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ON SOME PROPERTIES OF THE CLASS P(B,b, a)
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Abstract. Let P denote the well known class of functions of the form p(z) =14¢1z+...
holomorphic in the unit disc D and fulfilling the condition Re p(z) > 0in D. Let 0 < b < 1,
b < B, 0 < a < 1 be fixed real numbers. P(B,b,a) denotes the class of functions p € P
such that there exists a measurable subset F of the unit circle T, of Lebesgue measure 2na,
such that the function p fulfils Re p(e'’) > B a.e. on F and Re p(e!’) > b a.e. on T \ F.
In this paper further properties of the class P(B,b,«) are examined. In particular, the
investigations included in it constitute a direct continuation of papers [6]-[8] and concern
mainly the form of the closed convex hull of the class P(B, b, ) as well as the estimates of
the functional Re {eD‘p(z)}, 0#z€D, X € (—nx), p€ P(B,ba). This article belongs
to the series of papers ([1]-[8]) where different classes of functions defined by conditions on
the circle T were studied.
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1. INTRODUCTION AND GENERAL REMARKS

As usual, we denote by C the complex plane, by D = {z; |z| < 1} the unit disc
and by T = {z; |z2|] = 1} the unit circle. Let S(M), M > 1, denote the class of
functions of the form

(1.1) f(z):z—i—anQ—i—...—i—anz”—i—...

holomorphic, univalent and such that |f(z)| < M in D and let S = S(400). Denote
by Ps, 0 < § < 1, the class of functions of the form

(1.2) p(z)=14+qz+...+q.2" +...
holomorphic in D with Re p(z) > 8 for z € D, and let P = Py.
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As is well known, in the geometrical theory of functions one has studied, among
other things, properties of selected classes of functions of the form (1.1) or (1.2).
These classes were usually defined by imposing suitable geometrical conditions (e.g.
the convexity of the domain f(D)) or analytic ones (e.g. Re f'(z) > 0) in the disc
D. One can also find papers (for example [10]) in which functions (1.1) of the class
being defined were subjected to a condition they should satisfy on the circle T or for
z € D with modulus sufficiently close to 1.

The article belongs to the series of papers [1]-[8]. In these papers, some classes of
functions holomorphic in D (of form (1.1) or (1.2)) defined by two different conditions
on the unit circle T were studied.

In the paper [1] the authors investigated the class S(M,m;a), 0 < m < M < oo,
0 < a £ 1, of bounded functions of form (1.1) such that there exists an open arc
I, = I,(f) C T of length 2ra such that, for each 21 € I,

mDBZ—)Z1 |f(Z)| < M

and for every 2z, € T\ I,
limps,—.,|f(2)] € m.
Of course, S(M,m;1) = S(M), M > 1, and S(M, m;0) = S(m), m > 1.
In the paper [2], the class P(B,b;a) C P, 0 < b <1, b< B, 0< a<1,of
functions of the form (1.2) fulfilling the conditions
liminf Rep(z) > B for each 21 € I,
D>z—2z

liminf Rep(z) > b for each 2, € T\ I,

D>z—z2o

(1.3)

was introduced, I, = I,(p) still being an open arc of length 2rna of the circle T.
Evidently, P(B,b;1) = P, b < B < 1 and P(B,b;0) =Py, 0 < b < 1.

The idea of using open arcs of T of lengths 2na and 2n(1 — «) in the above
definitions has certain analogies in the papers by P. T. Mocanu (see [9] and [1]).

In the subsequent articles ([3]-[8]), various subclasses of the family P were again
considered, with the difference that in place of arcs various subsets F of the circle
T appeared. It is also known that if p € P, then Rep(z) has nontangential limits
Rep(e'?) a.e. on (—m, 7). So, instead of (1.3) the conditions

(1.4) Rep(e'’) > B a.e. on F and Rep(e?) > b a.e. on T\ F

were adopted.

In particular, in the preprint [3] F is a given closed subset of T of Lebesgue measure
2na and the class P(B, b, a;F) of functions (1.2) satisfying conditions (1.4) on this
set F is considered.
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In [4] and [5] F is still a given closed subset of T of Lebesgue measure 2na but the
authors consider the class P(B, b, a; F) of functions (1.2) satisfying conditions (1.4)
on the set F or on the set F, = {¢ € T; e”'"¢ € F} for some 7 = 7(p) € (—n, 7). In
reports [4], [5] they also consider the class

P(B,b,a) = | JP(B,b,o; F)
F

where F C T satisfies the conditions mentioned above.

Since the rotations (I,), of the arcs I, are admissible already in the class
75(B,b,a), whereas I, are closed sets, therefore the replacement of the arcs I, by
arbitrary closed sets of measure 2na seemed natural. What is more, the fulfilment
of suitable conditions at each point of the set was abandoned and replaced by the
fulfilment of them almost everywhere.

It turned out ([6]) that all main results from [4], [5] are preserved when, in the
above-mentioned definitions of the classes, in place of F we take a given measurable
subset of the unit circle T of Lebesgue measure 2na. The analogous assumption
about the sets F is used also in paper [8]. The following definition was adopted
there.

Definition 1.1. Let 0 <b<1,b< B, 0 < a <1 be fixed real numbers. By
P(B,b,a) we denote the class of functions p € P such that there exists a measurable
set F = F(p), F C T, of Lebesgue measure m(F) = 2ra, such that the function p
fulfils (1.4) a.e. on F and T \ F.

In [8] (Ths. 4, 5) it was shown that a) P(B,b, ) is not convex, b) P(B,b,a) is
not compact, i.e. not closed, in the topology given by the uniform convergence on
compact subsets of D. It was shown there that the functions p, € P(B,b, &) which
realize the maximum modulus of the n-th coefficient in the class P(B, b, a) ([6], Th.
8) converge to a function pg € P not belonging to P(B, b, ). So, the following three
natural questions arise:

(a) What is the closure of P(B,b,a)?

(b) What is the closed convex hull of P(B,b,x)?

(c) Which are the compact subsets of P(B,b, a)?

The replacement of the closed sets F by measurable sets, mentioned before, not
only allowed to generalize the results known earlier, but it is just essential on account
of questions (a), (b) and (c) to be considered in the second section of this article.

In the third section we will obtain an estimate of the functional Re{e*p(z)},
0+# z €D, X € (—n,n), defined in the class P(B,b,a). The theorem proved there
generalizes the corresponding results from the paper [8] (Th.3).

Questions (a), (b), (c) and formulations of the main theorems were given in [7].
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2. THE CLOSED CONVEX HULL OF P(B,b, )

In this section we give answers to questions (a), (b) and (c).

We denote by A(A) the normalized Lebesgue measure on T, i.e. A(T) = 1. Denote
by xa the characteristic function of the set A. Here we treat the function f(e’):
T — C as the function f(t): (—n, 1) — C, too.

(a) We will need the following lemmas.

Lemma 2.1. Let o € (0,1) be a given real number. Let ¢, i be arbitrary real
numbers fulfilling 0 < c < 1,0 < p <1, cu = a. Let I, C T be an arbitrary arc
on T, A(I,) = p. Then there exists a sequence {F,, }7>, of measurable subsets of I,,
such that

(2.1) AF,)=a, n=12...,
and

(2.2) the sequence of measures xr, d\ converges weakly to the measure cx 1, dA.

Proof. Sincece€ (0,1), ciu = a, we have p > . In the trivial case p = a put
F,=1,,n=1,2,..., thus (2.1) and (2.2) are fulfilled. So, let ;x> . Without loss
of generality, suppose that the midpoint of I, is the point z = 1, write [ = 2n — 1
and define

F, = U F(*)

k=—n+1
where
Fg‘”) = {ze T; z:ewie‘-’i, f% <po< ?}
fork=-n+1,...,-1,0,1,...,n — 1.

Clearly, the intervals F are mutually disjoint, F,, C I, and A\(F,) = .
Let f be a given function continuous on T. We have to show that

lim [ F(t)xe, (£) dA(E) = / e ()x1, (£) dA(E) = / efx1, .

n—00
T T T
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First,

n—1
(2.3) / fOxe, D = 3 / F() dA(®)
T k=—ntlp
no1 (2kmptam)/l noy o ¥an/l
-y [ qop- X [ sog
= 2k an) /1 P 0 Dt
where ei”"’ = exp(2knpi/l) is the midpoint of the arc F¥ k=-n+1,...,-1,0,

1,...,n—1.
On the other hand, by the definition of the Riemann integral and taking into
occount that ¢ = a/u, we have

n—1
a o (k)
[etOu e =2 1m ¥ [sE)]]
Wb n—oo et l
. =
(6 not s (k)
=nlzngol7 >, S >]-
k=—n+1
Now, let € > 0 be given. There exists ny such that, for n > ny,
a = (k) €
(24) | [etoumnn-T ¥ fE)] <5
T k=—n+1

Since f is continuous on the compact T, there exists 6 > 0 such that, for
[ty —ta| <6, t1,t2 € (—m,7),

€
2.5 t1) — f(¢ —.
(2.5 £(8) — F)] < o
From (2.5) we obtain, for n > ny = [na/d] + 1,
el o a el a'gk)-i-na/l &
DI CCRE D SN IOF-
k=—n+1 k:7n+10'(k)—1ta/l
1 0'7(1’“)4-7:04/1
— i (B dt €
- Y[ [ - so] g < o=
k:_n—i_la(k)fna/l
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From this inequality and (2.3), (2.4) it follows that, for n > max(nq, na),

| [etOn, 00 - [ foxe, 0| <

T

and Lemma 2.1 is proved. O

n

Lemma 2.2. Let a € (0,1) be a given real number. Let ¢ = Y ckXy, be a step
k=1
function on T such that

(i) I, CT,k=1,2,...,n, are mutually disjoint arcs with A(I) = g > 0,
(i) ¢ €(0,1),
(iil) > crpr = a.
k=1
Then there exists a sequence {F,,}3°_, of measurable subsets of |J I C T such

k=1
that

(2.6) AFr)=a, m=12,...,
and

(2.7) the sequence of measures xr,, d\ converges weakly to the measure o d.

Proof. Denote oy = cpur, k = 1,...,n. Because of (i), (ii), (iii), we have
ar € (0,a). By (i), ur > ap. Putting I, = I, k = 1,...,n, in Lemma 2.1, we
see that, for each k& = 1,...,n, there exists a sequence {Fgf)}f,f:l of measurable
subsets F'%) ¢ I, such that )\(Fgf)) = ag, m = 1,2,..., and the measures xp,, dA

n
converge weakly to the measure ¢ Xy, d\. Putting F,,, = 3 F,(,f), we see that F,,
k=1

n
is measurable, F,,, C |J I} and
k=1

0 (2.6) is fulfilled.
On the other hand, the measures xg,, d\ = Y, Xp(o) d\ converge weakly to the
k=1 ™

measure ( > ekx Ik) dX = o d\. The proof is complete. O
k=1
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Let o € (0,1). Denote by S, the set of all step functions o = > ¢y, fulfilling
k=1
conditions (i), (ii), (iii) from Lemma 2.2. Denote

Lo= {f € LX(T); f(t) € (0,1) ae. d)\,/f(t) dA() = a}.

Lemma 2.3. S, is dense in L, in the metric of L*(T).

Proof. Lete > 0and an arbitrary function f € £, be given. We have to show
that there exists a function o € Sy such that [ [f —o|d\ <e.

Since the set of all continuous functions on T is dense in L!(T), there exists a
continuous function g on T, g(¢) # 0 on T, such that

(2.8) /|f —gldX < fe.
T

Put hy = min(1,g). Then hy(¢) #0 on T and

/|f—h1|dx=/|f—h1|dx+/|f—h1|dx
T T, T2

where Ty = {¢t; g(¢t) > 1}, T2 = {¢; g(t) < 1}. So, by the fact that 0 < f < 1 and
by (2.8), we have

[1r=miarx= [a-par+ [ir-gar< [o-par+ [ir-glax
T To Ta

Ty T

therefore

(2.9) f—h|dA< [ |f—gldr < de
[rmmms]

Next we put h = max(0, hy). Then h is a continuous function and we obtain

T/|f—hd,\: /|ffh|d)\+ / \f — hldX

h1<0 0<h1<1

- /(f—O)d)\—i- / |f = haldX

h1<0 0<hi<l
< /(f—hl)dH / 1 — By d),
h1<0 0<hi<1
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so0, by (2.9), we have

(2.10) /|f—h|d/\</|f—h1|d>\<§s
T T

and

(2.11) 0<h<1, h()Z0 tecT.

Because of the uniform continuity of A on T, there exists § > 0 such that

(212) |h(t1) — h(t2)| < %6 for |t1 —t2| < (S, t1,t0 € T.

Divide T into n > 1/§ mutually disjoint congruent arcs I;, A(I;) = L, 1=1,...

choose an arbitrary point a; € I; and put
s(t)=h(a;) fortel, I=1,...,n.
Of course, this choice may be made so that there exists [y such that

(2.13) h(ag,) # 0.

From (2.12) we have |h(t) — s(t)| < e and so

(2.14) / |h—s|dX < Ze.
T

Summing up, we have constructed a step function s fulfilling (i) and, by virtue of

(2.11), (2.13), also (ii) from Lemma 2.2. Moreover, by (2.10) and (2.14),

(2.15) /|f—s|d)\</|f—h|d>\—|—/|h—s|d)\<%s.
T T T

It remains to take account of condition (iii). In virtue of [ fdA = «, from (2.15)

we get
a7%5</sd)\<a+%5.
T

If [ sdX = a, the assertion is obvious. So, let first

a</sd)\<a+%s.
T
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We have to modify s to a step function o fulfilling (i), (ii) and, moreover,

/od)\:a, /|f—a|d)\<5.
T

T

So, for ¢ € (0,1), let us consider the function
o(c) = /min(s,c) dA.
T

From the definition of min(s(t), c) we have

lp(c) — e+ Ac)| < [Ac],
s0, ¢ is continuous on (0,1). As min(s(t),0) = 0 and ¢(1) = [ sd), we have
»(0) = 0 and ¢(1) > a. By the Bolzano theorem, there exists co € (0,1) such that

¢(co) =aand 0 < [1.(s —min(s,cp)) dA < a + 36 — a = 3e.
Hence, putting o = min(s, ¢g), we have o € S, and

/|f70|d/\</|f—s\d)\+/\s—o|d)\<5.
T T T

If a— %5 < fT sd) < a, we consider the function
Y(e) = /max(s,c) dx
T

for ¢ € (0,1) and obtain quite similarly the desired result. Lemma 2.3 is proved. O

Theorem 2.1. The closure of P(B,b,a) is the set of all functions p € P which
can be represented in the form

elt — 2

B—b [ el + 2
(216) o) =t 2 [ 5 d e (1= n)a(e),
—T
z€D, n=Ba+b1l-a),
where f is an arbitrary measurable function on (—x,n) with the following properties:
(2.17) 0< f(t) <1 ae. on (—m,n),
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(2.18) %i/ﬂﬂ&:a,

and q is an arbitrary function in P.

Proof. Of course, functions (2.16) are holomorphic in D, p(0) = 1 and
Rep(z) > b in D, therefore p € P.

Let us recall the following well known fact. The set of positive measures p of
total mass 1, endowed with the topology given by the weak convergence of measures,
is homeomorphic to the set P, endowed with the topology given by the uniform
convergence on compact sets in D.

Let now p be a given function of the form (2.16). In virtue of Lemma 2.3, the
function f can be approximated by functions o, € S, fulfilling conditions (i), (ii)
and (iii).

So, the functions

R A

2no elt — »
—T

dt

converge uniformly on compact sets in D to the function

! /f(t)e?t T2 4.

2na elt — 2

Hence the functions p, € P(B,b,a) of the form (2.16), where f = o,, converge
uniformly on compact sets in D to the function p, so the assertion of Theorem 2.1
is proved. O

(b) An immediate consequence of Theorem 2.1 is the following

Corollary 2.1. The closed convex hull of P(B, b, @) is the same as in Theorem 2.1.

It is essential here that the set of all functions f fulfilling conditions (2.17) and
(2.18) is convex, and that the class P is convex.

(c) Let A C P(B,b,a). Denote by Ay the set of the characteristic functions of all
sets F C T, A(F) = «, on which (1.4) holds for some p € A.

Theorem 2.2. The subset A C P(B,b,«) is compact if and only if the set Ag is
closed in L*(T).
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This theorem can be obtained by a thorough analysis of the proof of compactness
of the class P(B,b,o; F) (see Th. 3 in [6]). Detailed considerations will be carried
out in the next paper.

3. ESTIMATION OF FUNCTIONAL Re{e'*p(2)}

A. In the paper [8] (Th.3), sharp estimates from below and from above of the
functional Rep(z), 0 # z € D, p € P(B,b, ), were established. At present, we will
take up an analogous task, but for the functional Re{e!*p(2)} where X is an arbitrary
fixed parameter from the interval (—w,n). We will also formulate some corollaries
concerning the set of values of the functional G(p) = p(z), p € P(B,b, a).

Let us first recall (see [3] Th. 4 and Th. 5, [6] Corol.2) that the extreme points in
the class 75(B, b, a; F) are of form

B-—b [et42 e’ + 2
—dt 1-— - R D.

o /emz tA=ngFm— 7ER, 2€
F

(3.1) p(z;7,F) = b+
Since
P(B,b,a) = | JP(B,b,; F)
F

where the sum is taken over all subsets F C T of Lebesgue measure 2nq, it is clear
that, for z € D fixed,

(3.2)  inf(sup)pep(B b,a) Re{e?p(2)} = inf(sup), r{Relep(z;7, F)];
v € (—mn,n), F C T, m(F) = 2na},

where we denote by m(E) the Lebesgue measure of a measurable set E C T, m(T) =
2n. Since with each function p € P(B, b, @) the function ¢(z) = p(ez), |e| =1, z € D,
is also contained in P(B, b, «), it is sufficient to determine

(3:3) SWHPQ{Re[e“p(T;%F)]}a inf{Re[e”p(r; 7, F)]} 7€ (0,1).

For z = 0 we have p(z) = 1 for each function p € P(B, b, a), therefore the case r =0
may be omitted.
Furthermore,

(3.4) AT P (v) +1Qr(7)

e —r
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where

(3.5) P) L= )= s

T 1—2rcosy+r2’ " 1—2rcosy+r?’

so, from (3.4) and (3.5) we have

., el
(36)  Re{* L =U,(3,0), v € (~mm), A€ (~mm), 7€ (0,1),

er —r
where

(3.7 Ur(7,A) = Pr(y) cos A — Q- () sin A.

Hence our problem reduces to the following one:

Find

(3.8) sup  Ur(7,A), inf  U,(v,\)
vE(—m,T) vE(=mm)

and

(3.9 sup { /Ur(t,)\) dt; FCT, m(F)= 2rca},
F

(3.10) inf{ / U.(t,\)dt; FC T, m(F) = 2na}.
F

B. We will determine (3.8) first. For this purpose, let us notice that from (3.5)—
(3.7) we obtain

ccos A+ asin A - sinvy

(3.11) U() =:Ur(1,A) = TR—
where
(3.12) _ €(0,1), c= 1-r € (0,1)
1472 1+ 72
Consequently,
aL
(3:13) U'n) = (1— a((:'(:i'y)Q
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where

(3.14) L(v) =: Ly(v,A) = (cosy — a)sin A — csiny cos .
From (3.14) and (3.12) we have

(3.15) (1+72)L(y) = r?sin(y + A) — 2rsin A — sin(y — \).

Let A € (0,7n). Then the right-hand side of (3.15) is treated first as a function
of the variable r with the parameters A and «. Next, from the results obtained by
elementary considerations, we infer the behaviour of the function L of the variable
~. The case A = 0 is examined as a limit case of the earlier results. Consequently,
we get

Lemma 3.1. Let v1(r,A), v2(r, ), r € (0,1), A € (0,n), be functions defined by
the formulae

1-— A
7 (r) = v1(r,\) = 2arctan ~Ttan2 )
1+r 2
(3.16) : K
—r
= = —2 —
Ya(T) Y2 (7, A) arctan (1 e cot 2)
with
(3.17) (r,0) =0 (r,n/2) = 2arcta L arccos 2
. r,0) = T = 2arctan =ar
Y1\T, s, M\, T 1+r 1+’I’2’
lim v (r,\)=mxn, re€(0,1)
A—=n—
and
(3.18) lim s (r, A) (r,7/2) = —2arctan ~—
. im yo(r,\) = — T = 2arctan
A—>O+’72 ’ T, 72\, T 1+7"

lim ~5(r,A) =0, r€(0,1)
A=~

whereas L. (v, ), v € (—m,n), is the function (3.14). Then, for any r € (0,1) and
A € (0,n), we have

<0 when —n <y <y(r,A) or y1(r,A) <vy<m,
(319) Lr(’Ya )‘) =0 when V= 72(T7 )‘) or y=m (T‘, )‘),
>0 when o(r, ) <y <(r, ).

Formulae (3.11), (3.13) and Lemma 3.1 (including (3.19)) imply
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Lemma 3.2. For any r € (0,1), A € (0,n), the function (3.11) is (i) de-
creasing in the intervals (—m,y2(r,\)), (n(r,\),n), (ii) increasing in the interval
<72 (Ta )‘)771 (T‘, >‘)>7 and

(1+72)cos X +2r
1—72 ’

(320) max U(’Y) = U, (’yl (7‘, A)) )‘) =

(1+72)cos\ — 2r
1—1r2

(3.21) minU(y) = Ur(12(r, A),\) =

The functions 71 (r) and v2(r) are defined by formulae (3.16).
Let A € (—7,0). Then A = A+ x € (0,7) and from (3.7) we have

(3.22) Ur(7,A) = =Ur(7, ),
whereas from (3.16)

(3:23) Y2 (r, X) =m(rA), mn(r, X) =72(r, A).
Consequently, (3.22), (3.23) and Lemma 3.2 imply

Lemma 3.3. For any r € (0,1), A € (—=,0) the function (3.11) is: (i) decreas-
ing in the interval (vy1(r,\),y2(r,A)), (ii) increasing in the intervals (—m,y1(r, \)),
(72 (T7 )‘)771:) ) and

(1+72)cos A+ 2r

(324 maxU(y) = Uy (31 (r, 1), A) = =5

(1+72)cos\ — 2r

(3.25) minU(y) = Ur(72(r, A), A) = 12

The functions v (r) and vs(r) are defined by formulae (3.23).
The bounds (3.8) have thus been determined.

Remark 3.1. Lemmas 3.2 and 3.3 are certainly known. They can be obtained
directly from the fact that the set of values of the functional H(p) = p(z), 0 # z € D,
p € P, is the disc |w — s| < o where s = (1 +72)/(1 —r?), o = 2r/(1 — r?). In the
consideration carried out here, for each A € (—n, 1), the points v;(r, A) and 5 (r, A)
indispensable in further investigations and applications have been determined and
examined.
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C. We proceed to determine the bound (3.9).

Let A\ € (0,n). Since U,(y) has the period 2m, we may suppose that F C {et;
t € (y2,72 + 2n)}. Denote F; = FN{e’;t € (y2,m)} and F3 = FN{e*; ¢t €
(71,72 + 2n)}. Since (Lemma 3.2) the function U,(v) is increasing in (y2,71) and
decreasing in (y1,v2 + 2n), so, applying the known lemma ([6], L. 4) to the intervals
(v2,m), (71,72 + 21) and to the sets F;, Fa, we obtain

71

/UT(t,)\)dts / U,(t,\)dt,
Fi

71—m(F1)
(3.26) 1 4m(F2)
T AT
F2 Y1
thus by (3.26),
1+m(F2)
(3.27) / UL (t ) dt < / UL (t, ) dt.
F v1—m(Fy)

Here m(F1)+m(F3) = 2na, 0 < m(Fy) < v — 72, 0 < m(F3) < 2n+v2 — 1. Hence

denoting m(F1) = 2rnz, m(F2) = 2rny and
Y1+2ny
(3.28) pe) = ey = [ UV,
Y1—2nz
we realize that we have to determine
3.29 max T,
( ) (z,9)EM.(a,)) (@)
where
(3.30)
M(a ) = {(@y) R 0<z < L2 0y <1- B2 s iy —af
Put
(3.31) 0 =70(rN) = 5

Then from (3.16)—(3.18) we have

2

3.32 = arctan ————
( ) o T AT Y Sy

re(0,1), A€ (0,n).
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Since r € (0,1), A € (0,nt) and therefore vy € (0,1/2) is fixed, we easily see that the
set (3.30) is given by

(3.33) M,.(a, ) {(m a—w);Ong%} if %g gl_’:[_o,
Mr(a,)\)z{(w,a a:),a—l—l—%gg:g%} ifF 120 <1
Let
(3.34) V(z) = p(z,a — ).

By (3.28) and (3.34),

(3.35) V'(z) = =2r[U, (71 — 2rnz + 2na, A) — Uy (7 — 2nz, N)],

(3.36) V" (x) = 4r®[UL(m — 2nx + 21, \) — UL (71 — 27z, )]

By (3.33), 0 < z € 1o/ and consequently, v1 — 2nz € (y2,71), 80 Ul.(71 —2nz,A) > 0
for z € (0,70/n). From (3.33) we also have v; + 2n(a — z) € (1,21 + 72), therefore
Ul (71 — 2nz + 2ra, A) < 0 for = € (0,70/n). Consequently, from (3.36) we infer that
V"(z) < 0, i.e. that V'(z) is a strictly decreasing function in the corresponding
interval (0,a) or (0,70/n) or (@ — 1 + v /%, 70/7). But from (3.35) and (3.31) we
have

VI(0) = = 2x[Up(n + 20, A) = Up(1,A)],
(3.37) V'(a) = = 2n[Ur (71, A) — Up(11 — 21, )],
V(v/m) = = 2n[Ur (72 + 2na, A) = Ur (72, M),

V(e —1+7/7) = — 2n[U.(y2 + 2n) — Uy (72 + 21 — 21a)].

Since a € (0,1) and the function U, attains the maximum at the point 4, and the
minimum at the point -9, therefore from (3.37) we have

(3.38) V'(0) >0, V'(a) <0, V'(0/7) <0, V(e —1+70/7) >0

From (3.38) we see by (3.33) that, for any a € (0,1), A € (0,x), 70 € (0,7/2), there
exists a unique root zg of the equation V'(z) = 0 with z¢ € I.(a, \) where

(0,a) if 0<a<o/m,

(3.39) I.(a,A) =< (0,70/n) if o/r<a<<]l—/n,
(a—14+v/m7/x) if 1—y/r<a<l.
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Here g is from (3.32).
So, by (3.35), g = zo(r, @, ) is given by the equation

(3.40) Ur(m1 — 2nz + 2na, A) = Up (11 — 21z, A).
From (3.11), (3.12) and (3.40) we obtain an equation of the form
(3.41) r?sin(y — 2nw + 1+ A) — 2rsin X - costa — sin(y; — 2nx + 1 — A) = 0.

Since V'(z) is a stricly increasing function in a suitable variability interval of x
and V'(zo) = 0 only at the point zg, therefore

(3.42) max V(z) = V(o).

In view of (3.34), (3.29), (3.28) and (3.27), we have determined the bound (3.9) for
A€ (0,7).

If A =0, then from (3.17), (3.18), (3.31), (3.33) and, next, from (3.11), (3.35) and
(3.36) we easily conclude that

max V(z) = V(zg), xo =

1
20(.

Hence the case A = 0 may be added to the case A € (0,7) considered before.
So we have

Lemma 3.4. For any r € (0,1), A € (0,1) we have
(3.43) max u(x,a — x) = p(zg, ¢ — o)

where © = xo is the only root of equation (3.41) belonging to the interval I.(a, )
defined in (3.39). The set F* C T for which the function (3.28) attains its maximum
(3.43) is of the form

(3.44) F* = {e; t € (y1(r,\) — 2nzo, 71 (r, A) + 2na — 2nz0) }.

Let A € (—x,0). Put A = —\. Then X € (0,7) and from (3.28) and Lemma 3.4 we
get

m;a,xur(:v,a —z;A) = pr (2, @ — 2, A)
where xg is the only root of the equation
r?sin(y; (r, ) — 21z + 1@ + A) — 2rsin A - cos an — sin(y (r, A) — 21z + ma — A) = 0
belonging to the interval I, («, X)

213



It remains to use the fact that A = —\ in the formulae for the above-mentioned
functions. It also turns out that the case A = —n may be added to the previous
results. So, we have

Lemma 3.5. For any r € (0,1), A € (—x,0),
(3.45) max p(a, @ — ) = (e~ yo,0)
where x = yq is the only root of the equation
(3.46) 72 sin(y1 (1, \)+2nz —a4-X\) — 27 sin A-cos a—sin(y; (r, \)+2nz—na—\) = 0.

belonging to the interval

(0,) if 0<a<—y/m,
(3.47) Jr(a,A) =< (0,—/n) if —y/r<a<<1l+y/x
(a—1—9/n,—v/n) if 1+y/t<a<l.

The set F** C T for which the function (3.28) attains its maximum (3.45) is of the
form

(3.48) F* = {eit; t € (y1(r,A) — 2na + 2nyg, 1 (r, A) + 2ny0) }-

Consequently, in order to determine (3.9), one should calculate the integral

to
(3.49) K = K(r, A\t ts) = / UL (¢ 2) dt,

t1

where (t1,t2) is the interval (y; —2nxzg, v1 —nxo+2nd) or (y1 + 2myo — 2max, 11 + 21yo).
It turns out that

sin L2zt 1 —acost
(3.50) K =2cosA-arctan [c———F—2————| —sin\-log -1
cos 254 facos% 1 —acosty

Let us determine p(zg, @ — x¢) and p(a — yo,yo). From (3.28) and (3.49) we get

(3.51) w(xo, o0 — xo) = K(r,\,y1 — 2nxo, 11 — 2120 + 210¢), A € (0,70),
. ple — Yo, 40) = K(r, A,y + 2nyo — 2re, 11 + 2nyo), A € (-, 0).
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Consequently, from (3.50) and (3.51) we get

s
M(w07a_$0) — 2cos \ - arctan CSsln o
(3.52) cos ta — acos(y1 — 2nrg + Ta)
| —sin\ - log 1 —acos(y; — 2nzo)
1-— acos(m — 2TEIO + 27[&)7
w(a — yo,yo) = 2cos A - arctan [ csin o ]
(3 53) COsSTTx — a COS('yl + Qnyo _ na)

—acos(y1 + 2nyg — 2na)
1—acos(y + 2nyo)

1
—sin X - log

Summing up, (3.1-3.3), (3.6), (3.27), (3.28) and Lemmas 3.2-3.5 imply

Theorem 3.1. Let p € P(B,b,a),0# 2 €D, z=rel?, A€ (—n, ). Then

2
beos A+ B2t p(zg,a — wo) + (1 — y) L)oo At
(3.54)  Re{e’p(2)} < HAC <O7g),’b (14r°) cos Af2r
beos A+ £t u(e = yo,y0) + (1 — ) =5
if A € (—,0),

where p(zg, @ — xg) and p(a — yo,yo) are functions of the form (3.52) and (3.53),
such that x = xg € I.(a, X), = yo € J.(a, \) are the only roots of equations (3.41)
and (3.46), respectively, while

2r 1—172
= 5 CcC = 5
14172 1+17r2

1- A
v1 = 71 (r,\) = 2arctan <1+:tan§) ,

n=aB+ (1—a)b;

a

71 € (0,n) when A € (0,nt), % € (—=x,0) when A € (—x,0);

(Oa Oé) if a € <0)’YO/TE)7
(3.55) I.(a,A) =< (0,7 /n) if @ € (yo/m,1 —70/7),
(=14 /m /%) if @€ (1—"/m,1),

_ 2

2rsin A

~Yo = arctan for A € (0,7) and o € (0,7/2);
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(0,a) if a € (0,m0/7),
Jr(a,A) = < (0,m0/7) if @ € (no/m,1 —no/m),
(

a—1+mny/m,n/n)if a€(l—mn/x,1),
o = — € (0,7/2) for A € (—m,0).

Remark 3.2. Since the functions (3.1) belong to the class P(B,b, ), the es-
timates (3.54) are sharp. If z = r € (0,1), then in (3.1) one should put v = 74,
while for the set F C T one should take F* or F**  respectively (see (3.44) and
(3.48)). This follows from (3.20), (3.24) and (3.28), (3.43), (3.45). If z = rei®, then
one should take into account the argument ¢ — performing suitable rotations of the
number e as well as of the sets F* and F**.

Remark 3.3. Passing A - 0 and A - —n in Theorem 3.1, we obtain the well-
known estimate from below and from above of Rep(z), p € P(B, b, a), ([8], Th.3) of
the form

2(B-b 1-— 1-—
b+ uarctan (1—_’_: tan B) +(1 —n)—r < Rep(z)

T 2 1+r
2(B—b 1 1
Sb—kgamtan jtanB +(1—mn) —f—r.

T 1—7r 2 1—7r

Remark 3.4. Putting in the above-mentioned theorem \ = +71/2, we obtain
an estimate of Im p(2) in the class P(B, b, a), also well known ([8], Th.3), of the form

B-b P.(y0 + 2na — 2mxo) 2r
1 —(1—n)——=<I
o %8 P (v = 2ma0) (1 =n)7—3 <Imp(z)
B-b P.(vo — 2nxo) 2r
< 1 1-—
S on o P.(y0 + 2na — 21xp) +(L=m) 1—r2

where g € I.(a,/2) C (0,7/7) is a root of the equation cos(yo — 2nzg + Tar) =
cos Y - cos am, cos Yo = 2r/(1 + r?).

D. From Theorem 3.1 one can, of course, obtain an estimate from below of the
functional Re(e!*p(z)), that is, determine the bound (3.10).

Let, for instance, A € (0,r). Put AX=X—7 Then \ € (—7,0). Consequently, from
(3.54) we get

(1472)cos A + 2r
1—1r? ’

~ ~ B-—b -
Re(ep(2)) < beos A + Tlﬁr(a —Y0,%0,A) + (1 =)
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thus
(1+72)cos X — 2r

. B-b
Re(e™p(2)) > beos A — —5#r(@ = 50,50, A+ 1) + (1 —17)

1—1r2
Since
~ 1-— A— 1-— A
~1(r,\) = 2arctan " tan T) = — 2arctan "ot 2
1+r 2 1+7r 2

=72(r,A) € (-,0),
equation (3.46) for z = yg assumes the form
2 sin(yy (7, A) 4 21z — 1o + A) — 2rsin A - cos e — sin(ya (7, A) + 21z — ww — A) = 0.
Moreover,

(r,3) tan — =1 tan LT o)) € (0,7/2)
r,\) = — arctan —————— = arctan ——— = Yo (r, ,T/2),
o 2rsin(A —n) orsiny 0

Jo(aX) = L(a, A).

If A € (—,0), then A =: n+ A € (0,7). So, from (3.54) we have

; B-b < 1+7r2%)cos A —2r
Re(ep(z)) > bcos A — Q—H,ur(xo,a — g, ) + (1 — 77)( 1)_ =

Besides,

therefore equation (3.41) for = = zy will assume the form

2 sin(yg(r, A) — 21z + na + A) — 2rsin A - cos e — sin(ya(r, A) — 21z + tv — A) = 0,

and ~
I(a,)) = Je(a, N).
From the above considerations and (3.52), (3.53) we obtain

Theorem 3.2. Let p € P(B,b,a),0# 2 D, z=re, A\ € (—n, ). Then

_h~ 1472 A—2
bcos \ — 32_7‘1’u(a—y0,y0) +(1 *77)%

(356) Re{ei)\p(z)} 2 rae <0’z):b~ 1+r2!cos A—2r
bcos A — 7#(960,04*900)4'(1*77) 1—12
if A e (—n,0),
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where

i ) 9 cos A ¢ csin o
a— = — 2cos \ - arctan
s vo. Yo costa — acos(ya + 2nyo — )
1-— 2 -2
L sinA-log acos(yz + 2nyo — 2na)

1 —acos(y2 + 2nyo)

~ csina
w(xo, ¢ — xg) = — 2cos A - arctan [ ]

cosTa — a cos(y2 — 2nzg + )

1-— -2
+sin A - log acos(y; = 2n7o)

1 —acos(y2 — 2nzg + 27ca);

x =1y € I:(a, \) satisfies the equation
r?sin(yy + 21z — na + \) — 2rsin X - cosma — sin(yy + 2nx — na — A) = 0,
x = g € Jr(a, \) satisfies the equation

r?sin(yy — 2nx 4+ na + A) — 2rsin A - cosna — sin(y, — 2nz + o — \) = 0;

1—7r A
= \) = —2arct t 2
Yo = Yo (1, N) arctan (1 +Tc0 2) ,

Y2 € (—1,0) for A € (0,1), 72 € (0,n) for A € (—x,0);
2

2rsin \’
7 € (0,7/2) for A € (0,n), v € (—1/2,0) for A € (—n,0),

Y0 = Yo(r, A\) = arctan

Mo = 1o(r, A) = =03
I.(a,A) and J,(a, ) are defined by the formulae from (3.55). Estimates (3.56) are
sharp.

E. Let B<1and po(z) = 1. Then py € P(B,b,a) for any admissible parameters
b and a. As we know, functions (3.1) belong to P(B, b, a) (of course, for sets F C T
of measure 2na). It follows directly from the definition that the functions

(3.57) 95(2;7,F) = Bp(2;7,F) + (1 = B)po(2), z€ D, B €(0,1),

belong to this class, too.
Let
(3.58) .
o0 { (b= 1) cos A+ Bl u(wo, @ — wo) + (1 —m) FFRZHE X € (0, ),

(b—1)cos A+ B

2
2;b/1,(y0,0¢ - yO) + (1 - n)w) A€ <—TI,0),

1—r2



with the notation and conditions from Theorem 3.1 being valid. Making use of the
theorem just mentioned, we will determine the set

(3.59) P={p(z)—1, pe P(B,ba)}, 0£2€D, BL1
We have

Theorem 3.3. The boundary of the set P of values of the functional H(p) =
p(z) —1,p € P(B,b,a), B <1, is a curve with the equation

(3.60) w=wNe ™, A& (-mmn),

where w is defined by formula (3.58).

Proof. Let0# 2 € D, z=re'?. In virtue of Theorem 3.1 and (3.58), for any
function p € P(B,b,a), A € (—m, 1),

(3.61) Re{e™ (p(z) = 1)} <w(}),

so that, in accordance with Remark 3.2, there exists v* and a set F* C T of measure
2ma such that, for a function p* defined, by formula (3.1),

(3.62) Re{e (p*(2) — 1)} = w(N).

Since the function py € P(B, b, a), therefore 0 € P. Moreover, this and (3.61) imply
that w(A) > 0 for A € (—n, ).

If w(Xg) = 0 for some Ag, then Re{e* (p(z) — 1)} < 0 for all functions p €
P(B,b,a). Hence all points p(z) —1 of the set P lie in one half-plane passing through
the point 0 and inclined under the angle of /2 — X to the real axis. Consequently,
the point w()\g)e!*® = 0 is a boundary point of the set P.

Let w(\) > 0 and p*(z) — 1 = [p*(2) — 1[e!¥". Then, by (3.62),

(3.63) p*(2) — 1 =w\)e ™.

Since p* € P(B, b, a), the point (3.63) belongs to the set (3.59). Besides, from (3.57)
we deduce that, for each 8 € (0,1), the function a5 = Bp* + (1-PB)po € P(B,b,a),
therefore the point ¢j(z) —1 = B(p*(2) — 1) + (1 = B)(po(2) — 1) = w(N)e * € P
for each 8 € (0,1).

Let p be an arbitrary fixed function of the class P(B,b,a). Put p(z) —1 =
Ip(2) — 1|ef¥. Choose A = —. From (3.61) we then have |p(z) — 1| < w(—1%), hence
the point p(z) — 1 lies on the segment (0,w(—1)el¥) = (0,w(A)e™*) C P.

Since w is a continuous function, w(A) > 0, w(—n) = ,\1—i>I7Icl— w(A), Theorem 3.3 has

been proved. O

219



Corollary 3.1. If B < 1, then the set Q of values of the function p(z), p €
P(B,b,a), results from the set P by translation by 1.

Remark 3.5. Separate considerations are needed in the case B > 1. In the

proof of Theorem 3.3 we were using, among other things, the fact that py € P(B, b, )

and we managed to avoid an obstacle caused by the lack of convexity of the class
P(B,b,a).

[1]
(2]

[10]

References

J. Fuka, Z.J. Jakubowski: On certain subclasses of bounded univalent functions. Ann.
Polon. Math. 55 (1991), 109-115.

J. Fuka, Z.J. Jakubowski: A certain class of Carathéodory functions defined by condi-
tions on the unit circle. Current Topics in Analytic Function Theory, editors: H.M.
Srivastava, Shigeyoshi Owa, World Sci. Publ. Company, Singapore (1992), 94-105.

J. Fuka, Z.J. Jakubowski: On extreme points of some subclasses of Carathéodory func-
tions. Czechoslovak Academy Sci. Math. Inst., Preprint 72 (1992), 1-9.

J. Fuka, Z.J. Jakubowski: On coefficient estimates in a class of Carathéodory functions
with positive real part. Proc. of the 15-th Instr. Conf. on Complex Analysis and Geom-
etry, Bronistawéw 11-15.01.1993, Lédz (1994), 17-24.

J. Fuka, Z.J. Jakubowski: The problem of convexity and compactness of some class
of Carathéodory functions. Proc. of the 15-th Instr. Conf. on Complex Analysis and
Geometry, Bronistawéw, 11-15.01.1993, LédZ (1994), 25-30.

J. Fuka, Z. J. Jakubowski: On some applications of harmonic measure in the geometric
theory of analytic functions. Math. Bohem. 119 (1994), 57-74.

J. Fuka, Z.J. Jakubowski: On some closure of the class P(B,b,a). Proc. of the 16-th
Instr. Conf. on Complex Analysis and Geometry, Bronistawéw, 10-14.01.1994, LédzZ
(1995), 9-11.

J. Fuka, Z.J. Jakubowski: On estimates of functionals in some classes of functions with
positive real part. Math. Slovaca 46 (1996), No. 2-3, 213-230.

P. T. Mocanu: Une propriété de convexité generalisée dans la théorie de la représentation
conforme. Mathematica (Cluj) 17 (34) (1969), 127-133.

M. S. Robertson: Analytic functions star-like in one direction. Amer. J. Math. 58 (1936),
465-472.

Authors’ addresses: J. Fuka, Mathematical Institute, Academy of Science, of the Czech

Republic, Zitna 25, 11567 Praha 1, Czech Republic; Z.J. Jakubowski, Chair of the Special
Functions, University of LédzZ, ul. S. Banacha 22, 90-238 LédZ%, Poland.

220



