define

P ifk=0;
1 ifk=1;
Ri(p) = > Pl if k> 2.
8c{—1,0,1}+1

81+-++8;<max(0,6;)

o I 0 () men ()

Assume k > 1. Writing

Then,

W_, =

1
Re(p) = D et
the integer & 4 is the number of paths in 72 which

e rely (0,0) to (k—1,q)
e with steps (1,—1), (1,0) or (1,1)
e never going above the abscissas axis
o cxcept eventually with a step (1,1) that is immediately followed by a

step (1,—1) if it is not the last one.

In other words, we count partial Riordan paths (see figure [1]).

For ¢ = 0, we obtain a Riordan path. Riordan paths have been studied
in [Roy03, §1.2] where the number of Riordan paths from (0,0) to (k,0)
was denoted by Rjyo (this number is called the k + 2th Riordan number).
We then have

Eko = Rpq1.
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FIGURE 1. A partial Riordan path

This remains true for £k = 0 since Ry = 0. The Riordan paths rely to our
problem since the first author proved in [Roy03, Proposition 11] that

: * 2 ;\N—n __ 1 p
(28)  JMim > wi(f)L(L,Sym? f) —C(S)nﬂen e —
NeN (log) fEHS(N) peEP

where

On(z) = f:(—u’f (:) Ryz*

k=0

4 w/2 n
=— / [1+2(1 —4sin®0)]" cos® 6 db.
0

™

Using the recursive relation

Ry(p) = (p +1+ ;) Ry—1(p) —p(p+ 1) Ry

which expresses that a path to (k — 1,¢) has is last step coming from one
of the three points (k — 2,q+ 1), (k —2,q), (k— 2,9 — 1) (see figure [2) we
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get,
n+1 k
@ S (") mo ()
P*(p+1) < P )
pPP+p+1 " \p2+p+1
(0,0) 0~ -l y(k—1,0)

FIGURE 2. Relation between & ¢, §k—1,9—1, §k—1,¢ and §r—1 g4+1

Reintroducing in Lemma |l{ and comparing with gives

. . 1 Y
NeN (log) fEH5(N)

. 1 . o it

Jm s D WAL SymE £

NeN (log) ( )feHS(N)

1.6. A few notation. In this text we shall use the following notation not
yet introduced. We give at the end of the text (see Section [8)) an index of
notation. If a and b are two complex numbers, then §(a,b) = 1 if a = b
and d(a,b) = 0 otherwise. If n is an integer, define O(n) = 1 if n is a
square and O(n) = 0 otherwise. Remark that O is not the function [y
(since Oy (n) = 6(n,1)). If p is a prime number, v,(n) is the p-valuation of
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n. Moreover, if N is another integer, then we decompose n as n = nynV)
with p | ny = p | N and (™), N) = 1. The functions 1 and 1) are
defined by

1 (n) 1 if the prime divisors of n divide N
n) =
N 0 otherwise

and

n) =
0 otherwise.

The letters s and p are devoted to complex numbers and we set Res = o
and Rep = 7.

2. Modular tools

In this section, we establish some results needed for the forthcoming
proofs of our results.

2.1. Two standard hypothesis. We introduce two standard hypothe-
sis that shall allow us to prove our results for each symmetric power L—
function. If f € H3(N), we have defined L(s,Sym™ f) in (6) as being an
Euler product of degree m + 1. These representations allow to express the
multiplicativity relation of n +— Ag(n): this function is multiplicative and,
if p{ N and v > 0, we have

(30) Ar (") = Xsym [9(05,p)].

Recall also that n — Af(n) is strongly multiplicative on integers having
their prime factors in the support of N and that if n | N, then

1
(31) [Af(n)] = N
The first hypothesis on the automorphy of L(s, Sym™ f) for all f € H5(N)
is denoted by Sym™(N). It is has been proved in the cases m € {1,2, 3,4}
(see [GJT8], [KSO2b], [KS02a] and [Kim03]). The second hypothesis is con-
cerned with the eventual Landau-Siegel zero of the mth symmetric power L-
functions, it is denoted by LSZ™(N) and has been proved for m € {1,2,4}
(see [HLO94], [GHL94], [HR95] and [RW03]).
Fix m > 1 and N a squarefree positive integer.

Hypothesis Sym™(N). For every f € H5(N), there exists an automorphic
cuspidal selfdual representation of GLy,4+1(Ag) whose local L factors agree
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with the ones of the function L(s,Sym™ f). Define
Loo(sa Symm f) =

( u
/2 (g) 2¢ H(QW)_S_jF(s +7) if m = 2u with u even

j=1
u

1 .
o (s+)/2p (5 ‘; > ou H(gﬁ)—s—ap(s +J) if m = 2u with u odd
j=1

u
, 1
gutl | |0(27T)SJ1/2F (s +J+ 2) if m=2u+1.
]:

Then there exists e(Sym™ f) € {—1,1} such that

N2 (s,Sym™ f)L(s,Sym™ f) =
e(Sym™ fIN™I=9)/2L (1 — s, Sym™ f)L(1 — s, Sym™ f).
We refer to [CMO04] for a discussion on the analytic implications of this

conjecture. The second hypothesis we use is the non existence of Landau-
Siegel zero. Let N squarefree such that hypothesis Sym™(N) holds.

Hypothesis LSZ™(N). There exists a constant Ay, > 0 depending only
on m such that for every f € H5(N), L(s,Sym™ f) has no zero on the real
interval [1 — Ay, /log(2N), 1].

2.2. Dirichlet coefficients of the symmetric power L-functions. In
this section, we study the Dirichlet coefficients of L(s, Sym™ f)*. We derive
our study from the one of Cogdell & Michel but try to be more explicit in
our specific case. We begin with the polynomial D introduced in . Since
Sym™ is selfdual, we have, D(X,Sym™, g) € R[X] and for z € [0, 1],

(32) (1+2)"™ ' < D(w,Sym™,g) < (1—2) ™.
Remark 1. Note that the upper bound is optimal since the equation
Sym™g=1

admits always I as a solution whereas the lower bound is optimal only for
odd m since Sym™ g = —1I has a solution only for odd m.

Evaluating at g = g(m), we find

Jmin D (X, Sy g) = (14 X) 72,
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Next,
D [x.sym*™g (5]
m
1 - 27 g -1 2i T -1
~1-x"T] (1 ~ Xe J%) (1 ~ Xeo J%)
j=1
=(1+X)711 - x?m)~!

so that

D(X,S <(1+X) M1 - x2m)-1
gergg(l) (X,Sym®™,g) < (1+X)~ ! )

For every g € SU(2), define )\Z’V m(g) by the expansion

(33) D(X,Sym™, g)* Z)\Sym

The function g — )\Sym (g) is central so that it may be expressed as a linear
combination of the characters of irreducible representations of SU(2). These

characters are defined on the conjugacy classes of SU(2) by
sin[(m + 1)0]
sin 0

(34) Xsym™[9(0)] = tr Sym™[g(0)] =

where X, is the mth Chebyshev polynomial of second kind on [—2,2]. We
then have

= X;n(2cosf)

(35) Sym Z lu'sym ,Sym™ XSym (g)
with
Z,V . Z,V
(36) MSymm,Symm, B /SU(Q) )\Symm (g)XSym’”' (g ) dg
2 [T ;
Z,v . .

(37) =2 /0 N5 [9(6)] sin[(m’ + 1)0] sin 6 0.

Z,V . Z,V / .
We call usymm Sym™ the harmonic of )\Symm of order m’. In particular,

z,0 _ !

and, since )\g’ylmm (9) = 2xsym™(g), we have

z,1 _ /
(39) HSmm Sy’ = 20(m,m').
From the expansion

(40) (1—x)22§<z+z_1>x”
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we deduce

Dl sy @ =30 S |T] <z i - 1) it o

= +1 | j=
v=0 VEZmo 7=0

trv=v
with
m
(41) lm,v) =my —2 Z kviy1
k=1
and gets

m ' 1 '
@) Agelol= X [T (FTE )| e
vezzgt [j=0 ~ VI

trv=vr

This function is entire in z, then assuming that z in real, using that the left
hand side is real in that case, taking the real part in the right hand side
and using analytic continuation we have for all z complex

(43) ASymm [9(0)] = Z H (Z * V]iH - 1) cos [{(m, v)0)].
VEZZL(;LI Jj=0 Vitl

trv=vr

It follows that may be rewritten as

2 O (v —1
z,V _“ J+1
'uSyrnm,Symm/ - T Z H < )

Vs
Vezglg,l =0 7+1

trv=v
></ cos [((m, v)0)] sin[(m' + 1)0] sin 0 df
0

that is

(44) z,v _1 Z ﬁ Zz+ v —1 A( / )
'uSym’" Sym™ 2 ! i sy

br e
with
2 ifl(m,v)=0and m' =0
(45) A(m,m!,v) = 1 if (m,v)+m' =0 and m’ # 0

-1 ifl(m,v)£tm/ = F2
0 otherwise.
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In particular, ,uZ’V , =0 if m" > mv thus
m™ Symm
(46) Aymm E Hem sy’ Xsymm' (9)-
m/_

Equation (45)) also immediately gives
Z,V _
(47) /’Lsym2mysym2m’+1 - 0

and
zZ,V

SymZnL-!—l’Symm
for all m and m/.
For m =1, we have

I , = 0if m’ and v have different parity

1
(48) D[X,St,g(@)]—l_QCOS( X 1 X2 ZX (2cos0) X

hence )\é’t”(g) = xsymv (g) for all g € SU(2). It follows that
1,v
<49) 'uSt Sym”’ = 5(1/7 V/)'

Now, equation implies

Nl [g(g)]‘ < ¥ H (Iz! +Vji1 — 1) = A2 [g(0)]

trv=v
and
Z At 9(0)] XY = det[I — X Sym™ (g(0))] ¥l = (1 — X)~(m+ D
50 that
(50) i loo < (T VET,

From , remarking that the first case is incompatible with the second
and third ones, that the two cases in the second case are incompatible and
that the two cases of the third case are incompatible, we deduce that

mv
Z }A(m,m’,u)‘ <2
m/=0
and gives
— (m+1)z|+v—1
o B (7Y

Sym™,Sym v
m/=0
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This is a slight amelioration of Proposition 2.1 of [CM04] in the case of
SU(2). It immediately gives

e 2 (),

Sym™ Sym™ v

To conclude this study, define the multiplicative function n — )\Sym f(n)
by the expansion

(53) L(s,Sym™ Z Adymm ¢

For easy reference, we collect the results of the previous lines in the

Proposition 2. Let N be a squarefree integer, f € H3(N) ; let v > 0 and
m > 0 be integers and z be a complex number. Then

T (p") A (™) ifp| N
gymm f(py) =
m’ .
Z Hyr o g M@ DN
m'=0
Moreover,
‘)‘gymm f(pl/)‘ < T(m+1)|z\(py)
1,v _ /
Pt symv' — (v V)
z,0 _ /
MSymm,Symm/ o 5(m ’O)
z,1 . /
MSymm,Symm, B Z(S(m’ m )
Z,V -0
MSmeW,Sym2ml+1 -
zZ,V _ . / . .
MSym2m - 0 if m' and v have different parity,
and
— Z,V (m+1)’2|+u_1
Z Heymm s ’”" = '
ym™,Sym v
m'=0

Proof. We just need to prove the first equation. Assume that p | N, then

Z ASymm p(07)p™" = [ = A (p")p™°17"

and the result follows from since n +— Ay(n) is strongly multiplicative
on integers having their prime factors in the support of N. In the case
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where p t N, we have

Z Asymm f(P7)p™"* = Dlp~*,Sym™, g(0r,,)] "~

so that the results are consequences of
gymm f( ) = )\g;m [ (eﬁp)]
and especially of and ([30). O

We shall need the Dirichlet series

= @on (1)
54 Wb (s) = mN
(54) e (5) n; >

where @’ is the multiplicative function defined by

0 ifp| N
55 2,p A mv 'u
( ) me(p ) Z Sym S,ym otherwise
—0 e
m'=

for all prime number p and v > 1. Similarly, define a multiplicative function

0 ifp| N
56 TP () = TG g
( ) m,N(p> Z M otherwise.
m'=0 pr

Using equations and , we have

Lo lw P (pY)

67 >

ov
v=0 p

—(m+1)l2| —(m+1)|z|-1
(1_1> _(m+1)|z\+(m+1)|z| (1_1)

pa pa po'Jrr pa'
so that the series converges for Re s > 1/2 and Re s+ Re p > 1. We actually
have an integral representation.

Lemma 3. Let s and p in C such that Res > 1/2 and Res + Rep > 1.
Let N be squarefree, then

H/ p~*,Sym™, g)*D(p~*, St, g) dg.
SU(2)
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Moreover,
Wi o (s) IIAU@ P, Sym®™, g)* D(p~>*, Sym?, g) dg.

Remark 4. The key point of Corollary [E]is the fact that the coefficients ap-
pearing in the series expansion of D(X, Sym?™, ) have only even harmonics
— see equations and . This allows to get the second equation in
Lemma (3| It does not seem to have an equivalent for D(X, Sym?™, g).
Actually, we have

WL 1w (s) HéUl‘ 40 4 (1 — ) xse(9)] %

D(p~*, Sym*"*!, g)*D(p~2, Sym?, g) dg

and the extra term p~?(1 —p~2")xst(g) is the origin of the fail in obtaining
Corollary [E] for odd powers.

Before proving Lemma [3] we prove the following one

Lemma 5. Let g € SU(2), £ > 2 an integer and | X| < 1. Then

—+00
D Xsymt (9)X* = D(X, St, g)
k=0

and

In addition,
D Xeym2(9)X* = (1= X*)D(X, Sym?, g).

Proof. Let g € SU(2). Denote by € and e its eigenvalues. The first
point is equation ([(48)). If £ > 2, with { = exp(2mi/l), A = e and z = 2cos 6
we have

/-1

Zu_l
ZX‘” = Z (1— At 1—/\§Jt)

JZO

On the other hand,

f—1 {—1 +o0

Z gjt Z Z AT = )\zte

7=0 7=0n=0
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so that
-1yt
+00 1+ - t
S Xu (o)t = o=
~ 1—<V+>\)t+t2
Since
Ag_l . Xé—l
T e

we obtain the announced result. In the case £ = 2, it leads to

1+t
D Xeymae (9)tF = —— = (1= t*)D(t,Sym*, g).
~ (- x0(1 - x1)

Proof of Lemma[3. Tt follows from

z,V

ml/'u +oo'u

Z Sym Sym o Z Sym™ ,Symm/
me/ B me/

m/=0 m/=0
and the expression (36| that

J,—oo )\ZI/

SU(2 pme

m'=0

The first result is then a consequence of Lemma [5l Next, we deduce from

that
S ms
W;an H Z l/s Z = 2pmym

prVO m/=

and the second result is again a consequence of Lemma [5] O

We also prove the

Lemma 6. Let m > 1. There exists ¢ > 0 such that, for all N squarefree,
z€C,o€]l/2,1] and r € [1/2,1] we have

w2l (n
3 M < exp
n>1 n

o+ 3 (I-o)/o _1
c(zm +3) <10g2(zm +3)+ (2 +3)

(1 —o0)log(zm + 3)

where

(58) Zm = (m+1)min{n € Z>p: n > |z|}.
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Proof. Equation gives

Zl/

HZWZMS

p° <zm+3 z/>0 0<v'<mv

Using

Z L <log,y + il
- TN
o o ( o)logy

valid uniformely for 1/2 < o <1 and y > €? (see [TW03, Lemme 3.2]) we

obtain

+oo 7T (pu)

H wm,N <

vo
p? <zm+3v=0 p

P (1— o) log(zm + 3)

o+ 3 (1=0)/o _1q
c(zm +3) <1°g2<zm+3> IR

For p? > z,, + 3, again by , we have

Z 14
2
sym sym ‘ c(zm +3) c(zm +3)
Z pro Z =1+ p20 + pa+1/2 ’
1/>0 0<v'<mv
so that
400 2,7
H W n (1) < oc(Em+3)1/7 /og(zm+3)

vo
P >zm+3v=0 p

(2 +3) 1707 — 1

<
= &P (1— o) log(zm + 3)

c(zm + 3)

For the primes dividing the level, we have the

Lemma 7. Let {,m > 1. For o €]1/2,1] and r € [1/2,1] we have

/ D(p~*,Sym™, g)*D(p~*,Sym", g) dg = 1 + Oy, ¢(Err)

SN /SU@

with
w(N) |z|w(N) |2]2w(N)

P- (N)Qr P- (N)T+U P- (N)Qa
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uniformely for

N € N (masc{u (), ()], [z CY)
z € C.

Proof. Write
e o(p) = /S e D(p~*,Sym™, g)*D(p*, Sym", g) dg.

Using and the orthogonality of characters, we have

400 +oo min(mu1,4v2)
_ —v18—Uap Z 2,1 1o
p) Z Z p NSym ,Sym" MSym ,Sym"””
v1=019=0 v=0

Proposition 2 gives

+o0
. B vo+ 0\ 1 |z[ v+ 0\ 1
1< (L S (2

1,2—2 p?”l/Q = p'l"l/Q
400
(m+1)|7] —|—1/1—1> 1 <1/2—i—€> 1
+
1 EEs
<<m,€ ﬁ + pr—i—a p?a
which leads to the result. O

Using we similarly can prove the

Lemma 8. Let m > 1. Then we have

— m z — Zi
/ D(p~",Sym™, g)*D(p~/?,St, ) dg = 1+Om< 1|+n|1/2>
Su(2) p

uniformely for z € C and p > (m + 1)|z| + 3.

2.3. Dirichlet coefficients of a product of L-functions. The aim of
this section is to study the Dirichlet coefficients of the product

L(s, Sym® f)L(s, Sym™ f)*.

Define )\1 e Sym” m(g) for every g € SU(2) by the expansion
+o0 )
(59)  Dle,Sym? g)D(a.Sym™, g = AL (g)a”.
v=0
We have
1,z,v 1,v 2,V
(60) A )= S AL (A (0

(V1,V2)€Z220
v1+ro=r
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from that we deduce, using , that
‘)\l,z,u (g)‘ < ((m+1)\zl+2+u>

Sym?,Sym™ v

1,z,v 1,z,v
Sym?2,Sym

that, for all g € SU(2) we have

Since A\ = 18 central, there exists (u ,)mlezzo such

Sym?2,Sym™ Sym™

+o0
17Z7V — 1727V
(61) )\Sme,Symm (g) o Z MSme,Symm,Symm/ XSymm/ (g)
m/'=0
where

1,z,v 1,z,v
1% — A % d
Hsym?,symm symm’ /SU(Q) Sym?,Sym™ (9 )Xsym’"/ (9)dg

(62) _2 /07r ALY, (g) sin[(m’ 4+ 1)0] sin 6 d6.

T Sym?,Sym™

The Clebsh-Gordan relation [Vil68), §II1.8] is
min(m/ ,m})

(63) XSymmll XSym’"IQ - Z XSymmll +ml272'r :
r=0

In addition with and , this relation leads to

1,z,v
64 <
( ) 'LLSme,Symm,Symm/
2U1  muo
_ § : § E { #171’1 qu,lfz
- Sme,Symmll Symm,Symm,Z‘
(Vl’y2)62220 mlzomé:O

vitve=v  |mbh—m}|<m/<m/]+m)
mi+mb=m’ (mod 2)

It follows immediately from that

1,z,v . !
- =0 if m > max(2,m)v.
MSymz,Symm,Symm/ ( ’ )

Using also , we obtain

1,2,0 o /
'uSym2,Symm,Symm/ B 6(m ’0)
and gives
1,z,1 _ / /
Msym27symm7symm/ - 26(m 7m) + 5(m 72)'
Finally, equations and give
]'7 b
[T amigr = 0

Sym?,Sym?™ Sym



Special values of symmetric power L-functions and Hecke eigenvalues 731

By equations and we get

17271/ JR—
)\Sym27sym’m [9(9)] -
m 7
z+vi,—1
3 Y 0 ( )i ) cosl(2, m: v/, v")6]
, Vi
(VlyV”)ezéo (Vl’V”)EZ%OXZZOJrl j=0 J+1
vv'=v trov/ =0
tr UII:V//
with
2 m
(65) E(?,m;u',u"):21/’+m1/”—22k1/,’€+1—22 Vi1
k=1 k=1

We deduce then from that

1,z,v _

MSymz ,Sym™ ,Symm/

% Z Z ﬁ <Z+ V]:H B 1) A2, m,m';v V")

. 12
(l//ﬂ/H)GZQZO (u’,u”)EZiOXZ;’LS'l j=0 J+l
v+ =v tro/=v’
trv =v"

with
(66) A(2,m,m’ ;v V")
= 4/ cos[l(2,m; v, v")0] sin[(m' + 1)6] sin 6 d6.
T Jo

From
max(2,m)v

Z ‘A(Q,m,m';u’,u")} <2
m/=0

we then have
max(2,m)v

Z ’ 1,2,1 ‘
MSme,Symm,Symm,

m/=0
Z 240\ ((m+1)|z]+v" =1

(V/,VII)EZQZO
v+ =v

(m+1)|z|+2+ "
< iy :

To conclude this study, define the multiplicative function

1,z
= Agin? fgymm (1)
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by the expansion
+0o0

2 m g\z _. 1,z —s
(67) L(S,Sym f)L(S,Sym f) " ASym fSymm f( )n ‘

n=1
The preceding results imply the
Proposition 9. Let N be a squarefree integer, f € H3(N) ; let v > 0 and

m > 0 be integers and z be a complex number. Then

v

> @A @™ ifp| N
v'=0
1,z A
sym? f.5ym 7 P7) =
max(2,m)v
1,z,v m’ .
Z MSymz,Symm,Symm/ )\f (p ) ifp J( N.
m/=0
Moreover,

1,
A sy 1] S T ()

1,z,0 - /
MSym2,Symm,Symm, B (5(m ’0)
Ml,Z,l = 25(m17m) + 5(m/7 2)

Sym?,Sym™,Sym™
1,z,v -0
Sme ,Smem 7Syl,nan’—O—l ?

and
max(2,m)v

1zv (m+1)z|+2+v
Z "UI : 2 m m/‘ S .
Sym~“,Sym™ ,Sym 14
m/=0

2.4. Trace formulas. In this section, we establish a few mean value
results for Dirichlet coefficients of the different L—functions we shall en-
counter.

Let f € H3(N). Denote by £¢(N) := e(Sym' f) the sign of the functional
equation satisfied by L(s, f). We have

(68) ef(N) = —u(N)VNAF(N) € {~1,1}.

The following trace formula is due to Iwaniec, Luo & Sarnak [ILS00,
Corollary 2.10].

Lemma 10. Let N > 1
integers satisfying (m, N')
“(f

Z

JeH5(N)

be a squarefree integer and m > 1, n > 1 two
=1 and (n, N?) | N. Then

)JAf(m)As(n) = 6(m,n) + O(Err)
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with
7(N)?logy(3N) (mn)'/* 73[(m, n)]

Err =
N (n,N)

log(2mnN).

We shall need a slightly different version of this trace formula (we actually
only remove the condition (n, N) = 1 from [ILS00, Proposition 2.9]).

Lemma 11. Let N > 1 be a squarefree integer and m > 1, n > 1 two
integers satisfying (m, N) =1 and (n,N?) | N. Then

Y WL+ e (V)] Af(m)Ag(n) = 6(m,n) + O(Err)

feH5(N)
with
_ 6(n,mN)
Err = 7\/N
7(N)?logy(3N) (mn)'/* 73[(m,n)] | 7[(m,n)]
+ N3/42 (n, N) log(2mn2N) | = N1/4 (n,N)

Proof. By Lemma it suffices to prove that
> W (Dep(NA(m)As(n) <
feH5(N)
d(n,mN) N 7(N)?1ogy(3N) (mn)l/*
VN N3/ (n, N)
Since e4(N) = —u(N)V'NA;(N), we shall estimate
R=vVN > w (HA(m)As(n)As(N).
feH5(N)
The multiplicativity relation and equation give
N
R=VE 3 DA (s (20

n
FEHZ(N) N

= \:ﬁ Yo D W <mZ;N)> s <N> :

n
N dl(mn) remz(v) N

7 [(m,n)]log(2mnN).

Then, Lemma [10] leads to the result since MNW) /d?> = N/ny implies
N =ny, m=n®) and d = m. U

We also prove a trace formula implying the Dirichlet coefficients of the
symmetric power L-functions.
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Lemma 12. Let N be a squarefree integer, (m,n, q) be nonnegative integers
and z be a complex number. Then

Y DL+ Ay s (1) s(a) = wyy (0, q) + O(Err)
JeH5(N)
with
z . anN zZ,Vj
(69)  wi(n,q) = Ta(n) I > «°. .
NN 1 Sigrosuiamy, S8V
Pt =g(N)

where
T
=1I77, (< <py)

and

7(N)?1ogy(3N) .,
Err = ( )Nij( )n /4T(m+1)\z|(n)7'(Q)q1/4log(Qqu).

The implicit constant is absolute.

Proof. Let

Si= S W () L (N Ny s (WAs(0):

feH3(N)

Writing n%M N = g*h with h squarefree, equation and Proposition
give

T

S — Tz(nN) Z H uz,yj

g (V1<i<r€Xi_1[0,my;] \J=1 Sym™Sym 7
i} g™
X > > WO+ e (N)IAr(h)Af dg Hpj
dl( M) ITj=1 )feH (V)

Then, since h | N, Lemma |11 gives S = P + E with

> 1
d (q(N) 1T p;j)

/ /
q(N)pql ...p;f’f/dQ:h

r myj

_ 7=(ny) IDG

=1, , 0 SymmSme
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and
F <«
7(N)?logs(3N) nm/4T|Z‘(nN) ¢"/*7(q) log(2Nng) f[ % 2
N3/4 n%/Z q]lV/Z 1/2 et 1, Symm Sym” J

Using , we obtain

7(N)*logy (3N) /4 /4
N3/4 q

E< T(q) log(ZNTLQ)T(m—I—IHz\ (’I’L)

We transform P as the announced principal term since ¢V )p'fl S A =

himpliesplfi-~-p%:q(m =dand h=1. O

Similarly to Lemma [I2] we prove the

Lemma 13. Let k, N, m, n be positive integers, k even, N squarefree. Let
z € C. Then

Y (P Agie fsymm (1) = wai () + Ope (Exr)

with
7(N)?1ogy(3N)

& max(2 m)y/4 1 2 ( ) log(QnN)

Frr .=

where w;fn and r;fn are the multiplicative functions defined by

(Y v my’
=(")OE™) .
Z pllfl//+ml///2 ifp ’ N
v'=0
Wy (PY) =
1,z,v .
'uSym ,Sym™,Sym? pr)[N
and
( U 14
7-|z\(p ) .
. ez UPIN
v'=0
rom(PY) =

((m+1)|z\+zx+2) pr)[N

v
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2.5. Mean value formula for the central value of L(s, f). Using the
functional equation of L(s, f) (see hypothesis Sym! (), which is proved in
this case) and contour integrations (see [IK04, Theorem 5.3] for a beautiful
explanation) we write

(70) L (;f> = [L+e5(N) ij )\f[(qq)exp ({;}3) .

From and Lemma [11| we classically deduce the

Lemma 14. Let N be a squarefree integer, then

o 1 _ 7(N)?1og(2N) log,(3N)
feH%%N) (N)L (2,f) (v(2)+0 ( EE ) :

Remark 15. For N squarefree, we have

CN(Q):1+O( (V) >

P—(N)?
Note that the “big O” term may be not small: for all w > 1, let N, be

the product of the w first prime numbers, then Mertens Theorem implies
that

(N, (2) ~ C(2)

as w tends to infinity.

Proof of Lemma[Ij) Equation leads to

> winr(z)-

feH;(N)
Z+oo 1 2mq } : *
a=1 % P <_\/N> feH;(N) SR

Writing ¢ = mf?n with (m, N) = 1, ’n having same prime factors as N
and n squarefree, we deduce from the multiplicativity of n — Af(n), its
strong multiplicativity on numbers with support included in that of N and
(B1), that

A(a) = A m)As ().

Then Lemma [11] gives

Z w*(f)L <1 f) =P(N)+ O (Ey + 7(N)?1ogy(3N)(Es + E3))
feH3(N)
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where
+oo 2
1y (¥ 27l
P(N) ~(6) xp [ =22
= v VN
and
121
2
By = N E—Qexp(—%ré VN) < —,
/=1
E 1 400 ]lN(fn)]l(N)(m)‘u(n)Zlog(anN) ( 27Tm€2n>
2 — X7 _
N pt ml/42p3/4 JN
g=mt3?n
400
1 log(2¢N) < 27rq)
<=y e (o
N e q1/4 \/N
log(2N)
< N5/8
and
400
1 1 1V 2log(2mnN 2mme?
e 5 ) (2
q=1
g=mt3n
log(2N)
N3/8

We conclude by expressing P(N) via the inverse Mellin transform of exp
and doing a contour integration obtaining

P(N) = (n(2) + O(N7V/2T%)
for all € > 0.

3. Twisting by L(1/2, f)
The goal of this section is the proof of Theorem [A] and Proposition [B]
3.1. Proof of Theorem [A]l Let z € C and = > 1, define
IXNg  m(n)
71 & m = 7Sym -
(1) Wy (@) = D e

n=1

n/x

for all f € H5(IV). We prove the
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Lemma 16. Let N be a squarefree integer, m € Z~g, x > 1 and z € C.
Then

> L (5 F) e (0)
JEH5(N)

! VE XS Wi (1,q)
— E :76—2@/ NE :Le—n/z + O(Err)
n
n=1

where
Err := N~3/8[log(2N)]? logy (3N) 2™/ *[log(3z)]*" ™ (2 4+ m + 1)!.
The implicit constant is absolute.

Proof. Using and Lemma we get
* 1 z

Z w (f)L 55 f wSymm f(x)

feHZ(N)

+0o +oo o 2
_ Z LefQﬂ'q/\/N Z wm(”v Q) efn/z +0 <T(N) 12%42(3]\[) R)
— \/q = n N

with

= q)log(2Ngq) JN =
Z A e 2mUVNN " A og (20) T 1))z (n)e 7

= n=1

By using

E 7r(n) < [log(3t)]" (t > 1,r > 1, integers),
n
n<t

we have

log(2n n)a m ;
3 e (m)e < 4 o)
n<x

and an integration by parts leads to

log(2n e
Z n1_(m/27(m+1)z|(n)€ / <im K

n>x
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+0 [log(3t))=+1 _, t
—t/x hd
K= / e m/4 — ¢ ( 93) de

< acm/4/ [log(3uz)) Fu™ e (1 + 1/u) du
1

where

L 2™ 4[log(3x)]7m 1 / u™ I e (1 41 u) du
1

L ™4 [log(3z)]*" (2 +m + 1)\,

We conclude with
—+oco

> ()lqg/fw ~2ra/VN ¢ N3/S[log(aN)?.
q=1

O
The main term appearing in Lemma [16|is studied in the next lemma.

Lemma 17. Let m > 1 an integer. There exists ¢ such that, for all N
squarefree, 1 < z™ < NY3, 2 € C, and o € [0,1/3] we have
+o0

1 VN X w? (n,q) 1
§ _+ _—2mwq/V'N § : m\'ty —n/x — Ll,z g m.

q=1 4
where

R e N-1/120e(l214+1) logy (2] +3)

x~ 7 logy(3N) exp {c(zm +3)

(2m + 3)7/0=9) — 1
1 m .
0g2(2m +3) + olog(zm + 3)

The implicit constant depends only on m.

Proof. Let

+0oo 1
:Z —2Trq/\/72 m —n/x
q:l

By the definition of S, we have § = S> + S< with

T Sl (LA = U TV e
'* m/24+1 aN n@)
ny|Ne 'N [N M >z /ny
(n),N)=1
Z,Vj

rH vl 2 HT y;
Sym",Sym J 4N 11j=1P;
x Z { H /2 Xp |\~

1%
| ; VN
WhzicreXt_ 0mr] U\G=1 P;
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and
— (N)
§<= 3 () 3 emmm /e
o m/2+1 n(N)
ny|Noe TN nMNM<z/ny
(n(N),N):l
zZ,Vj5
" v
_Sym™,Sym /.
coox (e
(V))1<i<r€XI_, [0,mr;] \J=1 P,

v
2nqn [1j—1 p;’
% Z HNQN exp | — HJJ fi

VN

gn|N©®

where nV) = [T pjy.j. We have

e S T Ty (O
s ame Y My B 5 el

n|No° q| N> {>z/n

Moreover, if n(™) < z/ny then

and
O(nRgn) 2mqN H;:l p;j
73 — Al ex _— 7
(73) > N p ~

qnN|N©°

3 O(nan) 40 <§\§71L/?v;2)> ‘

an [N gnN

Equations and give S = P+ O(N~Y12R; + Ry) with

z1/2/ (N)
. TZ<nN) D(nTN’LQN) “in,N (n ) —nM) /(z/ny)
Pi= Z m/2 41 Z an Z NS I N
ny|Noo TN an|N>® nM<z/ny
(n(N),N)zl
and
@z,1/2<£)

_ 7z (n)7(n™) N
Ry = Z nm/2+1 Z /

n|N° (<z/n
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Writing

)
Wi, N ) —nN) /(a/n z,1/2
>, — ¢ /i) = Wi (1)

)

()
— —t/(z/nN) _
5 Tl 5 O s
>z /nn L<z/nN
(¢, N)=1 (¢,N)=1

we get, by Lemma 3]

1
P =LY (2, 1; St, Symm;N> + O(R2 + Rs)

with
u a0
ro- 3 2 52 0000 5 BaxOf, o]
n|Nee q N> L<z/n
(6,N)=1

Lemma [6] gives
Ry < exp[c(zm + 3)logy(2m + 3)] .

We have
~2,1/2
Rs < Z nm /2+1 Z Z / Ty
n|N> q| N> (<z/n
+oo &F 1/2
Y 712 (1) (n™q) n ()
<z Z nm/2+1-o Z Z gl o
n|N qNo°

for all o € [0,1/2[ and Lemma [6] gives

R3 <«

x~ 7 1logy(3N) exp {c(zm +3) o Tog(om 5 3)

o+ 3 o/(1—0) _ 1
logQ(zm+3)+(z +3) ]}

Next, for all o € [0,1/2[ , Rankin’s method and Lemma [f] give

Ry <«

logy(zm + 3) +

x~ 7 1logy(3N) exp {c(zm +3) T Tog(om 5 3)

(zm +3)7/077) — 1] }

O
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Next, given 1 €]0,1/100][, denote by H;\ (N;n) the subset of H5(N) con-
sisting of forms f such that L(s, Sym™ f) has no zeros in the half strip

Res>1—4n 1Sm s| < 2[log(2N))?

and H. (N;n) the complementary subset. By [CM04, Proposition 5.3], for
all m > 1, there exists £ > 0 and A > 0 (both depending on m) such that
for all n €]0,1/100[ and squarefree N we have

#H,,(N;n) < EN[log(2N).

By [CM04, Lemmas 4.1 and 4.2] there exists, for all m > 1, a constant B
(depending on m) such that, for all z € C and f € H,,(N;n), we have

(74) L(1,Sym™ f)* <, [log(2N)]BI%e2l,

Using the convexity bound (see [Mic02, Lecture 4] for better bounds that
we do not need here)

L <;f> < NY4
and

2 log(2N) logy(3N)

S = s < N

and by we get

Z w*(f)L (;,f) L(l,Symm f)z < NAnf3/4[10g(2N)]B\§Rez|+C?
fEHm (N3m)

A, B and C being constants depending only on m so that

> w5 f) psme gy

fEH3(N)
* 1 m z
- Y w(L (2, f) L(1, Sym™ f)
FEHL(N;n)
+ O, (NAn73/4[log(2N)]B|§Re z|+C> )

Next, there exists a constant D > 0, depending only on m, such that

L(1,Sym™ f)* = wymm () + O(Ry),
with

Ry = x71/10g2(3N)6D|z|log3(20N) [10g(2N)]3 + eD\z|IOgQ(BN)f[log(ZN)]2
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(see [CMO04, Proposition 5.6]) and, since by positivity (see [Guo96] and
[FH95]) and Lemma [14] we have

>, WL (;f> <1,

fEHL(N;m)
we obtain
* 1 m z
> W (5f) LS )
FEHE(N)
* 1 z
FEHL(N;n)

with

Ry = Ry 4+ NA13/4]log(2N)|BIRe21+C
Now, since ‘wgymmf(x)‘ < 1(e)Me =122 where 1(¢) > 1 depends on ¢ and m,
we reintroduce the forms of H, (N;7n) obtaining

S WL (; f) L(1,Sym™ f)*

feH5(N)
* 1 z
feH5(N)
with
Ry = $—1/10g2(3N)6D|z| logs(20N) [log(?N)]3

+ xaNAn—3/4[L(€) log(ZN)]BmezHC + eD|z\log2(3N)—[10g(2N)]2'
Lemmas [16{ and [17| with 7 = & = 1/(100m), 2™ = N'/1° and
o =c(m)/log(|z] + 3)
with ¢/(m) large enough and depending on m leads to Theorem
3.2. Proof of Proposition For the proof of Proposition [B] we write

1 1
LY <2, 1;St,Symm;N> =L (2, 1; St, Symm)

-1
< X5 (N1 D(p~'/%,8t,g)D(p~ ", Sym™, g)*dg | .
Su(2)

p|N

We use

X;,(N) =140 < (2] + Dw(V) >

Pf(N)min{m/2+1,2}
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which is uniform for all 2z and N such that
(|Z| + 1)w(N) < P (N)min{m/2+l,2}
and Lemma [7] to get

L' <; 1; St, Sym™; N) = L'* (; 1; St, Symm) 1+ Om(Err)]

where
w(N) ([ +Dw®V) (2] +1)*w(N)
P—(N) P—(N)3/2 P—(N)?

Frr .=

uniformely for

{N & N (maxcfw()V2, (2] + DO, [22(]2)),
z € C.

4. Twisting by L(1,Sym? f)

In this section, we sketch the proofs of Theorem [C] and Proposition
The proof of Theorem [C]is very similar to the one of Theorem [A]
Let z € C and x > 1, define

1,z é’ 2 S f(n)
7 , . j : ym* f,Sym™ —
( 5) L“Sy]ﬂQ f,Sj']mm f(x) — n e n/x
n—l

for all f € H5(IN). We obtain the

Lemma 18. Let N be a squarefree integer, m € Z~g, x > 1 and z € C.
Then

+oo 1,2
* 1,z . SD(N) wQ,m(n) —n/x
Z w (f)wsme f,Sym™ f(x) - N Z n € + O(EI‘I‘)
fEHZ(N) n=1
with
N)2log(2N) 1 N
Err .= T(N)" 10g(21V) log,(3 ):cm/4(10g 32) T3 (2, 4+ m + 4).

N
. .. . 1,z .
The implicit constant is absolute and wy',, (n) has been defined in Lemma.
Next, we have the
Lemma 19. Let m > 1 an integer. There exists ¢ such that, for all N
squarefree, 1 < ™ < NY3, 2 € C, and o € [0,1/3m] we have

1
+oow,z

> 2”Zwen/w = LY (1,1;Sym?, Sym™; N) + O (R),

n=1
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where

— logs(3N) (2 3)7/077) — 1
R = o XD c(zm +3) | loga(2m + 3) + olog(zm + 3) ’

The implicit constant depends only on m.

The conclusion of the proof of Theorem [C] is the same as the one of
Theorem [A] after having introduced the exceptional set

Hy,, (N;n) = H3(N) \ (Hy (N;n) NH;\(N;5n)) -

The proof of Proposition [D] follows from Lemma [7] in the same way as
Proposition [B]

5. Asymptotic of the moments

5.1. Proof of Proposition We give the proof for L1*" (%, 1; St, Symm)
since the method is similar in the two cases.
Write

w1 (D) ¢=/ D(p~'/?,8t,9)D(p™", Sym™, g)*" dg.
SU(2)

By Lemma [8], we have
r

> log )1 (p) <m

logr’
p>(m+1)r+3

By we get

1\ 2 1\ 2

14+ — D(p~t,Sym™, g) < " < (1—) D(p~!,Sym™,

< \/ﬁ> (p,Sym™, g) < ¥ (p) 7 (p—",Sym™, g)

and then

(76) Z log fffl (p) = Z log Trinfl (p) + Om (V/rlogy(3r))
p<(m~+1)r+3 p<(m+1)r+3

with

)

T (p) = / D(p~*,Sym™, g)*" dg.
SU(2)

The right hand side of has been evaluated in |[CM04, §2.2.1] and was
founded to be

Sym™ r1 Sym™r + O "
ymg rlogyr 4+ dymy " r + m(log’r’

which ends the proof.
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5.2. Proof of Corollary [Gl Let r > 0. Define
1
O(N) = QEHZEEN)W)L <2,g> and  Q(f) = —gRa
For N ¢ N (log1/2), we have
O(N) ~1 (N — +00)

(see Lemma . Since L (%, f) > 0, by Theorem and Propositions
and [F] we get

> QLS I = gl 5 wlL (5.f) LSy )

JEH3(N) (V) fEHZ(N)

L(11)>0
m,1
Sym’* rlog{ [14o0(1)] exp(sg;:rm > logr}
=[1+o(1)]e *

uniformly for all » < clog N/logy(3N)logs(20N). Since

Yo oan= ) an=1
fEH;(N) JEH3(N)
L(4.£)>0

we obtain, by positivity,a function f € H5(IN) such that
L(l, Symmf)r > {1 + 0(1)}eSymT 'rlog{[l—l—o(l)]exp(SymT’1 /Sym’) logr}

and L (3, f) > 0.
We obtain the announced minoration with r = clog N/(logy(3N))?. The
majoration is obtained in the same way, taking the negative moments.

6. Hecke eigenvalues

6.1. Proof of Proposition [H] Following step by step the proof given
by Granville & Soundararajan in the case of Dirichlet characters [GS01]
Lemma 8.2], we get under Grand Riemann Hypothesis

Agymm #(n
log L(LSym™ f) = Y s 1) 10, 1)
2<n<log?(2N) log3(3N) &

where Agymm(n) is the function defined by

L'(s,Sym™ f) X Agymr (n)
 L(s,Sym™ f) 2 yns (Res > 1)

n=1
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that is
Xsym™[9(0fp) ] logp if n=p” with p{ N
Agymm(n) =  A¢(p)"™ logp if n=p" withp | N
0 otherwise.
If v > 1, then
’Asymmf(p”) ‘ o mt 1
p” log(p”) p”
hence
Agymm
log L(1,Sym™ f) = Z Sylof(p) +0(1).
p<iog? ON) logh(3N) L oL
From Agymm £(p) = A (p™) log p we deduce
)\ m
log L(1, Sym™ f) = Z Ar (™) + O(1).

p<log?(2N) logh(3N)

Since

5 MO - 5 L

log(2N)<p<log?(2N)log3(3N) P log(2N)<p<log?(2N) log3(3N)

<im 1
we get
)\ m
(77) log L(1,Sym™ f) = > Are™) + O (1).
p<logeN)  ©

Let N e N <log3/2) and f € Hy"(N;C,Sym™), equation then leads
to

S MO gimm log,(20N) + Op(1)
p<log(2N) b

and we deduce

3 Sym’ —As(p™)
p

<m 1.
p<log(2N)
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For £(N) < log5(20N), we get

$ 1_ 3 1
p<log(2N) p pSlog(2N)p
Af(p™)>SymT —£(N)/ logs (20N)
Z 1

p<log(2N) b
Ap(p™)<Sym’ —€(N)/logs(20N)

= log5(20N) {1 + Ocm (@) } .

> et

log® (3N)<p<log(2N)

We conclude by using

6.2. Proof of Proposition [IL Let N € N/ (log3/2>. Taking m = 2 in
gives

A 2
Z 17 +O(1) = log L(1, Sym? f).
p<log(2N) P
Since Sym? = 1, if f € H;™(NV; C, Sym?), we deduce

A 2
> 1) < —logz(20N) 4+ O(1).
p<log2N)  ©

If p| N, then A¢(p?) = Af(p)? and

p<log(2N)
p|N

if pt N, then A¢(p?) = A¢(p)? — 1. We thus have

Z M < —log3(20N) + O(1)

p<log(2N)
hence
A 2

(78) > A g

p<log(2N) b
For £(N) < log5(20N), we deduce

Ar(p)?  logs(20N
Z r(p) < Ogs((N )
p<log(2N) b §V)

|As ()| Z[E(N)/ logs (20N)] /2
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which leads to the announced result.

7. Simultaneous extremal values

7.1. Proof of Proposition [Jl Prove the first point. Let C' > 0, N €
N (log) and f € H3(N) such that
L(1,Sym? f) < C [logy(3N)] 5™
and
4
L(1,Sym" f) < C[logy(3N)] ™™
Equation with m = 4 gives

A 4
> WiCRIN O(1) < — Sym? log,(20N)
p<log(2N)
PIN

since the contribution of p dividing N is bounded (using (31])). Expanding
Af(p*) thanks to (B0) we deduce

3 Ar(p)* = 3Xs(p)* + 1

» +0(1) < —Sym* logs(20N).

p<log(2N)
PIN

Reinserting (again, we remove easily the contribution of p dividing V),
we are led to

Ar(p)*+1
Z Arlp) 41 < —Sym* logs(20N) + O(1).
p<log(2N) b
PIN

The right hand side tends to —oo while the left one is positive, so we get a
contradiction.
Prove next the second point. Assume that

L(1,Sym? f) > C [logy(3N)| ™% .
By Cauchy-Schwarz inequality and (77), we have
by 2)\2
(79) (Sym?2)?[logy(3N) + O(1)] < Z M

p<log(2N)
PIN

Further, from X; = X2 — X3 — 1, we deduce

3 Ar(p?) _ 3 Ar(p?)? =A%) — 1
p p
p<log(2N) p<log(2N)
ptN ptN
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and (| . ) and |)\f ’ < Sym+ imply

> A0  (eym2 ) - sym? 1

p<log(2N) b

PIN

which leads to the result by since

[log3(20N) + O(1)

(Sym?%)? — Sym? —1 = Sym? .

7.2. Proof of Proposition [K] From

m
X2 = Xo+ X7
j=2

we deduce

Ar(p™)? Ar(¥)
RS S
p<log(2N) p<log(2N) j=2
N N

p

Z )\f(P)2

p<1og (2N) p
ptN

< (m+3)(m+1)logz(20N) + O(1)

by and |Af(p*)| < 2j + 1. Furthermore

m Ar(@™
Sym7 logg2on)2 = | 3 MY
p<log(2N) P
PIN

2

< [log(20N) + O(1)] > A

so that

(Sym’)? < (m+3)(m —

which contradicts Sym’?" = (m + 1)2.

p<log(2N) b

PIN

)
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8. An index of notation

7 23) || Agymm () B3) | x p[706
17
5( 9 ) §@ )\§;m2’symm( ) @ (.d* "
b ?l/
A B Mg | @ | @) (D
zZ,V =
A( N ) ?ymm,Symml wSymz f,Symmf< )
%,V Z,p
Ef(N) Sym?2,Sym™,Sym™ wm,N( )
~2Z,
¢ @ | §[L6] wmf)N( ) (6)
Ar() o § L9
gymmf( ) " TZ( )
D(, ) @ |2 |SLS
g9() (&) N() ([3)
5(IV) p- [105] || P=( ) | p.[70Y
Hyp, (N3 9) p. Symf | @9
H,.,(N;n) p. [742 || Sym™" | (25)
H;"(N; C, Sym™) w5 )
((m,v) 25( ) | Lemme I3
02,m;v, V) (65) W;;p]\[( ) | (b4)
LY? (%, 1;St, Sym™; N) (110)) Xm (34))
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