![]() |
1 | Abbott, L.F. and Deser, S., “Stability of gravity with a cosmological constant”, Nucl. Phys. B,
195, 76–96 (1982). [![]() |
![]() |
2 | Abreu, G. and Visser, M., “Tolman mass, generalized surface gravity, and entropy bounds”,
Phys. Rev. Lett., 105, 041302 (2010). [![]() ![]() |
![]() |
3 | Abreu, G. and Visser, M., “Entropy bounds for uncollapsed matter”, J. Phys.: Conf. Ser., 314,
012035 (2011). [![]() ![]() |
![]() |
4 | Abreu, G. and Visser, M., “Entropy bounds for uncollapsed rotating bodies”, J. High Energy
Phys., 2011(03), 056 (2011). [![]() ![]() |
![]() |
5 | Adamo, T. M., Newman, E.T. and Kozameh, C., “Null
geodesic congruences, asymptotically-flat spacetimes and their physical interpretation”, Living
Rev. Relativity, 15, lrr-2012-1 (2012). [![]() http://www.livingreviews.org/lrr-2012-1. |
![]() |
6 | Afshar, M.M., “Quasilocal energy in FRW cosmology”, Class. Quantum Grav., 26, 225005
(2009). [![]() ![]() |
![]() |
7 | Aguirregabiria, J.M., Chamorro, A. and Virbhadra, K.S., “Energy and angular momentum
of charged rotating black holes”, Gen. Relativ. Gravit., 28, 1393–1400 (1996). [![]() ![]() |
![]() |
8 | Aichelburg, P.C., “Remark on the superposition principle for gravitational waves”, Acta Phys. Austriaca, 34, 279–284 (1971). |
![]() |
9 | Allemandi, G., Francaviglia, M. and Raiteri, M., “Energy in Einstein–Maxwell theory and the
first law of isolated horizons via the Noether theorem”, Class. Quantum Grav., 19, 2633–2655
(2002). [![]() ![]() |
![]() |
10 | Álvarez-Gaumé, L. and Nelson, P., “Riemann surfaces and string theories”, in de Wit, B., Fayet, P. and Grisaru, M., eds., Supersymmetry, Supergravity, Superstrings ’86, Proceedings of the 4th Trieste Spring School, held at the ICTP, Trieste, Italy 7 – 15 April 1986, pp. 419–510, (World Scientific, Singapore, 1986). |
![]() |
11 | Anco, S.C., “Mean-curvature flow and quasilocal mass for 2-surfaces in Hamiltonian general
relativity”, J. Math. Phys., 48, 052502 (2007). [![]() ![]() |
![]() |
12 | Anco, S.C., “Spinor Derivation of Quasilocal Mean Curvature Mass in General Relativity”, Int.
J. Theor. Phys., 47, 684–695 (2008). [![]() ![]() |
![]() |
13 | Anco, S.C. and Tung, R.-S., “Covariant Hamiltonian boundary conditions in general relativity
for spatially bounded spacetime regions”, J. Math. Phys., 43, 5531–5566 (2002). [![]() ![]() |
![]() |
14 | Anco, S.C. and Tung, R.-S., “Properties of the symplectic structure of general relativity
for spatially bounded spacetime regions”, J. Math. Phys., 43, 3984–4019 (2002). [![]() ![]() |
![]() |
15 | Anderson, J.L., Principles of Relativity Physics, (Academic Press, New York, 1967). |
![]() |
16 | Anderson, M.T., “Quasilocal Hamiltonians in general relativity”, Phys. Rev. D, 83, 084044
(2010). [![]() ![]() |
![]() |
17 | Anderson, M.T. and Khuri, M.A., “The static extension problem in general relativity”, arXiv,
e-print, (2009). [![]() |
![]() |
18 | Andersson, F. and Edgar, S.B., “Curvature-free asymmetric metric connections in Kerr–Schild
spacetimes”, J. Math. Phys., 39, 2859–2861 (1998). [![]() |
![]() |
19 | Andersson, L., Mars, M. and Simon, W., “Local Existence of Dynamical and Trapping
Horizons”, Phys. Rev. Lett., 95, 111102 (2005). [![]() ![]() |
![]() |
20 | Ansorg, M. and Petroff, D., “Black holes surrounded by uniformly rotating rings”, Phys. Rev.
D, 72, 024019 (2005). [![]() ![]() |
![]() |
21 | Ansorg, M. and Petroff, D., “Negative Komar mass of single objects in regular, asymptotically
flat spacetimes”, Class. Quantum Grav., 23, L81–L87 (2006). [![]() ![]() |
![]() |
22 | Ansorg, M. and Pfister, H., “A universal constraint between charge and rotation rate for
degenerate black holes surrounded by matter”, Class. Quantum Grav., 25, 035009 (2008). [![]() ![]() |
![]() |
23 | Arnowitt, R., Deser, S. and Misner, C.W., “Energy and the Criteria for Radiation in General
Relativity”, Phys. Rev., 118, 1100–1104 (1960). [![]() ![]() |
![]() |
24 | Arnowitt, R., Deser, S. and Misner, C.W., “Coordinate Invariance and Energy Expressions in
General Relativity”, Phys. Rev., 122, 997–1006 (1961). [![]() |
![]() |
25 | Arnowitt, R., Deser, S. and Misner, C.W., “Wave Zone in General Relativity”, Phys. Rev.,
121, 1556–1566 (1961). [![]() |
![]() |
26 | Arnowitt, R., Deser, S. and Misner, C.W., “The dynamics of general relativity”, in Witten,
L., ed., Gravitation: An Introduction to Current Research, pp. 227–265, (Wiley, New York;
London, 1962). [![]() ![]() ![]() |
![]() |
27 | Aronson, B. and Newman, E.T., “Coordinate systems associated with asymptotically shear-free
null congruences”, J. Math. Phys., 13, 1847–1851 (1972). [![]() |
![]() |
28 | Ashtekar, A., “Asymptotic structure of the gravitational field at spatial infinity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, 2, pp. 37–69, (Plenum Press, New York, 1980). |
![]() |
29 | Ashtekar, A., “On the boundary conditions for gravitational and gauge fields at spatial infinity”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17 – 21, 1983, Lecture Notes in Physics, 202, pp. 95–109, (Springer, Berlin; New York, 1984). |
![]() |
30 | Ashtekar, A., Lectures on Non-Perturbative Canonical Gravity, Advanced Series in Astrophysics
and Cosmology, 6, (World Scientific, Singapore, 1991). [![]() |
![]() |
31 | Ashtekar, A., Beetle, C. and Lewandowski, J., “Mechanics of rotating isolated horizons”, Phys.
Rev. D, 64, 044016 (2001). [![]() ![]() |
![]() |
32 | Ashtekar, A., Beetle, C. and Lewandowski, J., “Geometry of generic isolated horizons”, Class.
Quantum Grav., 19, 1195–1225 (2002). [![]() ![]() |
![]() |
33 | Ashtekar, A., Bombelli, L. and Reula, O.A., “The covariant phase space of asymptotically flat gravitational fields”, in Francaviglia, M. and Holm, D., eds., Mechanics, Analysis and Geometry: 200 Years after Lagrange, pp. 417–450, (North-Holland, Amsterdam; New York, 1991). |
![]() |
34 | Ashtekar, A., Fairhurst, S. and Krishnan, B., “Isolated horizons: Hamiltonian evolution and
the first law”, Phys. Rev. D, 62, 104025 (2000). [![]() ![]() |
![]() |
35 | Ashtekar, A. and Galloway, J.G., “Some uniqueness results for dynamical horizons”, Adv.
Theor. Math. Phys., 95, 1–30 (2005). [![]() |
![]() |
36 | Ashtekar, A. and Geroch, R., “Quantum theory of gravitation”, Rep. Prog. Phys., 37,
1211–1256 (1974). [![]() |
![]() |
37 | Ashtekar, A. and Hansen, R.O., “A unified treatment of null and spatial infinity in general
relativity. I. Universal structure, asymptotic symmetries, and conserved quantities at spatial
infinity”, J. Math. Phys., 19, 1542–1566 (1978). [![]() |
![]() |
38 | Ashtekar, A. and Horowitz, G.T., “Energy-momentum of isolated systems cannot be null”, Phys. Lett., 89A, 181–184 (1982). |
![]() |
39 | Ashtekar, A. and Krishnan, B., “Dynamical Horizons: Energy, Angular Momentum, Fluxes and
Balance Laws”, Phys. Rev. Lett., 89, 261101 (2002). [![]() ![]() |
![]() |
40 | Ashtekar, A. and Krishnan, B., “Dynamical horizons and their properties”, Phys. Rev. D, 68,
104030 (2003). [![]() ![]() |
![]() |
41 | Ashtekar, A. and Krishnan, B., “Isolated and Dynamical Horizons and Their Applications”,
Living Rev. Relativity, 7, lrr-2004-10 (2004). [![]() http://www.livingreviews.org/lrr-2004-10. |
![]() |
42 | Ashtekar, A. and Magnon, A., “Asymptotically anti-de Sitter space-times”, Class. Quantum
Grav., 1, L39–L44 (1984). [![]() |
![]() |
43 | Ashtekar, A. and Romano, J.D., “Spatial infinity as a boundary of spacetime”, Class. Quantum Grav., 9, 1069–1100 (1992). |
![]() |
44 | Ashtekar, A. and Streubel, M., “Symplectic geometry of radiative modes and conserved quantities at null infinity”, Proc. R. Soc. London, Ser. A, 376, 585–607 (1981). |
![]() |
45 | Ashtekar, A. and Winicour, J., “Linkages and Hamiltonians at null infinity”, J. Math. Phys.,
23, 2410–2417 (1982). [![]() |
![]() |
46 | Balachandran, A.P., Chandar, L. and Momen, A., “Edge States in Canonical Gravity”, arXiv,
e-print, (1995). [![]() |
![]() |
47 | Balachandran, A.P., Momen, A. and Chandar, L., “Edge states in gravity and black hole
physics”, Nucl. Phys. B, 461, 581–596 (1996). [![]() ![]() |
![]() |
48 | Balasubramanian, V. and Kraus, P., “A stress tensor for anti-de-Sitter gravity”, Commun.
Math. Phys., 208, 413–428 (1999). [![]() ![]() |
![]() |
49 | Bardeen, J.M., Carter, B. and Hawking, S.W., “The Four Laws of Black Hole Mechanics”,
Commun. Math. Phys., 31, 161–170 (1973). [![]() ![]() |
![]() |
50 | Barrabès, C., Gramain, A., Lesigne, E. and Letelier, P.S., “Geometric inequalities and the
hoop conjecture”, Class. Quantum Grav., 9, L105–L110 (1992). [![]() |
![]() |
51 | Barrabès, C., Israel, W. and Letelier, P.S., “Analytic models of nonspherical collapse, cosmic
censorship and the hoop conjecture”, Phys. Lett. A, 160, 41–44 (1991). [![]() |
![]() |
52 | Bartnik, R., “The mass of an asymptotically flat manifold”, Commun. Pure Appl. Math., 39,
661–693 (1986). [![]() |
![]() |
53 | Bartnik, R., “A new definition of quasi-local mass”, in Blair, D.G. and Buckingham, M.J., eds., The Fifth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at The University of Western Australia, 8 – 13 August 1988, pp. 399–401, (World Scientific, Singapore; River Edge, NJ, 1989). |
![]() |
54 | Bartnik, R., “New definition of quasilocal mass”, Phys. Rev. Lett., 62, 2346–2348 (1989). [![]() |
![]() |
55 | Bartnik, R., “Quasi-spherical metrics and prescribed scalar curvature”, J. Differ. Geom., 37, 31–71 (1993). |
![]() |
56 | Bartnik, R., “Mass and 3-metrics of non-negative scalar curvature”, in Tatsien, L., ed.,
Proceedings of the International Congress of Mathematicians, Beijing, China 20 – 28 August
2002, II, pp. 231–240, (World Scientific, Singapore, 2002). [![]() |
![]() |
57 | Baskaran, D., Lau, S.R. and Petrov, A.N., “Center of mass integral in canonical general
relativity”, Ann. Phys. (N.Y.), 307, 90–131 (2003). [![]() ![]() |
![]() |
58 | Baston, R.J., “The index of the 2-twistor equations”, Twistor Newsletter, 1984(17), 31–32 (1984). |
![]() |
59 | Beetle, C., “Approximate Killing Fields as an Eigenvalue Problem”, arXiv, e-print, (2008).
[![]() |
![]() |
60 | Beig, R., “Arnowitt–Deser–Misner energy and g00”, Phys. Lett. A, 69, 153–155 (1978). [![]() |
![]() |
61 | Beig, R., “Integration of Einstein’s equations near spatial infinity”, Proc. R. Soc. London, Ser. A, 391, 295–304 (1984). |
![]() |
62 | Beig, R., “Time symmetric initial data and Penrose’s quasi-local mass”, Class. Quantum Grav., 8, L205–L209 (1991). |
![]() |
63 | Beig, R., “The classical theory of canonical general relativity”, in Ehlers, J. and Friedrich, H., eds., Canonical Gravity: From Classical to Quantum, Proceedings of the 117th WE Heraeus Seminar, Bad Honnef, Germany, 13 – 17 September 1993, Lecture Notes in Physics, 434, pp. 59–80, (Springer, Berlin; New York, 1994). |
![]() |
64 | Beig, R. and Ó Murchadha, N., “The Poincaré group as the symmetry group of canonical
general relativity”, Ann. Phys. (N.Y.), 174, 463–498 (1987). [![]() |
![]() |
65 | Beig, R. and Schmidt, B.G., “Einstein’s equations near spatial infinity”, Commun. Math. Phys.,
87, 65–80 (1982). [![]() |
![]() |
66 | Beig, R. and Szabados, L.B., “On a global conformal invariant of initial data sets”, Class.
Quantum Grav., 14, 3091–3107 (1997). [![]() |
![]() |
67 | Bekenstein, J.D., “Black holes and entropy”, Phys. Rev. D, 7, 2333–2346 (1973). [![]() |
![]() |
68 | Bekenstein, J.D., “Generalized second law of thermodynamics in black-hole physics”, Phys.
Rev. D, 9, 3292–3300 (1974). [![]() |
![]() |
69 | Bekenstein, J.D., “Universal upper bound on the entropy-to energy ratio for bounded systems”, Phys. Rev. D, 23, 287–298 (1981). |
![]() |
70 | Bekenstein, J.D., “Black holes and everyday physics”, Gen. Relativ. Gravit., 14, 355–359
(1982). [![]() |
![]() |
71 | Bekenstein, J.D., “On Page’s examples challenging the entropy bound”, arXiv, e-print, (2000).
[![]() |
![]() |
72 | Bekenstein, J.D. and Mayo, A.E., “Black hole polarization and new entropy bounds”, Phys.
Rev. D, 61, 024022 (1999). [![]() ![]() |
![]() |
73 | Belinfante, F.J., “On the spin angular momentum of mesons”, Physica, VI(9), 887–898 (1939).
[![]() ![]() |
![]() |
74 | Belinfante, F.J., “On the current and the density of the electric charge, the energy, the linear
momentum and the angular momentum of arbitrary fields”, Physica, VII, 449–474 (1940).
[![]() ![]() |
![]() |
75 | Ben-Dov, I., “Penrose inequality and apparent horizons”, Phys. Rev. D, 70, 124031 (2004).
[![]() ![]() |
![]() |
76 | Bergmann, P.G., “Observables in general relativity”, Rev. Mod. Phys., 33, 510–514 (1961). |
![]() |
77 | Bergmann, P.G., “The general theory of relativity”, in Flügge, S., ed., Handbuch der Physik. Vol. IV: Prinzipien der Elektrodynamik und Relativitätstheorie, pp. 203–242, (Springer, Berlin; New York, 1962). |
![]() |
78 | Bergmann, P.G. and Thomson, R., “Spin and angular momentum in general relativity”, Phys.
Rev., 89, 400–407 (1953). [![]() |
![]() |
79 | Bergqvist, G., “Positivity and definitions of mass”, Class. Quantum Grav., 9, 1917–1922 (1992). |
![]() |
80 | Bergqvist, G., “Quasilocal mass for event horizons”, Class. Quantum Grav., 9, 1753–1766 (1992). |
![]() |
81 | Bergqvist, G., “Energy of small surfaces”, Class. Quantum Grav., 11, 3013–3023 (1994). |
![]() |
82 | Bergqvist, G., “On the Penrose inequality and the role of auxiliary spinor fields”, Class.
Quantum Grav., 14, 2577–2583 (1997). [![]() |
![]() |
83 | Bergqvist, G., “Vacuum momenta of small spheres”, Class. Quantum Grav., 15, 1535–1538
(1998). [![]() |
![]() |
84 | Bergqvist, G. and Ludvigsen, M., “Quasi-local mass near a point”, Class. Quantum Grav., 4,
L29–L32 (1987). [![]() |
![]() |
85 | Bergqvist, G. and Ludvigsen, M., “Spinor propagation and quasilocal momentum for the Kerr
solution”, Class. Quantum Grav., 6, L133–L136 (1989). [![]() |
![]() |
86 | Bergqvist, G. and Ludvigsen, M., “Quasilocal momentum and angular momentum in Kerr
spacetime”, Class. Quantum Grav., 8, 697–701 (1991). [![]() |
![]() |
87 | Bernstein, D.H. and Tod, K.P., “Penrose’s quasi-local mass in a numerically computed space-time”, Phys. Rev. D, 49, 2808–2820 (1994). |
![]() |
88 | Bizoń, P. and Malec, E., “On Witten’s positive-energy proof for weakly asymptotically flat
spacetimes”, Class. Quantum Grav., 3, L123–L128 (1986). [![]() |
![]() |
89 | Bland, J. and Ma, L., “When is the Hawking mass monotone under geometric flows”, arXiv,
e-print, (2008). [![]() |
![]() |
90 | Blau, M. and Rollier, B., “Brown–York energy and radial geodesics”, Class. Quantum Grav.,
25, 105004 (2008). [![]() ![]() |
![]() |
91 | Bondi, H., “Gravitational waves in general relativity”, Nature, 186, 535 (1960). [![]() ![]() |
![]() |
92 | Bondi, H., van der Burg, M.G.J. and Metzner, A.W.K., “Gravitational Waves in General
Relativity. VII. Waves from Axi-Symmetric Isolated Systems”, Proc. R. Soc. London, Ser. A,
269, 21–52 (1962). [![]() ![]() |
![]() |
93 | Booth, I.S., “Metric-based Hamiltonians, null boundaries and isolated horizons”, Class.
Quantum Grav., 18, 4239–4264 (2001). [![]() ![]() |
![]() |
94 | Booth, I.S. and Creighton, J.D.E., “Quasilocal calculation of tidal heating”, Phys. Rev. D, 62,
067503 (2000). [![]() ![]() |
![]() |
95 | Booth, I. and Fairhurst, S., “Canonical phase space formulation of quasilocal general relativity”,
Class. Quantum Grav., 20, 4507–4531 (2003). [![]() ![]() |
![]() |
96 | Booth, I. and Fairhurst, S., “The First Law for Slowly Evolving Horizons”, Phys. Rev. Lett.,
92, 011102 (2004). [![]() ![]() |
![]() |
97 | Booth, I. and Fairhurst, S., “Horizon energy and angular momentum from a Hamiltonian
perspective”, Class. Quantum Grav., 22, 4515–4550 (2005). [![]() ![]() |
![]() |
98 | Booth, I. and Fairhurst, S., “Isolated, slowly evolving, and dynamical trapping horizons:
Geometry and mechanics from surface deformations”, Phys. Rev. D, 75, 084019 (2007). [![]() ![]() |
![]() |
99 | Booth, I. and Fairhurst, S., “Extremality conditions for isolated and dynamical horizons”, Phys.
Rev. D, 77, 084005 (2008). [![]() ![]() |
![]() |
100 | Booth, I.S. and Mann, R.B., “Moving observers, nonorthogonal boundaries, and quasilocal
energy”, Phys. Rev. D, 59, 064021 (1999). [![]() ![]() |
![]() |
101 | Booth, I.S. and Mann, R.B., “Static and infalling quasilocal energy of charged and naked black
holes”, Phys. Rev. D, 60, 124009 (1999). [![]() ![]() |
![]() |
102 | Borowiec, A., Ferraris, M., Francaviglia, M. and Volovich, I., “Energy-momentum complex for
nonlinear gravitational Lagrangians in the first-order formalism”, Gen. Relativ. Gravit., 26,
637–645 (1994). [![]() |
![]() |
103 | Bousso, R., “Holography in general space-times”, J. High Energy Phys., 1999(06), 028 (1999).
[![]() ![]() |
![]() |
104 | Bousso, R., “The holographic principle”, Rev. Mod. Phys., 74, 825–874 (2002). [![]() ![]() |
![]() |
105 | Brady, P.R., Droz, S., Israel, W. and Morsink, S.M., “Covariant double–null dynamics:
(2+2)-splitting of the Einstein equations”, Class. Quantum Grav., 13, 2211–2230 (1996). [![]() ![]() |
![]() |
106 | Bramson, B.D., “The alignment of frames of reference at null infinity for asymptotically flat Einstein–Maxwell manifolds”, Proc. R. Soc. London, Ser. A, 341, 451–461 (1975). |
![]() |
107 | Bramson, B.D., “Relativistic Angular Momentum for Asymptotically Flat Einstein-Maxwell
Manifolds”, Proc. R. Soc. London, Ser. A, 341, 463–490 (1975). [![]() |
![]() |
108 | Bramson, B.D., “Physics in cone space”, in Espositio, P. and Witten, L., eds., Asymptotic structure of spacetime, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14 – 18, 1976, pp. 273–359, (Plenum Press, New York, 1977). |
![]() |
109 | Bramson, B.D., “The invariance of spin”, Proc. R. Soc. London, Ser. A, 364, 463–490 (1978). |
![]() |
110 | Bray, H.L., “Proof of the Riemannian Penrose inequality using the positive energy theorem”,
J. Differ. Geom., 59, 177–267 (2001). [![]() |
![]() |
111 | Bray, H.L., “Black holes and the Penrose inequality in general relativity”, in Tatsien, L., ed.,
Proceedings of the International Congress of Mathematicians, Beijing, China 20 – 28 August
2002, II, (World Scientific, Singapore, 2002). [![]() |
![]() |
112 | Bray, H.L., “Black holes, geometric flows, and the Penrose inequality in general relativity”, Notices AMS, 49, 1372–1381 (2002). |
![]() |
113 | Bray, H.L. and Chruściel, P.T., “The Penrose Inequality”, in Chruściel, P.T. and Friedrich,
H., eds., The Einstein Equations and the Large Scale Behavior of Gravitational Fields: 50
Years of the Cauchy Problem in General Relativity, pp. 39–70, (Birkhäuser, Basel, 2004).
[![]() ![]() |
![]() |
114 | Bray, H., Hayward, S., Mars, M. and Simon, W., “Generalized Inverse Mean Curvature Flows
in Spacetime”, Commun. Math. Phys., 272, 119–138 (2007). [![]() ![]() |
![]() |
115 | Brinkmann, H.W., “On Riemann spaces conformal to Euclidean space”, Proc. Natl. Acad. Sci. USA, 9, 1–3 (1923). |
![]() |
116 | Brown, J.D., Creighton, J.D.E. and Mann, R., “Temperature, energy, and heat capacity of
asymptotically anti-de-Sitter black holes”, Phys. Rev. D, 50, 6394–6403 (1994). [![]() |
![]() |
117 | Brown, J.D., Lau, S.R. and York Jr, J.W., “Energy of isolated systems at retarded times as
the null limit of quasilocal energy”, Phys. Rev. D, 55, 1977–1984 (1997). [![]() |
![]() |
118 | Brown, J.D., Lau, S.R. and York Jr, J.W., “Canonical quasilocal energy and small spheres”,
Phys. Rev. D, 59, 064028 (1999). [![]() ![]() |
![]() |
119 | Brown, J.D., Lau, S.R. and York Jr, J.W., “Action and energy of the gravitational field”, Ann.
Phys. (N.Y.), 297, 175–218 (2002). [![]() ![]() |
![]() |
120 | Brown, J.D. and York, J.M., “Quasilocal energy in general relativity”, in Gotay, M.J., Marsden, J.E. and Moncrief, V.E., eds., Mathematical Aspects of Classical Field Theory, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held July 20 – 26, 1991 at the University of Washington, Seattle, Contemporary Mathematics, 132, pp. 129–142, (American Mathematical Society, Providence, RI, 1992). |
![]() |
121 | Brown, J.D. and York Jr, J.W., “Quasilocal energy and conserved charges derived from the
gravitational action”, Phys. Rev. D, 47, 1407–1419 (1993). [![]() |
![]() |
122 | Cahill, M.E. and McVittie, G.C., “Spherical symmetry and mass-energy in general relativity I. General theory”, J. Math. Phys., 11, 1382–1391 (1970). |
![]() |
123 | Carlip, S., “Statistical Mechanics and Black Hole Entropy”, arXiv, e-print, (1995).
[![]() |
![]() |
124 | Carlip, S., “Black hole entropy from conformal field theory in any dimension”, Phys. Rev. Lett.,
82, 2828–2831 (1999). [![]() ![]() |
![]() |
125 | Carlip, S., “Entropy from conformal field theory at Killing horizons”, Class. Quantum Grav.,
16, 3327–3348 (1999). [![]() ![]() |
![]() |
126 | Carlip, S., “Black hole entropy from conformal field theory”, Nucl. Phys. B (Proc. Suppl.), 88,
10–16 (2000). [![]() ![]() |
![]() |
127 | Carlip, S., “Near-horizon conformal symmetry and black hole entropy”, Phys. Rev. Lett., 88,
241301 (2002). [![]() ![]() |
![]() |
128 | Carlip, S., “Black Hole Thermodynamics and Statistical Mechanics”, in Papantonopoulos, E.,
ed., Physics of Black Holes: A Guided Tour, Fourth Aegean School on Black Holes, held in
Mytilene, Greece, 17 – 22 September 2007, Lecture Notes in Physics, 769, pp. 89–123, (Springer,
Berlin; New York, 2009). [![]() ![]() |
![]() |
129 | Carrasco, A. and Mars, M., “A counter-example to a recent version of the Penrose conjecture”,
Class. Quantum Grav., 27, 062001 (2010). [![]() ![]() |
![]() |
130 | Carrera, M. and Giulini, D., “On the influence of global cosmological expansion on the dynamics
and kinematics of local systems”, Rev. Mod. Phys., 82, 169–208 (2010). [![]() ![]() |
![]() |
131 | Chang, C.-C., Nester, J.M. and Chen, C.-M., “Pseudotensors and quasi-local
energy-momentum”, Phys. Rev. Lett., 83, 1897–1901 (1999). [![]() ![]() |
![]() |
132 | Chang, C.-C., Nester, J.M. and Chen, C.-M., “Energy-momentum quasi-localization for
gravitating systems”, in Liu, L., Luo, J., Li, X.-Z. and Hsu, J.-P., eds., Gravitation and
Astrophysics, Proceedings of the Fourth International Workshop, held at Beijing Normal
University, China, October 10 – 15, 1999, pp. 163–173, (World Scientific, Singapore; River Edge,
NJ, 2000). [![]() |
![]() |
133 | Chellathurai, V. and Dadhich, N., “Effective mass of a rotating black hole in a magnetic field”,
Class. Quantum Grav., 7, 361–370 (1990). [![]() |
![]() |
134 | Chen, C.-M., Liu, J.-L. and Nester, J.M., “Quasi-local energy for cosmological models”, Mod.
Phys. Lett. A, 22, 2039–2046 (2007). [![]() |
![]() |
135 | Chen, C.-M., Liu, J.-L., Nester, J.M. and Wu, M.-F., “Optimal Choices of Reference for
Quasi-local Energy”, Phys. Lett. A, 374, 3599–3602 (2010). [![]() ![]() |
![]() |
136 | Chen, C.-M. and Nester, J.M., “Quasilocal quantities for general relativity and other gravity
theories”, Class. Quantum Grav., 16, 1279–1304 (1999). [![]() ![]() |
![]() |
137 | Chen, C.-M. and Nester, J.M., “A symplectic Hamiltonian derivation of quasi-local
energy-momentum for GR”, Grav. Cosmol., 6, 257–270 (2000). [![]() |
![]() |
138 | Chen, C.-M. and Nester, J.M., “Quasi-Local Energy for an Unusual Slicing of Static Spherically Symmetric Metrics”, in Kleinert, H., Jantzen, R.T. and Ruffini, R., eds., The Eleventh Marcel Grossmann Meeting on General Relativity, Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany, 23 – 29 July 2006, pp. 2146–2148, (World Scientific, Singapore; Hackensack, NJ, 2008). |
![]() |
139 | Chen, C.-M., Nester, J.M. and Tung, R.-S., “Quasilocal energy-momentum for geometric
gravity theories”, Phys. Lett. A, 203, 5–11 (1995). [![]() ![]() |
![]() |
140 | Chen, C.-M., Nester, J.M. and Tung, R.-S., “Spinor Formulations for Gravitational
Energy-Momentum”, arXiv, e-print, (2002). [![]() |
![]() |
141 | Chen, C.-M., Nester, J.M. and Tung, R.-S., “Hamiltonian boundary term and quasilocal energy
flux”, Phys. Rev. D, 72, 104020 (2005). [![]() ![]() |
![]() |
142 | Chen, P.-N., Wang, M.-T. and Yau, S.-T., “Evaluating quasilocal energy and solving optimal
embedding equation at null infinity”, arXiv, e-print, (2010). [![]() |
![]() |
143 | Christodoulou, D. and Yau, S.-T., “Some remarks on the quasi-local mass”, in Isenberg, J.A., ed., Mathematics and General Relativity, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held June 22 – 28, 1986, Contemporary Mathematics, 71, pp. 9–14, (American Mathematical Society, Providence, RI, 1988). |
![]() |
144 | Chruściel, P.T., “Boundary conditions at spacelike infinity from a Hamiltonian point of view”, in Bergmann, P.G. and de Sabbata, V., eds., Topological Properties and Global Structure of Space-time, Proceedings of a NATO Advanced Study Institute, held May 12–22, 1985, in Erice, Italy, NATO ASI Series B, 138, pp. 49–59, (Plenum Press, New York, 1986). |
![]() |
145 | Chruściel, P.T., “A remark on the positive-energy theorem”, Class. Quantum Grav., 3,
L115–L121 (1986). [![]() |
![]() |
146 | Chruściel, P.T., Jezierski, J. and Kijowski, J., Hamiltonian Field Theory in the Radiating
Regime, Lecture Notes in Physics, m70, (Springer, Berlin; New York, 2002). [![]() |
![]() |
147 | Chruściel, P.T., Jezierski, J. and MacCallum, M.A.H., “Uniqueness of scalar field energy and
gravitational energy in the radiating regime”, Phys. Rev. Lett., 80, 5052–5055 (1998). [![]() ![]() |
![]() |
148 | Chruściel, P.T., Jezierski, J. and MacCallum, M.A.H., “Uniqueness of the Trautman–Bondi
mass”, Phys. Rev. D, 58, 084001 (1998). [![]() ![]() |
![]() |
149 | Chruściel, P.T., Maerten, D. and Tod, P., “Rigid upper bounds for the angular momentum
and centre of mass of non-singular asymptotically anti-de Sitter space-times”, J. High Energy
Phys., 2006(11), 084 (2006). [![]() ![]() |
![]() |
150 | Chruściel, P.T. and Nagy, G., “A Hamiltonian mass of asymptotically anti-de Sitter
space-times”, Class. Quantum Grav., 18, L61–L68 (2001). [![]() ![]() |
![]() |
151 | Chruściel, P.T. and Tod, P., “An angular momentum bound at null infinity”, Adv. Theor.
Math. Phys., 13, 1317–1334 (2009). [![]() |
![]() |
152 | Coleman, S., “Non-Abelian plane waves”, Phys. Lett. B, 70, 59–60 (1977). [![]() |
![]() |
153 | Cook, G.B. and Whiting, B.F., “Approximate Killing vectors on S2”, Phys. Rev. D, 76, 041501
(2007). [![]() ![]() |
![]() |
154 | Corvino, J., “Scalar curvature deformation and a gluing construction for the Einstein constraint
equations”, Commun. Math. Phys., 214, 137–189 (2000). [![]() |
![]() |
155 | Corvino, J. and Schoen, R.M., “On the asymptotics for the vacuum Einstein constraint
equations”, J. Differ. Geom., 73, 185–217 (2006). [![]() |
![]() |
156 | Corvino, J. and Wu, H., “On the center of mass of isolated systems”, Class. Quantum Grav.,
25, 085008 (2008). [![]() ![]() |
![]() |
157 | Creighton, J.D.E. and Mann, R., “Quasilocal thermodynamics of dilaton gravity coupled to
gauge fields”, Phys. Rev. D, 52, 4569–4587 (1995). [![]() |
![]() |
158 | Crnkovic, C. and Witten, E., “Covariant description of canonical formalism in geometrical theories”, in Hawking, S.W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 676–684, (Cambridge University Press, Cambridge; New York, 1987). |
![]() |
159 | Cvetič, M., Gibbons, G.W. and Pope, C.N., “More about Birkhoff’s invariant and
Thorne’s hoop conjecture for horizons”, Class. Quantum Grav., 28, 195001 (2011). [![]() ![]() |
![]() |
160 | d’ Inverno, R.A. and Smallwood, J., “Covariant 2+2 formalism of the initial-value problem in general relativity”, Phys. Rev. D, 22, 1233–1247 (1980). |
![]() |
161 | Dain, S., “Angular Momentum–Mass Inequality for Axisymmetric Black Holes”, Phys. Rev.
Lett., 96, 101101 (2006). [![]() ![]() |
![]() |
162 | Dain, S., “Proof of the (local) angular momentum–mass inequality for axisymmetric black
holes”, Class. Quantum Grav., 23, 6845–6855 (2006). [![]() ![]() |
![]() |
163 | Dain, S., “A variational principle for stationary, axisymmetric solutions of Einstein’s
equations”, Class. Quantum Grav., 23, 6857–6871 (2006). [![]() ![]() |
![]() |
164 | Dain, S., “The inequality between mass and angular momentum for axially symmetric black
holes”, Int. J. Mod. Phys. D, 17, 519–523 (2008). [![]() ![]() |
![]() |
165 | Dain, S., “Proof of the angular momentum–mass inequality for axisymmetric black holes”, J.
Differ. Geom., 79, 33–67 (2008). [![]() |
![]() |
166 | Dain, S., “A counterexample to a Penrose inequality conjectured by Gibbons”, Class. Quantum
Grav., 28, 085015 (2011). [![]() ![]() |
![]() |
167 | Dain, S., “Geometric inequalities for axially symmetric black holes”, Class. Quantum Grav.,
29, 073001 (2012). [![]() ![]() |
![]() |
168 | Dain, S., Lousto, C.O. and Takahashi, R., “New conformally flat initial data for spinning black
holes”, Phys. Rev. D, 65, 104038 (2002). [![]() ![]() |
![]() |
169 | Dain, S. and Moreschi, O.M., “General existence proof for rest frame systems in asymptotically
flat spacetime”, Class. Quantum Grav., 17, 3663–3672 (2000). [![]() ![]() |
![]() |
170 | Deser, S., Franklin, J.S. and Seminara, D., “Graviton–graviton scattering, Bel–Robinson and
energy (pseudo)–tensors”, Class. Quantum Grav., 18, 2815–2821 (1999). [![]() |
![]() |
171 | Dougan, A.J., “Quasi-local mass for spheres”, Class. Quantum Grav., 9, 2461–2475 (1992).
[![]() |
![]() |
172 | Dougan, A.J. and Mason, L.J., “Quasilocal mass constructions with positive energy”, Phys.
Rev. Lett., 67, 2119–2122 (1991). [![]() |
![]() |
173 | Dray, T., “Momentum flux at null infinity”, Class. Quantum Grav., 2, L7–L10 (1985). [![]() |
![]() |
174 | Dray, T. and Streubel, M., “Angular momentum at null infinity”, Class. Quantum Grav., 1,
15–26 (1984). [![]() |
![]() |
175 | Dubois-Violette, M. and Madore, J., “Conservation laws and integrability conditions for
gravitational and Yang-Mills equations”, Commun. Math. Phys., 108, 213–223 (1987). [![]() |
![]() |
176 | Eardley, D.M., “Global problems in numerical relativity”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24 – August 4, 1978, pp. 127–138, (Cambridge University Press, Cambridge; New York, 1979). |
![]() |
177 | Eastwood, M. and Tod, K.P., “Edth – a differential operator on the sphere”, Math. Proc. Camb.
Phil. Soc., 92, 317–330 (1982). [![]() |
![]() |
178 | Epp, R.J., “Angular momentum and an invariant quasilocal energy in general relativity”, Phys.
Rev. D, 62, 124018 (2000). [![]() ![]() |
![]() |
179 | Exton, A.R., Newman, E.T. and Penrose, R., “Conserved quantities in the Einstein–Maxwell
theory”, J. Math. Phys., 10, 1566–1570 (1969). [![]() |
![]() |
180 | Fan, X.-Q. and Kwong, K.-K., “The Brown–York mass of revolution surface in asymptotically
Schwarzschild manifold”, J. Geom. Anal., 21, 527–542 (2011). [![]() ![]() |
![]() |
181 | Fan, X.-Q., Shi, Y. and Tam, L.-F., “Large-sphere and small-sphere limits of the Brown–York
mass”, Commun. Anal. Geom., 17, 37–72 (2009). [![]() |
![]() |
182 | Farinelli, S. and Schwartz, G., “On the spectrum of the Dirac operator under boundary
conditions”, J. Geom. Phys., 28, 67–84 (1998). [![]() |
![]() |
183 | Farkas, R. and Szabados, L.B., “On quasi-local charges and Newman–Penrose type quantities
in Yang–Mills theories”, Class. Quantum Grav., 28, 145013 (2011). [![]() ![]() |
![]() |
184 | Fatibene, L., Ferraris, M., Francaviglia, M. and Raiteri, M., “Noether charges, Brown–York
quasilocal energy, and related topics”, J. Math. Phys., 42, 1173–1195 (2001). [![]() ![]() |
![]() |
185 | Favata, M., “Energy localization invariance of tidal work in general relativity”, Phys. Rev. D,
63, 064013 (2001). [![]() ![]() |
![]() |
186 | Ferraris, M. and Francaviglia, M., “Covariant first-order Lagrangians, energy-density and
superpotentials in general relativity”, Gen. Relativ. Gravit., 22, 965–985 (1990). [![]() |
![]() |
187 | Ferraris, M. and Francaviglia, M., “Conservation laws in general relativity”, Class. Quantum
Grav., 9, S79–S95 (1992). [![]() |
![]() |
188 | Flanagan, É.É., “Hoop conjecture for black-hole horizon formation”, Phys. Rev. D, 44, 2409–2420 (1991). |
![]() |
189 | Flanagan, É.É., Marolf, D. and Wald, R.M., “Proof of classical versions of the Bousso entropy
bound and of the generalized second law”, Phys. Rev. D, 62, 084035 (2000). [![]() |
![]() |
190 | Fouxon, I., Betschart, G. and Bekenstein, J.D., “Bound on viscosity and the generalized second
law of thermodynamics”, Phys. Rev. D, 77, 024016 (2008). [![]() ![]() |
![]() |
191 | Francaviglia, M. and Raiteri, M., “Hamiltonian, energy and entropy in general relativity with
non-orthogonal boundaries”, Class. Quantum Grav., 19, 237–258 (2002). [![]() ![]() |
![]() |
192 | Frauendiener, J., “Geometric description of energy-momentum pseudotensors”, Class.
Quantum Grav., 6, L237–L241 (1989). [![]() |
![]() |
193 | Frauendiener, J., “On an integral formula on hypersurfaces in general relativity”, Class.
Quantum Grav., 14, 2413–3423 (1997). [![]() ![]() |
![]() |
194 | Frauendiener, J., “On the Penrose inequality”, Phys. Rev. Lett., 87, 101101 (2001). [![]() ![]() |
![]() |
195 | Frauendiener, J., “Conformal Infinity”, Living Rev. Relativity, 7, lrr-2004-1 (2004). URL
(accessed 17 November 2008): http://www.livingreviews.org/lrr-2004-1. |
![]() |
196 | Frauendiener, J., Nester, J.M. and Szabados, L.B., “Witten spinors on maximal, conformally
flat hypersurfaces”, Class. Quantum Grav., 28, 185004 (2011). [![]() ![]() |
![]() |
197 | Frauendiener, J. and Sparling, G.A.J., “On the symplectic formalism for general relativity”, Proc. R. Soc. London, 436, 141–153 (1992). |
![]() |
198 | Frauendiener, J. and Szabados, L.B., “The kernel of the edth operators on higher-genus
spacelike 2-surfaces”, Class. Quantum Grav., 18, 1003–1014 (2001). [![]() ![]() |
![]() |
199 | Frauendiener, J. and Szabados, L.B., “A note on the post–Newtonian limit of quasi-local energy
expressions”, Class. Quantum Grav., 28, 235009 (2011). [![]() ![]() |
![]() |
200 | Friedrich, H., “Gravitational fields near space-like and null infinity”, J. Geom. Phys., 24, 83–163
(1998). [![]() |
![]() |
201 | Friedrich, H., “Initial boundary value problems for Einstein’s field equations and geometric
uniqueness”, Gen. Relativ. Gravit., 41, 1947–1966 (2009). [![]() ![]() |
![]() |
202 | Friedrich, H. and Nagy, G., “The Initial Boundary Value Problem for Einstein’s Vacuum Field
Equation”, Commun. Math. Phys., 201, 619–655 (1999). [![]() ![]() |
![]() |
203 | Frolov, V.P., “Embedding of the Kerr–Newman black hole surface in Euclidean space”, Phys.
Rev. D, 73, 064021 (2006). [![]() ![]() |
![]() |
204 | Gallo, E., Lehner, L. and Moreschi, O.M., “A note on computations of angular momentum
and its flux in numerical relativity”, Class. Quantum Grav., 26, 048002 (2009). [![]() ![]() |
![]() |
205 | Garfinkle, D. and Mann, R., “Generalized entropy and Noether charge”, Class. Quantum Grav.,
17, 3317–3324 (2000). [![]() |
![]() |
206 | Geroch, R., “Spinor Structure of Space-Times in General Relativity. I”, J. Math. Phys., 9,
1739–1744 (1968). [![]() |
![]() |
207 | Geroch, R., “Energy extraction”, Ann. N.Y. Acad. Sci., 224, 108–117 (1973). [![]() |
![]() |
208 | Geroch, R., “Asymptotic structure of space-time”, in Esposito, F.P. and Witten, L., eds., Asymptotic Structure of Spacetime, Proceedings of a Symposium on Asymptotic Structure of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14 – 18, 1976, pp. 1–105, (Plenum Press, New York, 1977). |
![]() |
209 | Geroch, R., Held, A. and Penrose, R., “A spacetime calculus based on pairs of null directions”,
J. Math. Phys., 14, 874–881 (1973). [![]() |
![]() |
210 | Geroch, R. and Winicour, J., “Linkages in general relativity”, J. Math. Phys., 22, 803–812
(1981). [![]() |
![]() |
211 | Giachetta, G. and Sardanashvily, G., “Stress-Energy-Momentum Tensors in Lagrangian Field
Theory. Part 1. Superpotentials”, arXiv, e-print, (1995). [![]() |
![]() |
212 | Giachetta, G. and Sardanashvily, G., “Stress-Energy-Momentum Tensors in Lagrangian Field
Theory. Part 2. Gravitational Superpotential”, arXiv, e-print, (1995). [![]() |
![]() |
213 | Gibbons, G.W., “The isoperimetric and Bogomolny inequalities for black holes”, in Willmore, T.J. and Hitchin, N.J., eds., Global Riemannian Geometry, pp. 194–202, (Ellis Horwood; Halsted Press, Chichester; New York, 1984). |
![]() |
214 | Gibbons, G.W., “Collapsing shells and the isoperimetric inequality for black holes”, Class.
Quantum Grav., 14, 2905–2915 (1997). [![]() |
![]() |
215 | Gibbons, G.W., “Birkhoff’s invariant and Thorne’s hoop conjecture”, arXiv, e-print, (2009).
[![]() |
![]() |
216 | Gibbons, G.W. and Hawking, S.W., “Action integrals and partition functions in general relativity”, Phys. Rev. D, 15, 2752–2756 (1977). |
![]() |
217 | Gibbons, G.W., Hawking, S.W., Horowitz, G.T. and Perry, M.J., “Positive mass theorem for
black holes”, Commun. Math. Phys., 88, 295–308 (1983). [![]() |
![]() |
218 | Gibbons, G.W. and Holzegel, G., “The positive mass and isoperimetric inequalities for
axisymmetric black holes in four and five dimensions”, Class. Quantum Grav., 23, 6459–6478
(2006). [![]() ![]() |
![]() |
219 | Gibbons, G.W. and Hull, C.M., “A Bogomolny bound for general relativity and solutions in
N=2 supergravity”, Phys. Lett. B, 109, 190–194 (1982). [![]() |
![]() |
220 | Gibbons, G.W., Hull, C.M. and Warner, N.P., “The stability of gauged supergravity”, Nucl.
Phys. B, 218, 173–190 (1983). [![]() |
![]() |
221 | Giulini, D., “Consistently implementing the field self-energy in Newtonian gravity”, Phys. Lett.
A, 232, 165–170 (1997). [![]() ![]() |
![]() |
222 | Goldberg, J.N., “Conservation laws in general relativity”, Phys. Rev., 111, 315–320 (1958).
[![]() |
![]() |
223 | Goldberg, J.N., “Invariant transformations, conservation laws, and energy-momentum”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, 1, pp. 469–489, (Plenum Press, New York, 1980). |
![]() |
224 | Goldberg, J.N., “Conserved quantities at spatial and null infinity: The Penrose potential”, Phys. Rev. D, 41, 410–417 (1990). |
![]() |
225 | Goldberg, J.N. and Soteriou, C., “Canonical general relativity on a null surface with coordinate
and gauge fixing”, Class. Quantum Grav., 12, 2779–2797 (1995). [![]() |
![]() |
226 | Gour, G., “Entropy bounds for charged and rotating systems”, Class. Quantum Grav., 20,
3403–3412 (2003). [![]() ![]() |
![]() |
227 | Gourgoulhon, E., “Generalized Damour–Navier–Stokes equation applied to trapping horizons”,
Phys. Rev. D, 72, 104007 (2005). [![]() ![]() |
![]() |
228 | Gourgoulhon, E. and Jaramillo, J.L., “Area evolution, bulk viscosity, and entropy principles
for dynamical horizons”, Phys. Rev. D, 74, 087502 (2006). [![]() ![]() ![]() |
![]() |
229 | Grabowska, K. and Kijowski, J., “Gravitational energy: A quasi-local Hamiltonian approach”,
Talk given at the conference ‘Road to reality with Roger Penrose’, Warsaw, 2010, conference
paper, (2010). Online version (accessed 21 November 2012): www.cft.edu.pl/~kijowski/Odbitki-prac/energy-RtR.pdf. |
![]() |
230 | Güven, R., “Solutions for gravity coupled to non-Abelian plane waves”, Phys. Rev. D, 19, 471–472 (1979). |
![]() |
231 | Haag, R., Local Quantum Physics, Fields, Particles, Algebras, Texts and Monographs in Physics, (Springer, Berlin; New York, 1992). |
![]() |
232 | Haag, R. and Kastler, D., “An algebraic approach to quantum field theory”, J. Math. Phys.,
5, 848–861 (1964). [![]() |
![]() |
233 | Hall, G.S., Symmetries and Curvature Structure in General Relativity, World Scientific Lecture
Notes in Physics, 46, (World Scientific, Singapore; River Edge, NJ, 2004). [![]() |
![]() |
234 | Harnett, G., “The flat generalized affine connection and twistors for the Kerr solution”, Class.
Quantum Grav., 10, 407–415 (1993). [![]() |
![]() |
235 | Harte, A.I., “Approximate spacetime symmetries and conservation laws”, Class. Quantum
Grav., 25, 205008 (2008). [![]() ![]() |
![]() |
236 | Hawking, S.W., “Gravitational radiation in an expanding universe”, J. Math. Phys., 9, 598–604
(1968). [![]() |
![]() |
237 | Hawking, S.W., “Black holes in general relativity”, Commun. Math. Phys., 25, 152–166 (1972).
[![]() ![]() |
![]() |
238 | Hawking, S.W., “The Event Horizon”, in DeWitt, C.M. and DeWitt, B.S., eds., Black Holes, Based on lectures given at the 23rd session of the Summer School of Les Houches, 1972, pp. 1–56, (Gordon and Breach, New York, 1973). |
![]() |
239 | Hawking, S.W., “Particle creation by black holes”, Commun. Math. Phys., 43, 199–220 (1975).
[![]() ![]() |
![]() |
240 | Hawking, S.W. and Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge
Monographs on Mathematical Physics, (Cambridge University Press, Cambridge, 1973). [![]() |
![]() |
241 | Hawking, S.W. and Horowitz, G.T., “The gravitational Hamiltonian, action, entropy and
surface terms”, Class. Quantum Grav., 13, 1487–1498 (1996). [![]() ![]() |
![]() |
242 | Hawking, S.W. and Hunter, C.J., “The gravitational Hamiltonian in the presence of
non-orthogonal boundaries”, Class. Quantum Grav., 13, 2735–2752 (1996). [![]() |
![]() |
243 | Hayward, G., “Gravitational action for spacetimes with nonsmooth boundaries”, Phys. Rev. D, 47, 3275–3280 (1993). |
![]() |
244 | Hayward, G., “Quasilocal energy conditions”, Phys. Rev. D, 52, 2001–2006 (1995).
[![]() |
![]() |
245 | Hayward, S.A., “Dual-null dynamics of the Einstein field”, Class. Quantum Grav., 10, 779–790
(1993). [![]() ![]() |
![]() |
246 | Hayward, S.A., “General laws of black-hole dynamics”, Phys. Rev. D, 49, 6467–6474 (1994).
[![]() ![]() |
![]() |
247 | Hayward, S.A., “Quasi-localization of Bondi–Sachs energy loss”, Class. Quantum Grav., 11,
3037–3048 (1994). [![]() |
![]() |
248 | Hayward, S.A., “Quasilocal gravitational energy”, Phys. Rev. D, 49, 831–839 (1994).
[![]() |
![]() |
249 | Hayward, S.A., “Spin coefficient form of the new laws of black hole dynamics”, Class. Quantum
Grav., 11, 3025–3035 (1994). [![]() |
![]() |
250 | Hayward, S.A., “Gravitational energy in spherical symmetry”, Phys. Rev. D, 53, 1938–1949
(1996). [![]() |
![]() |
251 | Hayward, S.A., “Inequalities relating area, energy, surface gravity and charge of black holes”,
Phys. Rev. Lett., 81, 4557–4559 (1998). [![]() ![]() |
![]() |
252 | Hayward, S.A., “Unified first law of black-hole dynamics and relativistic thermodynamics”,
Class. Quantum Grav., 15, 3147–3162 (1998). [![]() |
![]() |
253 | Hayward, S.A., “Gravitational energy as Noether charge”, arXiv, e-print, (2000).
[![]() |
![]() |
254 | Hayward, S.A., “Gravitational-wave dynamics and black-hole dynamics: second quasi-spherical
approximation”, Class. Quantum Grav., 18, 5561–5581 (2001). [![]() ![]() |
![]() |
255 | Hayward, S.A., “Dynamics of black holes”, Adv. Sci. Lett., 2, 205–213 (2009). [![]() ![]() |
![]() |
256 | Hayward, S.A., Mukohyama, S. and Ashworth, M.C., “Dynamic black-hole entropy”, Phys.
Lett. A, 256, 347–350 (1999). [![]() ![]() |
![]() |
257 | Hecht, R.D. and Nester, J.M., “A new evaluation of PGT mass and spin”, Phys. Lett. A, 180,
324–331 (1993). [![]() |
![]() |
258 | Hecht, R.D. and Nester, J.M., “An evaluation of mass and spin at null infinity for the PGT
and GR gravity theories”, Phys. Lett. A, 217, 81–89 (1996). [![]() |
![]() |
259 | Hehl, F.W., “On the energy tensor of spinning massive matter in classical field theory and
general relativity”, Rep. Math. Phys., 9, 55–82 (1976). [![]() |
![]() |
260 | Hehl, F.W., von der Heyde, P., Kerlick, G.D. and Nester, J.M., “General relativity with spin and torsion: Foundation and prospects”, Rev. Mod. Phys., 48, 393–416 (1976). |
![]() |
261 | Heinz, E., “On Weyl’s embedding problems”, J. Math. Mech., 11, 421–454 (1962). |
![]() |
262 | Helfer, A.D., “The angular momentum of gravitational radiation”, Phys. Lett. A, 150, 342–344
(1990). [![]() |
![]() |
263 | Helfer, A.D., “Difficulties with quasi-local momentum and angular momentum”, Class.
Quantum Grav., 9, 1001–1008 (1992). [![]() |
![]() |
264 | Helfer, A.D., “Angular momentum of isolated systems”, Gen. Relativ. Gravit., 39, 2125–2147
(2007). [![]() ![]() |
![]() |
265 | Henneaux, M., Martínez, C., Troncoso, R. and Zanelli, J., “Asymptotically anti-de Sitter
spacetimes and scalar fields with a logarithmic branch”, Phys. Rev. D, 70, 044034 (2004).
[![]() ![]() |
![]() |
266 | Hennig, J., Ansorg, M. and Cederbaum, C., “A universal inequality between the angular
momentum and horizon area for axisymmetric and stationary black holes with surrounding
matter”, Class. Quantum Grav., 25, 162002 (2008). [![]() ![]() |
![]() |
267 | Hernandez Jr, W.C. and Misner, C.W., “Observer time as a coordinate in relativistic spherical
hydrodynamics”, Astrophys. J., 143, 452–464 (1966). [![]() |
![]() |
268 | Herzlich, M., “The positive mass theorem for black holes revisited”, J. Geom. Phys., 26, 97–111
(1998). [![]() |
![]() |
269 | Hod, S., “Universal entropy bound for rotating systems”, Phys. Rev. D, 61, 024018 (1999).
[![]() ![]() |
![]() |
270 | Hod, S., “Universal bound on dynamical relaxation times and black-hole quasinormal ringing”,
Phys. Rev. D, 75, 064013 (2007). [![]() ![]() |
![]() |
271 | Hod, S., “Gravitation, thermodynamics, and the bound on viscosity”, Gen. Relativ. Gravit.,
41, 2295–2299 (2009). [![]() ![]() |
![]() |
272 | Holm, J.J., The Hawking Mass in Kerr Spacetime, Master’s thesis, (Linköping University,
Linköping, Sweden, 2004). URL (accessed 1 October 2008): ![]() |
![]() |
273 | Horowitz, G.T., “The positive energy theorem and its extensions”, in Flaherty, F.J., ed.,
Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference held
at Oregon State University Corvallis, Oregon, USA, October 17 – 21, 1983, Lecture Notes in
Physics, 202, pp. 1–21, (Springer, Berlin; New York, 1984). [![]() |
![]() |
274 | Horowitz, G.T. and Perry, M.J., “Gravitational energy cannot become negative”, Phys. Rev.
Lett., 48, 371–374 (1982). [![]() |
![]() |
275 | Horowitz, G.T. and Schmidt, B.G., “Note on gravitational energy”, Proc. R. Soc. London, Ser. A, 381, 215–224 (1982). |
![]() |
276 | Horowitz, G.T. and Tod, K.P., “A relation between local and total energy in general relativity”,
Commun. Math. Phys., 85, 429–447 (1982). [![]() |
![]() |
277 | Hugget, S.A. and Tod, K.P., An Introduction to Twistor Theory, London Mathematical Society Student Texts, 4, (Cambridge University Press, Cambridge; New York, 1985). |
![]() |
278 | Huisken, G. and Ilmanen, T., “The Riemannian Penrose inequality”, Int. Math. Res. Notices,
20, 1045–1058 (1997). [![]() ![]() |
![]() |
279 | Huisken, G. and Ilmanen, T., “The inverse mean curvature flow and the Riemannian Penrose inequality”, J. Differ. Geom., 59, 353–437 (2001). |
![]() |
280 | Huisken, G. and Yau, S.-T., “Definition of center of mass for isolated physical systems and
unique foliations by stable spheres with constant mean curvature”, Invent. Math., 124, 281–311
(1996). [![]() |
![]() |
281 | Husain, V. and Major, S., “Gravity and BF theory defined in bounded regions”, Nucl. Phys.
B, 500, 381–401 (1997). [![]() ![]() |
![]() |
282 | Ikumi, K. and Shiromizu, T., “Freely falling 2-surfaces and the quasi-local energy”, Gen.
Relativ. Gravit., 31, 73–90 (1999). [![]() ![]() |
![]() |
283 | Isenberg, J. and Nester, J., “Canonical Gravity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years after the Birth of Albert Einstein, 1, pp. 23–97, (Plenum Press, New York, 1980). |
![]() |
284 | Isham, C.J., “Prima facie questions in quantum gravity”, in Ehlers, J. and Friedrich, H., eds., Canonical Gravity: From Classical to Quantum, Proceedings of the 117th WE Heraeus Seminar, Bad Honnef, Germany, 13 – 17 September 1993, Lecture Notes in Physics, 434, pp. 1–21, (Springer, Berlin; New York, 1994). |
![]() |
285 | Israel, W. and Nester, J.M., “Positivity of the Bondi gravitational mass”, Phys. Lett. A, 85,
259–260 (1981). [![]() |
![]() |
286 | Itin, Y., “Coframe Geometry and Gravity”, in Christiansen, M.N. and Rasmussen, T.L.,
eds., Classical and Quantum Gravity Research, (Nova Science Publishers, Hauppauge, 2008).
[![]() |
![]() |
287 | Iyer, V. and Wald, R.M., “Some properties of Noether charge and a proposal for dynamical
black hole entropy”, Phys. Rev. D, 50, 846–864 (1994). [![]() |
![]() |
288 | Iyer, V. and Wald, R.M., “Comparison of Noether charge and Euclidean methods for
computing the entropy of stationary black holes”, Phys. Rev. D, 52, 4430–4439 (1995). [![]() ![]() |
![]() |
289 | Jang, P.S., “On the positivity of energy in general relativity”, J. Math. Phys., 19, 1152–1155
(1978). [![]() |
![]() |
290 | Jang, P.S., “Note on cosmic censorship”, Phys. Rev. D, 20, 834–837 (1979). |
![]() |
291 | Jang, P.S. and Wald, R.M., “The positive energy conjecture and the cosmic censor hypothesis”,
J. Math. Phys., 17, 41–44 (1977). [![]() |
![]() |
292 | Jaramillo, J.L., “An introduction to local black hole horizons in the 3+1 approach to general
relativity”, Int. J. Mod. Phys. D, 20, 2169–2204 (2012). [![]() ![]() |
![]() |
293 | Jaramillo, J.L. and Gourgoulhon, E., “Mass and Angular Momentum in General Relativity”,
arXiv, e-print, (2010). [![]() |
![]() |
294 | Jaramillo, J.L., Valiente Kroon, J.A. and Gourgoulhon, E., “From geometry to numerics:
interdisciplinary aspects in mathematical and numerical relativity”, Class. Quantum Grav., 25,
093001 (2008). [![]() ![]() |
![]() |
295 | Jaramillo, J.L., Vasset, N. and Ansorg, M., “A numerical study of Penrose-like inequalities
in a family of axially symmetric initial data”, in Oscoz, A., Mediavilla, E. and Serra-Ricart,
M., eds., Spanish Relativity Meeting - Encuentros Relativistas Españoles ERE2007 Relativistic
Astrophysics and Cosmology, Tenerife, Spring 2008, EAS Publications Series, 30, pp. 257–260,
(EDP Sciences, Les Ulis, 2008). [![]() ![]() |
![]() |
296 | Jeffryes, B.P., “Two-surface twistors and conformal embedding”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17 – 21, 1983, Lecture Notes in Physics, 202, pp. 177–184, (Springer, Berlin; New York, 1984). |
![]() |
297 | Jeffryes, B.P., “‘Extra’ solutions to the 2-surface twistor equations”, Class. Quantum Grav., 3, L9–L12 (1986). |
![]() |
298 | Jeffryes, B.P., “The Newtonian limit of Penrose’s quasi-local mass”, Class. Quantum Grav., 3, 841–852 (1986). |
![]() |
299 | Jeffryes, B.P., “2-Surface twistors, embeddings and symmetries”, Proc. R. Soc. London, Ser. A, 411, 59–83 (1987). |
![]() |
300 | Jezierski, J., “Positivity of mass for spacetimes with horizons”, Class. Quantum Grav., 6,
1535–1539 (1989). [![]() |
![]() |
301 | Jezierski, J., “Perturbation of initial data for spherically symmetric charged black hole and Penrose conjecture”, Acta Phys. Pol. B, 25, 1413–1417 (1994). |
![]() |
302 | Jezierski, J., “Stability of Reissner–Nordström solution with respect to small perturbations
of initial data”, Class. Quantum Grav., 11, 1055–1068 (1994). [![]() |
![]() |
303 | Jezierski, J. and Kijowski, J., “The localization of energy in gauge field theories and in linear
gravitation”, Gen. Relativ. Gravit., 22, 1283–1307 (1990). [![]() |
![]() |
304 | Julia, B. and Silva, S., “Currents and superpotentials in classical gauge invariant theories I.
Local results with applications to perfect fluids and general relativity”, Class. Quantum Grav.,
15, 2173–2215 (1998). [![]() ![]() |
![]() |
305 | Katz, J., “A note on Komar’s anomalous factor”, Class. Quantum Grav., 2, 423–425 (1985).
[![]() |
![]() |
306 | Katz, J., Bičák, J. and Lynden-Bell, D., “Relativistic conservation laws and integral
constraints for large cosmological perturbations”, Phys. Rev. D, 55, 5957–5969 (1997).
[![]() |
![]() |
307 | Katz, J. and Lerer, D., “On global conservation laws at null infinity”, Class. Quantum Grav.,
14, 2249–2266 (1997). [![]() ![]() |
![]() |
308 | Katz, J., Lynden-Bell, D. and Bičák, J., “Gravitational energy in stationary spacetimes”,
Class. Quantum Grav., 23, 7111–7127 (2006). [![]() ![]() |
![]() |
309 | Katz, J., Lynden-Bell, D. and Israel, W., “Quasilocal energy in static gravitational fields”,
Class. Quantum Grav., 5, 971–987 (1988). [![]() |
![]() |
310 | Katz, J. and Ori, A., “Localisation of field energy”, Class. Quantum Grav., 7, 787–802 (1990).
[![]() |
![]() |
311 | Katz, N.N. and Khuri, M.A., “Three quasilocal masses”, Mod. Phys. Lett. A, 27, 1250042
(2012). [![]() ![]() |
![]() |
312 | Kelly, R.M., “Asymptotically anti de Sitter space-times”, Twistor Newsletter, 1985(20), 11–23 (1985). |
![]() |
313 | Kelly, R.M., Tod, K.P. and Woodhouse, N.M.J., “Quasi-local mass for small surfaces”, Class. Quantum Grav., 3, 1151–1167 (1986). |
![]() |
314 | Kibble, T.W.B., “Lorentz invariance and the gravitational field”, J. Math. Phys., 2, 212–221
(1961). [![]() |
![]() |
315 | Kijowski, J., “A simple derivation of canonical structure and quasi-local Hamiltonians in general
relativity”, Gen. Relativ. Gravit., 29, 307–343 (1997). [![]() |
![]() |
316 | Kijowski, J., “A consistent canonical approach to gravitational energy”, in Ferrarese, G., ed., Advances in General Relativity and Cosmology, Proceedings of the International Conference in Memory of A. Lichnerowicz, Isola d’Elba, Italy, 12 – 15 June 2002, pp. 129–145, (Pitagora, Bologna, 2002). |
![]() |
317 | Kijowski, J. and Tulczyjew, W.M., A Symplectic Framework for Field Theories, Lecture Notes in Physics, 107, (Springer, Berlin; New York, 1979). |
![]() |
318 | Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Vol. 1, Interscience Tracts in Pure and Applied Mathematics, 15, (John Wiley, New York, 1963). |
![]() |
319 | Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Vol. 2, Interscience Tracts in Pure and Applied Mathematics, 15, (John Wiley, New York, 1969). |
![]() |
320 | Koc, P. and Malec, E., “Trapped surfaces in nonspherical open universes”, Acta Phys. Pol. B, 23, 123–133 (1992). |
![]() |
321 | Kodama, H., “Conserved energy flux for the spherically symmetric system and the backreaction
problem in the black hole evaporation”, Prog. Theor. Phys., 63, 1217–1228 (1980). [![]() |
![]() |
322 | Komar, A., “Covariant conservation laws in general relativity”, Phys. Rev., 113, 934–936
(1959). [![]() |
![]() |
323 | Korzynski, M., “Quasi-local angular momentum of non-symmetric isolated and dynamical
horizons from the conformal decomposition of the metric”, Class. Quantum Grav., 24,
5935–5943 (2007). [![]() |
![]() |
324 | Kozameh, C.N. and Newman, E.T., “The large footprints of H-space on asymptotically flat
spacetimes”, Class. Quantum Grav., 22, 4659–4665 (2005). [![]() ![]() |
![]() |
325 | Kozameh, C.N., Newman, E.T. and Silva-Ortigoza, G., “On extracting physical content from
asymptotically flat spacetime metrics”, Class. Quantum Grav., 25, 145001 (2008). [![]() ![]() |
![]() |
326 | Kozameh, C.N., Newman, E.T. and Silva-Ortigoza, G., “On the physical interpretation of
asymptotically flat gravitational fields”, Gen. Relativ. Gravit., 40, 2043–2050 (2008). [![]() |
![]() |
327 | Krishnasamy, I., “Quasilocal energy and the Bel–Robinson tensor”, Gen. Relativ. Gravit., 17,
621–627 (1985). [![]() ![]() |
![]() |
328 | Kulkarni, R., Chellathurai, V. and Dadhich, N., “The effective mass of the Kerr spacetime”,
Class. Quantum Grav., 5, 1443–1445 (1988). [![]() |
![]() |
329 | Kwong, K.-K., “On the positivity of a quasi-local mass in general dimensions”, arXiv, e-print,
(2012). [![]() |
![]() |
330 | Kwong, K.-K. and Tam, L.-F., “Limit of quasilocal mass integrals in asymptotically hyperbolic
manifolds”, Proc. Amer. Math. Soc., 141, S0002-9939(2012)11294-8, 313–324 (2013). [![]() ![]() |
![]() |
331 | Lau, S.R., “Canonical variables and quasi-local energy in general relativity”, Class. Quantum
Grav., 10, 2379–2399 (1993). [![]() |
![]() |
332 | Lau, S.R., “Spinors and the reference point of quasi-local energy”, Class. Quantum Grav., 12,
1063–1079 (1995). [![]() |
![]() |
333 | Lau, S.R., “New variables, the gravitational action and boosted quasilocal
stress-energy-momentum”, Class. Quantum Grav., 13, 1509–1540 (1996). [![]() |
![]() |
334 | Lau, S.R., “Light-cone reference for total gravitational energy”, Phys. Rev. D, 60, 104034
(1999). [![]() ![]() |
![]() |
335 | Lau, S.R., “Lightcone embedding for quasilocal energy / Quasilocal boosts in general relativity”, Lectures given at the ‘International Workshop on Geometric Physics’, Physics and Mathematical Divisions, NCTS, Hsinchu, Taiwan, 24 – 26 July 2000, conference paper, (2000). |
![]() |
336 | Lee, J. and Wald, R.M., “Local symmetries and constraints”, J. Math. Phys., 31, 725–743
(1990). [![]() |
![]() |
337 | Lind, R.W., Messmer, J. and Newman, E.T., “Equations of motion for the sources of
asymptotically flat spaces”, J. Math. Phys., 13, 1884–1891 (1972). [![]() |
![]() |
338 | Liu, C.-C.M. and Yau, S.-T., “Positivity of quasilocal mass”, Phys. Rev. Lett., 90, 231102
(2003). [![]() ![]() |
![]() |
339 | Liu, C.-C.M. and Yau, S.-T., “Positivity of quasi-local mass II”, J. Amer. Math. Soc., 19,
181–204 (2006). [![]() |
![]() |
340 | Liu, J.-L., On quasi-local energy and the choice of reference, Master’s thesis, (National Central University, Chungli, Taiwan, 2007). |
![]() |
341 | Liu, J.-L., Chen, C.-M. and Nester, J.M., “Quasi-local energy and the choice of reference”,
Class. Quantum Grav., 28, 195019 (2009). [![]() ![]() |
![]() |
342 | Ludvigsen, M. and Vickers, J.A.G., “The positivity of the Bondi mass”, J. Phys. A: Math. Gen., 14, L389–L391 (1981). |
![]() |
343 | Ludvigsen, M. and Vickers, J.A.G., “A simple proof of the positivity of the Bondi mass”, J. Phys. A: Math. Gen., 15, L67–L70 (1982). |
![]() |
344 | Ludvigsen, M. and Vickers, J.A.G., “An inequality relating mass and electric charge in general relativity”, J. Phys. A: Math. Gen., 16, 1169–1174 (1983). |
![]() |
345 | Ludvigsen, M. and Vickers, J.A.G., “An inequality relating total mass and the area of a trapped surface in general relativity”, J. Phys. A: Math. Gen., 16, 3349–3353 (1983). |
![]() |
346 | Ludvigsen, M. and Vickers, J.A.G., “Momentum, angular momentum and their quasi-local null surface extensions”, J. Phys. A: Math. Gen., 16, 1155–1168 (1983). |
![]() |
347 | Lundgren, A.P., Schmekel, B.S. and York Jr, J.W., “Self-renormalization of the classical
quasilocal energy”, Phys. Rev. D, 75, 084026 (2007). [![]() ![]() |
![]() |
348 | Lynden-Bell, D., Katz, J. and Bičák, J., “Energy and angular momentum densities of
stationary gravitational fields”, Phys. Rev. D, 75, 024040 (2007). [![]() ![]() |
![]() |
349 | Maerten, D., “Positive energy-momentum theorem for AdS-asymptotically hyperbolic
manifolds”, Ann. Henri Poincare, 7, 975–1011 (2006). [![]() |
![]() |
350 | Malec, E., “Hoop conjecture and trapped surfaces in non-spherical massive systems”, Phys.
Rev. Lett., 67, 949–952 (1991). [![]() |
![]() |
351 | Malec, E., Mars, M. and Simon, W., “On the Penrose inequality for general horizons”, Phys.
Rev. Lett., 88, 121102 (2002). [![]() ![]() |
![]() |
352 | Malec, E. and Ó Murchadha, N., “Trapped surfaces and the Penrose inequality in spherically symmetric geometries”, Phys. Rev. D, 49, 6931–6934 (1994). |
![]() |
353 | Maluf, J.W., “Hamiltonian formulation of the teleparallel description of general relativity”, J.
Math. Phys., 35, 335–343 (1994). [![]() |
![]() |
354 | Mars, M., “An overview on the Penrose inequality”, J. Phys.: Conf. Ser., 66, 012004 (2007).
[![]() ![]() |
![]() |
355 | Mars, M., “Present status of the Penrose inequality”, Class. Quantum Grav., 26, 193001 (2009).
[![]() ![]() |
![]() |
356 | Martinez, E.A., “Quasilocal energy for a Kerr black hole”, Phys. Rev. D, 50, 4920–4928 (1994).
[![]() |
![]() |
357 | Mason, L.J., “A Hamiltonian interpretation of Penrose’s quasi-local mass”, Class. Quantum
Grav., 6, L7–L13 (1989). [![]() |
![]() |
358 | Mason, L.J. and Frauendiener, J., “The Sparling 3-form, Ashtekar variables and quasi-local
mass”, in Bailey, T.N. and Baston, R.J., eds., Twistors in Mathematics and Physics, London
Mathematical Society Lecture Note Series, 156, pp. 189–217, (Cambridge University Press,
Cambridge; New York, 1990). [![]() |
![]() |
359 | Matzner, R.A., “Almost Symmetric Spaces and Gravitational Radiation”, J. Math. Phys., 9,
1657–1668 (1968). [![]() |
![]() |
360 | Miao, P., “On existence of static metric extensions in general relativity”, Commun. Math.
Phys., 241, 27–46 (2003). [![]() |
![]() |
361 | Miao, P., Shi, Y. and Tam, L.-F., “On geometric problems related to Brown-York and Liu-Yau
quasilocal mass”, Commun. Math. Phys., 298, 437–459 (2010). [![]() ![]() |
![]() |
362 | Miao, P., Tam, L.-F. and Xie, N.-Q., “Some estimates of Wang-Yau quasilocal energy”, Class.
Quantum Grav., 26, 245017 (2009). [![]() ![]() |
![]() |
363 | Miao, P., Tam, L.-F. and Xie, N.-Q., “Critical points of Wang-Yau quasi-local energy”, Ann.
Henri Poincare, 12, 987–1017 (2011). [![]() ![]() |
![]() |
364 | Milnor, J., “Spin structures on manifolds”, Enseign. Math., 9, 198–203 (1963). |
![]() |
365 | Misner, C.W. and Sharp, D.H., “Relativistic equations for adiabatic, spherically symmetric
gravitational collapse”, Phys. Rev., 136, B571–B576 (1964). [![]() |
![]() |
366 | Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco,
1973). [![]() |
![]() |
367 | Møller, C., “On the localization of the energy of a physical system in general theory of
relativity”, Ann. Phys. (N.Y.), 4, 347–371 (1958). [![]() |
![]() |
368 | Møller, C., “Conservation laws and absolute parallelism in general relativity”, Mat.-Fys. Skr. K. Danske Vid. Selsk., 1(10), 1–50 (1961). |
![]() |
369 | Moreschi, O.M., “Unambiguous angular momentum of radiative spacetimes and asymptotic
structure in terms of the center of mass system”, arXiv, e-print, (2003). [![]() |
![]() |
370 | Moreschi, O.M., “Intrinsic angular momentum and centre of mass in general relativity”, Class.
Quantum Grav., 21, 5409–5425 (2004). [![]() ![]() |
![]() |
371 | Moreschi, O.M. and Sparling, G.A.J., “On the positive energy theorem involving mass and
electromagnetic charges”, Commun. Math. Phys., 95, 113–120 (1984). [![]() |
![]() |
372 | Mukohyama, S. and Hayward, S.A., “Quasi-local first law of black hole mechanics”, Class.
Quantum Grav., 17, 2153–2157 (2000). [![]() |
![]() |
373 | Nadirashvili, N. and Yuan, Y., “Counterexamples for Local Isometric Embedding”, arXiv,
e-print, (2002). [![]() |
![]() |
374 | Nahmad-Achar, E., “Is gravitational field energy density well defined for static, spherically symmetric configurations?”, in Blair, D.G. and Buckingham, M.J., eds., The Fifth Marcel Grossmann Meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories, Proceedings of the meeting held at The University of Western Australia, 8 – 13 August 1988, pp. 1223–1225, (World Scientific, Singapore; River Edge, NJ, 1989). |
![]() |
375 | Nakao, K., “On a Quasi-Local Energy Outside the Cosmological Horizon”, arXiv, e-print,
(1995). [![]() |
![]() |
376 | Nester, J.M., “A new gravitational energy expression with a simple positivity proof”, Phys.
Lett. A, 83, 241–242 (1981). [![]() |
![]() |
377 | Nester, J.M., “The gravitational Hamiltonian”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17 – 21, 1983, Lecture Notes in Physics, 202, pp. 155–163, (Springer, Berlin; New York, 1984). |
![]() |
378 | Nester, J.M., “A gauge condition for orthonormal three-frames”, J. Math. Phys., 30, 624–626
(1989). [![]() |
![]() |
379 | Nester, J.M., “A positive gravitational energy proof”, Phys. Lett. A, 139, 112–114 (1989).
[![]() |
![]() |
380 | Nester, J.M., “A covariant Hamiltonian for gravity theories”, Mod. Phys. Lett. A, 6, 2655–2661 (1991). |
![]() |
381 | Nester, J.M., “Special orthonormal frames”, J. Math. Phys., 33, 910–913 (1992). [![]() |
![]() |
382 | Nester, J.M., “General pseudotensors and quasilocal quantities”, Class. Quantum Grav., 21,
S261–S280 (2004). [![]() |
![]() |
383 | Nester, J.M., “A manifestly covariant Hamiltonian formalism for dynamical geometry”, Prog.
Theor. Phys. Suppl., No 172, 30–39 (2008). [![]() |
![]() |
384 | Nester, J.M., “On the Zeros of Spinor Fields and an Orthonormal Frame Gauge Condition”, in Kleinert, H., Jantzen, R.T. and Ruffini, R., eds., The Eleventh Marcel Grossmann Meeting on General Relativity, Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany, 23 – 29 July 2006, pp. 1332–1334, (World Scientific, Singapore; Hackensack, NJ, 2008). |
![]() |
385 | Nester, J.M., Chen, C.-M. and Liu, J.-L., “Quasi-Local Energy for Cosmological Models”, in Kleinert, H., Jantzen, R.T. and Ruffini, R., eds., The Eleventh Marcel Grossmann Meeting on General Relativity, Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany, 23 – 29 July 2006, pp. 2149–2151, (World Scientific, Singapore; Hackensack, NJ, 2008). |
![]() |
386 | Nester, J.M., Chen, C.-M., Liu, J.-L. and Gang, S., “A reference for the covariant Hamiltonian
boundary term”, arXiv, e-print, (2011). [![]() |
![]() |
387 | Nester, J.M., Chen, C.-M. and Tung, R.-S., “The Hamiltonian Boundary Term”, in Nester, J.M., Chen, C.-M. and Hsu, J.-P., eds., Gravitation and Astrophysics: On the Occasion of the 90th Year of General Relativity, Proceedings of the VII Asia-Pacific International Conference, National Central University, Taiwan, 23 – 26 November 2005, pp. 396–402, (World Scientific, Singapore; Hackensack, NJ, 2007). |
![]() |
388 | Nester, J.M., Chen, C.-M. and Tung, R.-S., “Quasi-Local Energy Flux”, in Nester, J.M., Chen, C.-M. and Hsu, J.-P., eds., Gravitation and Astrophysics: On the Occasion of the 90th Year of General Relativity, Proceedings of the VII Asia-Pacific International Conference, National Central University, Taiwan, 23 – 26 November 2005, pp. 389–395, (World Scientific, Singapore; Hackensack, NJ, 2007). |
![]() |
389 | Nester, J.M., Ho, F.-H. and Chen, C.-M., “Quasilocal Center-of-Mass for Teleparallel Gravity”,
in Novello, M., Bergliaffa, S.P. and Ruffini, R., eds., The Tenth Marcel Grossmann Meeting on
General Relativity, Proceedings of the MG10 Meeting held at Brazilian Center for Research in
Physics (CBPF), Rio de Janeiro, Brazil, 20 – 26 July 2003, pp. 1483–1494, (World Scientific,
Singapore; Hackensack, NJ, 2005). [![]() |
![]() |
390 | Nester, J.M., Meng, F.F. and Chen, C.-M., “Quasi-local center-of-mass”, J. Korean Phys. Soc.,
45, S22–S25 (2004). [![]() |
![]() |
391 | Nester, J.M., So, L.L. and Vargas, T., “Energy of homogeneous cosmologies”, Phys. Rev. D,
78, 044035 (2008). [![]() ![]() |
![]() |
392 | Nester, J.M. and Tung, R.-S., “A quadratic spinor Lagrangian for general relativity”, Gen.
Relativ. Gravit., 27, 115–119 (1995). [![]() ![]() |
![]() |
393 | Newman, E.T. and Tod, K.P., “Asymptotically flat space-times”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, 2, pp. 1–36, (Plenum Press, New York, 1980). |
![]() |
394 | Newman, E.T. and Unti, T.W.J., “Behavior of Asymptotically Flat Empty Spaces”, J. Math.
Phys., 3, 891–901 (1962). [![]() ![]() |
![]() |
395 | Nielsen, A.B., “Black holes and black hole thermodynamics without event horizons”, arXiv,
e-print, (2008). [![]() |
![]() |
396 | Nielsen, A.B. and Yoon, J.H., “Dynamical surface gravity”, Class. Quantum Grav., 25, 085010
(2008). [![]() ![]() |
![]() |
397 | Nirenberg, L., “The Weyl and Minkowski problems in differential geometry in the large”,
Commun. Pure Appl. Math., 6, 337–394 (1953). [![]() |
![]() |
398 | Nucamendi, U. and Sudarsky, D., “Quasi-asymptotically flat spacetimes and their ADM mass”,
Class. Quantum Grav., 14, 1309–1327 (1997). [![]() ![]() |
![]() |
399 | Ó Murchadha, N., “Total energy-momentum in general relativity”, J. Math. Phys., 27, 2111–2128 (1986). |
![]() |
400 | Ó Murchadha, N., “The Liu–Yau mass as a good quasi-local energy in general relativity”,
arXiv, e-print, (2007). [![]() |
![]() |
401 | Ó Murchadha, N., Szabados, L.B. and Tod, K.P., “Comment on ‘Positivity of Quasilocal
Mass”’, Phys. Rev. Lett., 92, 259001 (2004). [![]() ![]() |
![]() |
402 | Ó Murchadha, N., Tung, R.-S., Xie, N. and Malec, E., “The Brown-York mass and the Thorne
hoop conjecture”, Phys. Rev. Lett., 104, 041101 (2010). [![]() ![]() |
![]() |
403 | Obukhov, Y.N. and Rubilar, G.F., “Covariance properties and regularization of conserved
currents in tetrad gravity”, Phys. Rev. D, 73, 124017 (2006). [![]() ![]() |
![]() |
404 | Page, D.N., “Huge Violations of Bekenstein’s Entropy Bound”, arXiv, e-print, (2000).
[![]() |
![]() |
405 | Page, D.N., “Subsystem Entropy Exceeding Bekenstein’s Bound”, arXiv, e-print, (2000).
[![]() |
![]() |
406 | Page, D.N., “Defining entropy bounds”, J. High Energy Phys., 2008(10), 007 (2008). [![]() ![]() |
![]() |
407 | Palmer, T.N., “Covariant conservation equations and their relation to the energy-momentum
concept in general relativity”, Phys. Rev. D, 18, 4399–4407 (1978). [![]() ![]() |
![]() |
408 | Palmer, T.N., “Gravitational energy-momentum: The Einstein pseudotensor reexamined”, Gen.
Relativ. Gravit., 12, 149–154 (1980). [![]() ![]() |
![]() |
409 | Park, M.I., “The Hamiltonian dynamics of bounded spacetime and black hole entropy: The
canonical method”, Nucl. Phys. B, 634, 339–369 (2002). [![]() ![]() |
![]() |
410 | Parker, P.E., “On some theorem of Geroch and Stiefel”, J. Math. Phys., 25, 597–599 (1984).
[![]() |
![]() |
411 | Pelath, M.A., Tod, K.P. and Wald, R.M., “Trapped surfaces in prolate collapse in
the Gibbons–Penrose construction”, Class. Quantum Grav., 15, 3917–3934 (1998). [![]() ![]() |
![]() |
412 | Pellegrini, C. and Plebański, J.F., “Tetrad fields and gravitational fields”, Mat.-Fys. Skr. K. Danske Vid. Selsk., 2(4), 1–39 (1963). |
![]() |
413 | Penrose, R., “Asymptotic Properties of Fields and Space-Times”, Phys. Rev. Lett., 10, 66–68
(1963). [![]() ![]() |
![]() |
414 | Penrose, R., “Conformal treatment of infinity”, in DeWitt, C.M. and DeWitt, B.S., eds., Relativity, Groups and Topology. Relativité, Groupes et Topologie, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, pp. 565–584, (Gordon and Breach, New York; London, 1964). |
![]() |
415 | Penrose, R., “Zero Rest-Mass Fields Including Gravitation: Asymptotic Behaviour”, Proc. R.
Soc. London, Ser. A, 284, 159–203 (1965). [![]() ![]() |
![]() |
416 | Penrose, R., “Gravitational Collapse: The Role of General Relativity”, Riv. Nuovo Cimento,
1, 252–276 (1969). [![]() ![]() |
![]() |
417 | Penrose, R., Techniques of Differential Topology in Relativity, Regional Conference Series in
Applied Mathematics, 7, (SIAM, Philadelphia, 1972). [![]() |
![]() |
418 | Penrose, R., “Naked singularities”, Ann. N.Y. Acad. Sci., 224, 125–134 (1973). [![]() |
![]() |
419 | Penrose, R., “Null hypersurface initial data for classical fields of arbitrary spin and for general relativity”, Gen. Relativ. Gravit., 12, 225–264 (1980). |
![]() |
420 | Penrose, R., “Quasi-local mass and angular momentum in general relativity”, Proc. R. Soc. London, Ser. A, 381, 53–63 (1982). |
![]() |
421 | Penrose, R., “Mass in general relativity”, in Willmore, T.J. and Hitchin, N., eds., Global Riemannian Geometry, pp. 203–213, (Ellis Horwood; Halsted Press, Chichester; New York, 1984). |
![]() |
422 | Penrose, R., “New improved quasi-local mass and the Schwarzschild solutions”, Twistor Newsletter, 1984(18), 7–11 (1984). |
![]() |
423 | Penrose, R., “A suggested further modification to the quasi-local formula”, Twistor Newsletter, 1985(20), 7 (1985). |
![]() |
424 | Penrose, R., “Aspects of quasi-local angular momentum”, in Isenberg, J.A., ed., Mathematics and General Relativity, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held June 22 – 28, 1986, Contemporary Mathematics, 71, pp. 1–8, (American Mathematical Society, Providence, RI, 1988). |
![]() |
425 | Penrose, R. and Rindler, W., Spinors and space-time, Vol. 1: Two-spinor calculus and
relativistic fields, Cambridge Monographs on Mathematical Physics, (Cambridge University
Press, Cambridge; New York, 1984). [![]() |
![]() |
426 | Penrose, R. and Rindler, W., Spinors and space-time, Vol. 2: Spinor and twistor methods in
space-time geometry, Cambridge Monographs on Mathematical Physics, (Cambridge University
Press, Cambridge; New York, 1986). [![]() |
![]() |
427 | Perry, M.J., “The positive energy theorem and black holes”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17 – 21, 1983, Lecture Notes in Physics, 202, pp. 31–40, (Springer, Berlin; New York, 1984). |
![]() |
428 | Petrov, A.N., “Nonlinear Perturbations and Conservation Laws on Curved Backgrounds in
GR and Other Metric Theories”, in Christiansen, M.N. and Rasmussen, T.K., eds., Classical
and Quantum Gravity Research, 2, pp. 79–160, (Nova Science Publishers, Hauppauge, 2008).
[![]() |
![]() |
429 | Petrov, A.N. and Katz, J., “Conservation laws for large perturbations on curved backgrounds”,
in Frere, J.M., Henneaux, M., Servin, A. and Spindel, P., eds., Fundamental Interactions:
From Symmetries to Black Holes, Proceedings of the conference held 24 – 27 March 1999 at
the Université Libre de Bruxelles, Belgium, pp. 147–157, (Université Libre de Bruxelles,
Brussels, 1999). [![]() |
![]() |
430 | Petrov, A.N. and Katz, J., “Relativistic conservation laws on curved backgrounds and
the theory of cosmological perturbations”, Proc. R. Soc. London, 458, 319–337 (2002).
[![]() |
![]() |
431 | Pons, J.M., “Boundary conditions from boundary terms, Noether charges and the trace
K Lagrangian in general relativity”, Gen. Relativ. Gravit., 35, 147–174 (2003). [![]() ![]() |
![]() |
432 | Purdue, P., “Gauge invariance of general relativistic tidal heating”, Phys. Rev. D, 60, 104054
(1999). [![]() ![]() |
![]() |
433 | Regge, T. and Teitelboim, C., “Role of surface integrals in the Hamiltonian formulation of
general relativity”, Ann. Phys. (N.Y.), 88, 286–318 (1974). [![]() |
![]() |
434 | Reula, O.A., “Existence theorem for solutions of Witten’s equation and nonnegativity of total
mass”, J. Math. Phys., 23, 810–814 (1982). [![]() |
![]() |
435 | Reula, O.A. and Sarbach, O., “The initial-boundary value problem in general relativity”, Int.
J. Mod. Phys. D, 20, 767–783 (2011). [![]() ![]() ![]() |
![]() |
436 | Reula, O.A. and Tod, K.P., “Positivity of the Bondi energy”, J. Math. Phys., 25, 1004–1008
(1984). [![]() |
![]() |
437 | Rosen, N., “Localization of gravitational energy”, Found. Phys., 15, 997–1008 (1986). |
![]() |
438 | Rosenfeld, L., “Sur le tenseur d’impulsion-énergie”, Mem. R. Acad. Belg., Cl. Sci., 18(6) (1940). |
![]() |
439 | Rovelli, C., “What is observable is classical and quantum physics?”, Class. Quantum Grav., 8, 297–316 (1991). |
![]() |
440 | Sachs, R.K., “Asymptotic Symmetries in Gravitational Theory”, Phys. Rev., 128, 2851–2864
(1962). [![]() ![]() |
![]() |
441 | Sachs, R.K., “On the Characteristic Initial Value Problem in Gravitational Theory”, J. Math.
Phys., 3, 908–914 (1962). [![]() ![]() |
![]() |
442 | Saharian, A.A., “Energy-momentum tensor for a scalar field on manifolds with boundaries”,
Phys. Rev. D, 69, 085005 (2004). [![]() ![]() |
![]() |
443 | Schmekel, B.S., “Quasi-local definitions of energy in general relativity”, arXiv, e-print, (2007).
[![]() |
![]() |
444 | Schoen, R. and Yau, S.-T., “Positivity of the total mass of a general space-time”, Phys. Rev.
Lett., 43, 1457–1459 (1979). [![]() |
![]() |
445 | Schoen, R. and Yau, S.-T., “Proof of the positive mass theorem. II”, Commun. Math. Phys.,
79, 231–260 (1981). [![]() ![]() |
![]() |
446 | Schoen, R. and Yau, S.-T., “Proof that the Bondi mass is positive”, Phys. Rev. Lett., 48,
369–371 (1982). [![]() |
![]() |
447 | Sen, A., “On the existence of neutrino ‘zero-modes’ in vacuum spacetimes”, J. Math. Phys.,
22, 1781–1786 (1981). [![]() |
![]() |
448 | Senovilla, J.M.M., “Super-energy tensors”, Class. Quantum Grav., 17, 2799–2842 (2000).
[![]() |
![]() |
449 | Senovilla, J.M.M., “(Super)n-energy for arbitrary fields and its interchange: Conserved
quantities”, Mod. Phys. Lett. A, 15, 159–166 (2000). [![]() |
![]() |
450 | Senovilla, J.M.M., “A reformulation of the hoop conjecture”, Europhys. Lett., 81, 20004 (2008).
[![]() ![]() |
![]() |
451 | Shaw, W.T., “Spinor fields at spacelike infinity”, Gen. Relativ. Gravit., 15, 1163–1189 (1983).
[![]() |
![]() |
452 | Shaw, W.T., “Twistor theory and the energy-momentum and angular momentum of the gravitational field at spatial infinity”, Proc. R. Soc. London, Ser. A, 390, 191–215 (1983). |
![]() |
453 | Shaw, W.T., “Symplectic geometry of null infinity and two-surface twistors”, Class. Quantum
Grav., 1, L33–L37 (1984). [![]() |
![]() |
454 | Shaw, W.T., “Twistors, asymptotic symmetries and conservation laws at null and spatial infinity”, in Flaherty, F.J., ed., Asymptotic Behavior of Mass and Spacetime Geometry, Proceedings of the conference, held at Oregon State University, Corvallis, Oregon, USA, October 17 – 21, 1983, Lecture Notes in Physics, 202, pp. 165–176, (Springer, Berlin; New York, 1984). |
![]() |
455 | Shaw, W.T., “The asymptopia of quasi-local mass and momentum: I. General formalism and stationary spacetimes”, Class. Quantum Grav., 3, 1069–1104 (1986). |
![]() |
456 | Shaw, W.T., “Total angular momentum for asymptotically flat spacetimes with non-vanishing stress tensor”, Class. Quantum Grav., 3, L77–L81 (1986). |
![]() |
457 | Shaw, W.T., “Quasi-local mass for ‘large’ spheres”, in Isenberg, J.A., ed., Mathematics and General Relativity, Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference held June 22–28, 1986, Contemporary Mathematics, 71, pp. 15–22, (American Mathematical Society, Providence, RI, 1988). |
![]() |
458 | Shi, Y. and Tam, L.-F., “Positive mass theorem and the boundary behaviors of compact
manifolds with nonnegative scalar curvature”, J. Differ. Geom., 62, 79–125 (2002).
[![]() |
![]() |
459 | Shi, Y. and Tam, L.-F., “Some lower estimates of ADM mass and Brown–York mass”, arXiv,
e-print, (2004). [![]() |
![]() |
460 | Shi, Y. and Tam, L.-F., “Quasi-local mass and the existence of horizons”, arXiv, e-print, (2005).
[![]() |
![]() |
461 | Shi, Y. and Tam, L.-F., “Rigidity of compact manifolds and positivity of quasi-local mass”,
Class. Quantum Grav., 24, 2357–2366 (2007). [![]() ![]() |
![]() |
462 | Shi, Y., Wang, G. and Wu, J., “On the behavior of quasi-local mass at the infinity along nearly
round surfaces”, Ann. Glob. Anal. Geom., 17, 419–441 (2009). [![]() ![]() |
![]() |
463 | Smarr, L.L., “Surface Geometry of Charged Rotating Black Holes”, Phys. Rev. D, 7, 289–295 (1973). |
![]() |
464 | So, L.L., “A modification of the Chen–Nester quasilocal expression”, Int. J. Mod. Phys. D, 16,
875–884 (2007). [![]() ![]() |
![]() |
465 | So, L.L., “Gravitational energy from a combination of a tetrad expression and Einstein’s
pseudotensor”, Class. Quantum Grav., 25, 175012 (2008). [![]() ![]() |
![]() |
466 | So, L.L., “Gravitational energy in small regions for the quasilocal expressions in orthonormal
frames”, arXiv, e-print, (2008). [![]() |
![]() |
467 | So, L.L., “An alternative non-negative gravitational energy tensor to the Bel-Robinson tensor”,
arXiv, e-print, (2009). [![]() |
![]() |
468 | So, L.L., “Gravitational energy in a small region for the modified Einstein and Landau–Lifshitz
pseudotensors”, Class. Quantum Grav., 26, 185004 (2009). [![]() ![]() |
![]() |
469 | So, L.L., “Quasilocal energy for tensor V in small regions”, arXiv, e-print, (2012).
[![]() |
![]() |
470 | So, L.L. and Nester, J.M., “Gravitational energy-momentum in small regions according to
Møller’s tetrad expression”, arXiv, e-print, (2006). [![]() |
![]() |
471 | So, L.L. and Nester, J.M., “Gravitational Energy-Momentum in Small Regions According to
the Tetrad-Teleparallel Expressions”, Chin. J. Phys., 47, 10–19 (2009). [![]() |
![]() |
472 | So, L.L. and Nester, J.M., “New positive small vacuum region gravitational energy expressions”,
Phys. Rev. D, 79, 084028 (2009). [![]() ![]() |
![]() |
473 | So, L.L., Nester, J.M. and Chen, H., “Classical Pseudotensors and Positivity in Small
Regions”, in Nester, J.M., Chen, C.-M. and Hsu, J.-P., eds., Gravitation and Astrophysics:
On the Occasion of the 90th Year of General Relativity, Proceedings of the VII Asia-Pacific
International Conference, National Central University, Taiwan, 23 – 26 November 2005, pp.
356–362, (World Scientific, Singapore; Hackensack, NJ, 2007). [![]() |
![]() |
474 | So, L.L., Nester, J.M. and Chen, H., “Energy–momentum density in small regions: the classical
pseudotensors”, Class. Quantum Grav., 26, 085004 (2009). [![]() ![]() |
![]() |
475 | Sommers, P., “The geometry of the gravitational field at spacelike infinity”, J. Math. Phys.,
19, 549–554 (1978). [![]() ![]() |
![]() |
476 | Sparling, G.A.J., “Twistors, Spinors and the Einstein Vacuum Equations”, in Mason, L.J., Hughston, L.P., Kobak, P.Z. and Pulverer, K., eds., Further Advances in Twistor Theory. Volume III: Curved Twistor Spaces, Research Notes in Mathematics, 424, pp. 179–186, (Chapman and Hall, London, 2001). Originally published as a University of Pittsburgh Preprint, 1982. |
![]() |
477 | Spivak, M., A Comprehensive Introduction to Differential Geometry, 5, (Publish or Perish, Berkeley, 1979), 2nd edition. |
![]() |
478 | Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C. and Herlt, E., Exact Solutions
of Einstein’s Field Equations, Cambridge Monographs on Mathematical Physics, (Cambridge
University Press, Cambridge; New York, 2003), 2nd edition. [![]() |
![]() |
479 | Stewart, J.M., Advanced General Relativity, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 1991). |
![]() |
480 | Stewart, J.M. and Friedrich, H., “Numerical Relativity. I. The Characteristic Initial Value
Problem”, Proc. R. Soc. London, Ser. A, 384, 427–454 (1982). [![]() ![]() |
![]() |
481 | Streubel, M., “‘Conserved’ quantities for isolated gravitational systems”, Gen. Relativ. Gravit.,
9, 551–561 (1978). [![]() |
![]() |
482 | Susskind, L., “The world as a hologram”, J. Math. Phys., 36, 6377–6396 (1995). [![]() ![]() |
![]() |
483 | Sussman, R.A., “Quasi-local variables, non-linear perturbations and back-reaction in
spherically symmetric spacetimes”, arXiv, e-print, (2008). [![]() |
![]() |
484 | Sussman, R.A., “Quasilocal variables in spherical symmetry: Numerical applications to dark
matter and dark energy sources”, Phys. Rev. D, 79, 025009 (2009). [![]() ![]() |
![]() |
485 | Szabados, L.B., “Commutation properties of cyclic and null Killing symmetries”, J. Math.
Phys., 28, 2688–2691 (1987). [![]() |
![]() |
486 | Szabados, L.B., Canonical pseudotensors, Sparling’s form and Noether currents, KFKI Report
1991-29/B, (KFKI Research Institute for Particle and Nuclear Physics (RMKI), Budapest,
1991). Online version (accessed 29 January 2004): ![]() |
![]() |
487 | Szabados, L.B., “On canonical pseudotensors, Sparling’s form and Noether currents”, Class.
Quantum Grav., 9, 2521–2541 (1992). [![]() |
![]() |
488 | Szabados, L.B., “On the positivity of the quasi-local mass”, Class. Quantum Grav., 10,
1899–1905 (1993). [![]() |
![]() |
489 | Szabados, L.B., “Two dimensional Sen connections”, in Kerr, R.P. and Perjés, Z., eds., Relativity Today, Proceedings of the Fourth Hungarian Relativity Workshop, July 12 – 17, 1992, Gárdony, pp. 63–68, (Akadémiai Kiadó, Budapest, 1994). |
![]() |
490 | Szabados, L.B., “Two dimensional Sen connections and quasi-local energy-momentum”, Class.
Quantum Grav., 11, 1847–1866 (1994). [![]() |
![]() |
491 | Szabados, L.B., “Two dimensional Sen connections in general relativity”, Class. Quantum
Grav., 11, 1833–1846 (1994). [![]() |
![]() |
492 | Szabados, L.B., “Quasi-local energy-momentum and two-surface characterization of the
pp-wave spacetimes”, Class. Quantum Grav., 13, 1661–1678 (1996). [![]() ![]() |
![]() |
493 | Szabados, L.B., “Quasi-local energy-momentum and the Sen geometry of two-surfaces”, in Chruściel, P.T., ed., Mathematics of Gravitation, Part I: Lorentzian Geometry and Einstein Equations, Banach Center Publications, 41, pp. 205–219, (Polish Academy of Sciences, Institute of Mathematics, Warsaw, 1997). |
![]() |
494 | Szabados, L.B., “On certain quasi-local spin-angular momentum expressions for small spheres”,
Class. Quantum Grav., 16, 2889–2904 (1999). [![]() ![]() |
![]() |
495 | Szabados, L.B., “On certain global conformal invariants and 3-surface twistors of initial data
sets”, Class. Quantum Grav., 17, 793–811 (2000). [![]() ![]() |
![]() |
496 | Szabados, L.B., “On certain quasi-local spin-angular momentum expressions for large spheres
near the null infinity”, Class. Quantum Grav., 18, 5487–5510 (2001). [![]() ![]() |
![]() |
497 | Szabados, L.B., “On the roots of the Poincaré structure of asymptotically flat spacetimes”,
Class. Quantum Grav., 20, 2627–2661 (2003). [![]() ![]() |
![]() |
498 | Szabados, L.B., “Quasi-local holography and quasi-local mass of classical fields in Minkowski
spacetime”, Class. Quantum Grav., 22, 855–878 (2005). [![]() ![]() |
![]() |
499 | Szabados, L.B., “On a class of 2-surface observables in general relativity”, Class. Quantum
Grav., 23, 2291–2302 (2006). [![]() ![]() |
![]() |
500 | Szabados, L.B., “On some global problems in the tetrad approach to quasi-local quantities”,
Class. Quantum Grav., 25, 195004 (2008). [![]() ![]() |
![]() |
501 | Szabados, L.B., “Total angular momentum from Dirac eigenspinors”, Class. Quantum Grav.,
25, 025007 (2008). [![]() ![]() |
![]() |
502 | Szabados, L.B., “Towards the quasi-localization of canonical general relativity”, Class.
Quantum Grav., 26, 125013 (2009). [![]() ![]() |
![]() |
503 | Szabados, L.B., “Mass, gauge conditions and spectral properties of the Sen–Witten and
3-surface twistor operators in closed universes”, Class. Quantum Grav., 29, 095001 (2012).
[![]() ![]() |
![]() |
504 | ’t Hooft, G., “Dimensional reduction in quantum gravity”, in Ali, A., Ellis, J. and
Randjbar-Daemi, S., eds., Salamfestschrift, A Collection of Talks from the Conference on
Highlights of Particle and Condensed Matter Physics, ICTP, Trieste, Italy, 8 – 12 March 1993,
World Scientific Series in 20th Century Physics, 4, (World Scientific, Singapore; River Edge,
NJ, 1994). [![]() |
![]() |
505 | Tafel, J., “Bondi mass in terms of the Penrose conformal factor”, Class. Quantum Grav., 17, 4379–4408 (2000). |
![]() |
506 | Thorne, K.S., “Nonspherical gravitational collapse – A short review”, in Klauder, J., ed.,
Magic Without Magic: John Archibald Wheeler. A Collection of Essays in Honor of his Sixtieth
Birthday, pp. 231–258, (W.H. Freeman, San Francisco, 1972). [![]() |
![]() |
507 | Tipler, F.J., “Penrose’s quasi-local mass in the Kantowski–Sachs closed universe”, Class.
Quantum Grav., 2, L99–L103 (1985). [![]() |
![]() |
508 | Tod, K.P., “All metrics admitting super-covariantly constant spinors”, Phys. Lett. B, 121,
241–244 (1983). [![]() |
![]() |
509 | Tod, K.P., “Quasi-local charges in Yang–Mills theory”, Proc. R. Soc. London, Ser. A, 389, 369–377 (1983). |
![]() |
510 | Tod, K.P., “Some examples of Penrose’s quasi-local mass construction”, Proc. R. Soc. London, Ser. A, 388, 457–477 (1983). |
![]() |
511 | Tod, K.P., “More on quasi-local mass”, Twistor Newsletter, 1984(18), 3–6 (1984). |
![]() |
512 | Tod, K.P., “Three-surface twistors and conformal embedding”, Gen. Relativ. Gravit., 16,
435–443 (1984). [![]() |
![]() |
513 | Tod, K.P., “Penrose’s quasi-local mass and the isoperimetric inequality for static black holes”,
Class. Quantum Grav., 2, L65–L68 (1985). [![]() |
![]() |
514 | Tod, K.P., “More on Penrose’s quasilocal mass”, Class. Quantum Grav., 3, 1169–1189 (1986).
[![]() |
![]() |
515 | Tod, K.P., “Quasi-local mass and cosmological singularities”, Class. Quantum Grav., 4,
1457–1468 (1987). [![]() |
![]() |
516 | Tod, K.P., “Penrose’s quasi-local mass”, in Bailey, T.N. and Baston, R.J., eds., Twistors in
Mathematics and Physics, London Mathematical Society Lecture Note Series, 156, pp. 164–188,
(Cambridge University Press, Cambridge; New York, 1990). [![]() |
![]() |
517 | Tod, K.P., “Penrose’s quasi-local mass and cylindrically symmetric spacetimes”, Class. Quantum Grav., 7, 2237–2266 (1990). |
![]() |
518 | Tod, K.P., “The hoop conjecture and the Gibbons–Penrose construction of trapped surfaces”, Class. Quantum Grav., 9, 1581–1591 (1992). |
![]() |
519 | Tod, K.P., “The Stützfunktion and the cut function”, in Janis, A.I. and Porter, J.R., eds., Recent Advances in General Relativity: Essays in honor of Ted Newman, Papers from the Discussion Conference on Recent Advances in General Relativity, held at the University of Pittsburgh, May 3–5, 1990, Einstein Studies, 4, pp. 182–195, (Birkhäuser, Boston, 1992). |
![]() |
520 | Tolman, R.C., “On the Use of the Energy-Momentum Principle in General Relativity”, Phys.
Rev. D, 35, 875–895 (1930). [![]() |
![]() |
521 | Tolman, R.C., Relativity, Thermodynamics and Cosmology, The International Series of Monographs on Physics, (Clarendon Press, Oxford, 1934). |
![]() |
522 | Torre, C.G., “Null surface geometrodynamics”, Class. Quantum Grav., 3, 773–791 (1986).
[![]() |
![]() |
523 | Torre, C., “Gravitational observables and local symmetries”, Phys. Rev. D, 48, R2373–R2376
(1993). [![]() ![]() |
![]() |
524 | Torre, C.G. and Anderson, I.M., “Symmetries of the Einstein equations”, Phys. Rev. Lett., 70,
3525–3529 (1993). [![]() ![]() |
![]() |
525 | Trautman, A., “Conservation laws in general relativity”, in Witten, L., ed., Gravitation: An Introduction to Current Research, pp. 169–198, (Wiley, New York, 1962). |
![]() |
526 | Tung, R.-S., “Dynamical Untrapped Hypersurfaces”, in Nester, J.M., Chen, C.-M. and Hsu, J.-P., eds., Gravitation and Astrophysics: On the Occasion of the 90th Year of General Relativity, Proceedings of the VII Asia-Pacific International Conference, National Central University, Taiwan, 23 – 26 November 2005, pp. 403–408, (World Scientific, Singapore; Hackensack, NJ, 2007). |
![]() |
527 | Tung, R.-S., “Stationary untrapped boundary conditions in general relativity”, Class. Quantum
Grav., 25, 085005 (2008). [![]() ![]() |
![]() |
528 | Tung, R.-S., “Energy and angular momentum in strong gravitating systems”, Int. J. Mod.
Phys. A, 24, 3538–3544 (2009). [![]() ![]() |
![]() |
529 | Tung, R.-S. and Jacobson, T., “Spinor 1-forms as gravitational potentials”, Class. Quantum
Grav., 12, L51–L55 (1995). [![]() ![]() |
![]() |
530 | Tung, R.-S. and Nester, J.M., “The quadratic spinor Lagrangian is equivalent to the teleparallel
theory”, Phys. Rev. D, 60, 021501 (1999). [![]() ![]() |
![]() |
531 | Tung, R.-S. and Yu, H.-L., “Quasilocal energy flux of spacetime perturbation”, Phys. Rev. D,
78, 104010 (2008). [![]() ![]() |
![]() |
532 | Unruh, W.G. and Wald, R.M., “Acceleration radiation and the generalized second law of thermodynamics”, Phys. Rev. D, 25, 942–958 (1982). |
![]() |
533 | Utiyama, R., “Invariant theoretical interpretation of interactions”, Phys. Rev., 101, 1597–1607
(1956). [![]() |
![]() |
534 | Wald, R.M., General Relativity, (University of Chicago Press, Chicago, 1984). [![]() ![]() |
![]() |
535 | Wald, R.M., “On identically closed forms locally constructed from a field”, J. Math. Phys., 31,
2378–2384 (1990). [![]() |
![]() |
536 | Wald, R.M., “Black hole entropy is the Noether charge”, Phys. Rev. D, 48, R3427–R3431
(1993). [![]() ![]() |
![]() |
537 | Wald, R.M., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics,
Chicago Lectures in Physics, (University of Chicago Press, Chicago, 1994). [![]() |
![]() |
538 | Wald, R.M., “Gravitational Collapse and Cosmic Censorship”, arXiv, e-print, (1997).
[![]() |
![]() |
539 | Wald, R.M., “The Thermodynamics of Black Holes”, Living Rev. Relativity, 4, lrr-2001-6
(2001). URL (accessed 29 January 2004): http://www.livingreviews.org/lrr-2001-6. |
![]() |
540 | Wang, M.-T., “Gravitational energy seen by quasilocal observers”, Class. Quantum Grav., 28,
114011 (2011). [![]() |
![]() |
541 | Wang, M.-T., “Quasilocal mass and surface Hamiltonian in spacetime”, arXiv, e-print, (2012).
[![]() |
![]() |
542 | Wang, M.-T. and Yau, S.-T., “A generalization of Liu–Yau quasi-local mass”, Commun. Anal.
Geom., 15, 249–282 (2007). [![]() |
![]() |
543 | Wang, M.-T. and Yau, S.-T., “Isometric Embeddings into the Minkowski Space and New
Quasi-Local Mass”, Commun. Math. Phys., 288, 919–942 (2009). [![]() ![]() |
![]() |
544 | Wang, M.-T. and Yau, S.-T., “Quasilocal Mass in General Relativity”, Phys. Rev. Lett., 102,
021101 (2009). [![]() ![]() |
![]() |
545 | Wang, M.-T. and Yau, S.-T., “Limits of quasilocal mass at spatial infinity”, Commun. Math.
Phys., 296, 271–283 (2010). [![]() ![]() |
![]() |
546 | Weinstein, G. and Yamada, S., “On a Penrose Inequality with Charge”, Commun. Math. Phys.,
257, 703–723 (2005). [![]() ![]() |
![]() |
547 | Wiltshire, D.L., “Cosmic clocks, cosmic variance and cosmic averages”, New J. Phys., 9, 377
(2007). [![]() ![]() ![]() |
![]() |
548 | Wiltshire, D.L., “Exact Solution to the Averaging Problem in Cosmology”, Phys. Rev. Lett.,
99, 251101 (2007). [![]() ![]() |
![]() |
549 | Wiltshire, D.L., “Cosmological equivalence principle and the weak-field limit”, Phys. Rev. D,
78, 084032 (2008). [![]() ![]() |
![]() |
550 | Wiltshire, D.L., “Dark Energy Without Dark Energy”, in Klapdor-Kleingrothaus, H.V. and
Lewis, G.F., eds., Dark Matter in Astroparticle and Particle Physics, Proceedings of Dark 2007
- the 6th International Heidelberg Conference, Sydney, Australia 24 – 28 September 2007, pp.
565–596, (World Scientific, Singapore; Hackensack, NJ, 2008). [![]() |
![]() |
551 | Wiltshire, D.L., “Gravitational energy and cosmic acceleration”, Int. J. Mod. Phys. D, 17,
641–649 (2008). [![]() ![]() |
![]() |
552 | Wiltshire, D.L., “From time to timescape – Einstein’s unfinished revolution”, Int. J. Mod.
Phys. D, 18, 2121–2134 (2009). [![]() ![]() |
![]() |
553 | Winicour, J., “Angular momentum in general relativity”, in Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, 2, pp. 71–96, (Plenum Press, New York, 1980). |
![]() |
554 | Winicour, J., “Geometrization of metric boundary data for Einstein’s equations”, Gen. Relativ.
Gravit., 41, 1909–1926 (2009). [![]() ![]() |
![]() |
555 | Winicour, J., “Worldtube conservation laws for the null-timelike evolution problem”, Gen.
Relativ. Gravit., 43, 3269–3288 (2011). [![]() ![]() ![]() |
![]() |
556 | Winicour, J., “Boundary conditions for the gravitational field”, Class. Quantum Grav., 29,
113001 (2012). [![]() ![]() |
![]() |
557 | Winicour, J.H. and Tamburino, L., “Lorentz-covariant gravitational energy-momentum linkages”, Phys. Rev. Lett., 15, 601–605 (1965). |
![]() |
558 | Wipf, A., “Hamilton’s formalism for systems with constraints”, in Ehlers, J. and Friedrich, H., eds., Canonical Gravity: From Classical to Quantum, Proceedings of the 117th WE Heraeus Seminar, Bad Honnef, Germany, 13 – 17 September 1993, Lecture Notes in Physics, 434, pp. 22–58, (Springer, Berlin; New York, 1994). |
![]() |
559 | Witten, E., “A new proof of the positive energy theorem”, Commun. Math. Phys., 80, 381–402
(1981). [![]() |
![]() |
560 | Woodhouse, N.M.J., “Ambiguities in the definition of quasi-local mass”, Class. Quantum Grav., 4, L121–L123 (1987). |
![]() |
561 | Wu, M.-F., Chen, C.-M., Liu, J.-L. and Nester, J.M., “Optimal choices of reference for a
quasi-local energy: spherically symmetric spacetimes”, arXiv, e-print, (2011). [![]() |
![]() |
562 | Wu, M.-F., Chen, C.-M., Liu, J.-L. and Nester, J.M., “Quasi-local energy for spherically
symmetric spacetimes”, Gen. Relativ. Gravit., 44, 2401–2417 (2012). [![]() ![]() |
![]() |
563 | Wu, X., Chen, C.-M. and Nester, J.M., “Quasilocal energy-momentum and energy flux at null
infinity”, Phys. Rev. D, 71, 124010 (2005). [![]() ![]() |
![]() |
564 | Wu, Y.-H. and Wang, C.-H., “Quasi-local mass in the covariant Newtonian spacetime”, Class.
Quantum Grav., 25, 135007 (2008). [![]() ![]() |
![]() |
565 | Yang, J. and Ma, Y., “Quasilocal energy, Loop quantum gravity”, Phys. Rev. D, 80, 084027
(2009). [![]() ![]() |
![]() |
566 | Yau, S.-T., “Geometry of three manifolds and existence of black holes due to boundary effect”,
Adv. Theor. Math. Phys., 5, 755–767 (2001). [![]() |
![]() |
567 | Yoon, J.H., “Quasi-Local Energy Conservation Law Derived From The Einstein’s Equations”,
arXiv, e-print, (1998). [![]() |
![]() |
568 | Yoon, J.H., “Quasi-local energy for general spacetimes”, J. Korean Phys. Soc., 34, 108–111 (1999). |
![]() |
569 | Yoon, J.H., “Quasi-local conservation equations in general relativity”, Phys. Lett. A, 292,
166–172 (2001). [![]() ![]() |
![]() |
570 | Yoon, J.H., “(1+1)-dimensional formalism and quasi-local conservation equations”, in
Ferrarese, G., ed., Advances in General Relativity and Cosmology, Proceedings of the
International Conference in Memory of A. Lichnerowicz, Isola d’Elba, Italy, 12 – 15 June 2002,
(Pitagora, Bologna, 2002). [![]() |
![]() |
571 | Yoon, J.H., “New Hamiltonian formalism and quasilocal conservation equations of general
relativity”, Phys. Rev. D, 70, 084037 (2004). [![]() ![]() |
![]() |
572 | York Jr, J.W., “Role of Conformal Three-Geometry in the Dynamics of Gravitation”, Phys.
Rev. Lett., 28, 1082–1085 (1972). [![]() |
![]() |
573 | York Jr, J.W., “Boundary terms in the action principles of general relativity”, Found. Phys., 16, 249–257 (1986). |
![]() |
574 | Yoshino, H., Nambu, Y. and Tomimatsu, A., “Hoop conjecture for colliding black holes:
Non-time-symmetric initial data”, Phys. Rev. D, 65, 064034 (2002). [![]() ![]() |
![]() |
575 | Yu, P.P., “The limiting behavior of the Liu–Yau quasi-local energy”, arXiv, e-print, (2007).
[![]() |
![]() |
576 | Yu, P.P. and Caldwell, R.R., “Observer dependence of the quasi-local energy and momentum in
Schwarzschild space-time”, Gen. Relativ. Gravit., 41, 559–570 (2009). [![]() ![]() |
![]() |
577 | Zannias, T., “Spacetimes admitting a three-parameter group of isometries and quasilocal
gravitational mass”, Phys. Rev. D, 41, 3252–3254 (1990). [![]() ![]() |
![]() |
578 | Zannias, T., “Trapped surfaces on a spherically symmetric initial data set”, Phys. Rev. D, 45, 2998–3001 (1992). |
![]() |
579 | Zaslavskii, O.B., “Entropy and action bounds for charged black holes”, Gen. Relativ. Gravit.,
24, 973–983 (1992). [![]() |
![]() |
580 | Zhang, X., “A new quasi-local mass and positivity”, Acta Math. Sinica, 24, 881–890 (2008).
[![]() ![]() |
![]() |
581 | Zhang, X., “A quasi-local mass for 2-spheres with negative Gauss curvature”, Sci. China Ser.
A, 51, 1644–1650 (2008). [![]() ![]() |
![]() |
582 | Zhang, X., “On a quasi-local mass”, Class. Quantum Grav., 26, 245018 (2009). [![]() ![]() |
http://www.livingreviews.org/lrr-2009-4 |
Living Rev. Relativity 12, (2009), 4
![]() This work is licensed under a Creative Commons License. E-mail us: |