INERTIAL LAW OF SYMPLECTIC FORMS ON MODULES OVER PLURAL ALGEBRA

MAREK JUKL, Olomouc*

(Received January 31, 1996)

Abstract. In this paper the problem of construction of the canonical matrix belonging to symplectic forms on a module over the so called plural algebra (introduced in [5]) is solved.

Keywords: linear algebra, free module, symplectic form, symplectic basis

MSC 1991: 15A63, 51A50

I. Introduction

1. **Definition.** The plural \mathbf{T} -algebra of order m is every linear algebra \mathbf{A} on \mathbf{T} having as a vector space over \mathbf{T} a basis

$$\{1, \eta, \eta^2, \dots, \eta^{m-1}\}$$
 with $\eta^m = 0$.

A plural algebra \mathbf{A} is a local ring the maximal ideal of which is nilpotent. It was proved in [3] that the free finite generated \mathbf{A} -module \mathbf{M} (the so called \mathbf{A} -space in the sense of [6]) has the following properties:

- **2.1.** If one basis of M consists of n elements then each of its bases consists of the same number of n elements. (This is true in every free module over a commutative ring.)¹
- **2.2.** From every system of generators of M we may select a basis of M. (This is valid over every local ring.)²

^{*}Supported by grant No. 201/95/1631 of the Grant Agency of the Czech Republic.

 $^{^{1}}$ See [1]

² See [6]

Moreover, in this case:

- 2.3. Any linearly independent system may be completed to a basis of M.
- 2.4. Every maximal linearly independent system in M forms a basis of M.
- **3.** Let $\varphi_1, \ldots, \varphi_k$ be a linearly independent system of linear forms $\mathbf{M} \to \mathbf{A}$. Then $\bigcap_{1 \leqslant i \leqslant k} \operatorname{Ker} \varphi_i$ is a free (n-k)-dimensional submodule of \mathbf{M} .
- **4.** Let K, L be free submodules of an **A**-module **M**. Then K+L is a free **A**-submodule if and only if $K \cap L$ is a free **A**-submodule and the dimensions of **A**-submodules K, L, $K \cap L$, K+L fulfil the relation

$$\dim(K+L) + \dim(K \cap L) = \dim K + \dim L.$$

- 5. Agreement. Throughout the paper we denote by A the plural T-algebra introduced in this section. The capital M always denotes the free n-dimensional module over the algebra A.
- **6. Definition.** A bilinear form $\Phi \colon \mathbf{M}^2 \to \mathbf{A}$ is called a bilinear form of order $k \ (0 \leqslant k \leqslant m-1)$ if
- (1) $\forall (\underline{X}, \underline{Y}) \in \mathbf{M}^2$; $\Phi(\underline{X}, \underline{Y}) \in \eta^k \mathbf{A}$,
- (2) $\exists (\underline{U}, \underline{V}) \in \mathbf{M}^2$; $\Phi(\underline{U}, \underline{V}) \notin \eta^{k+1} \mathbf{A}$.

The following proposition is taken form [4].

7. Proposition. If Φ is a bilinear form of order k then there exists at least one form Λ of order 0 such that

$$\Phi = \eta^k \Lambda$$
.

II. INERTIAL LAW OF SYMPLECTIC FORMS ON MODULES OVER PLURAL ALGEBRA

Let the dimension n of M be an even number.

- 1. **Definition.** Let $\Phi \colon \mathbf{M}^2 \to \mathbf{A}$ be a symplectic form³. If all elements of the basis $\mathcal{U} = \{\underline{U}_1, \underline{V}_1, \underline{U}_2, \underline{V}_2, \dots, \underline{U}_r, \underline{V}_r\}$ of \mathbf{M} fulfil the conditions
- (1) $\Phi(\underline{U}_i, \underline{U}_j) = \Phi(\underline{V}_i, \underline{V}_j) = 0$,
- (2) $\Phi(\underline{U}_i, \underline{V}_i) = \{1, \eta, \eta^2, \dots, \eta^m\},\$
- (3) $\Phi(\underline{U}_i, \underline{V}_i) = 0$ for $i \neq j$,

³ A form Φ satisfies $\Phi(\underline{X},\underline{X}) = 0$ for all $\underline{X} \in \mathbf{M}$.

then \mathcal{U} is called the symplectic basis of M with respect to Φ .⁴

2. Remark. Relative to this basis the matrix of the symplectic form has the form

where $\varphi_{ij} \in \{1, \eta, \eta^2, \dots, \eta^m\}.$

3. Theorem. Let Φ be a symplectic form on the module M. Then there exists a symplectic basis of M with respect to Φ .

Proof. By induction for $r = \frac{1}{2}n$.

- 1. The proposition is clear for r = 1.
- 2. Let the theorem be true for all (n-2)-dimensional **A**-modules, $n \ge 4$.
- (a) Let Φ be a form of order 0, i.e. $\exists (\underline{U},\underline{V}) \in \mathbf{M}^2 \colon \Phi(\underline{U},\underline{V})$ is a unit. Let us suppose—without loss of generality—that $\Phi(\underline{U},\underline{V}) = 1$.

This implies that \underline{U} , \underline{V} are linearly independent. Indeed, if $\alpha \underline{U} + \beta \underline{V} = \underline{o}$ then

$$0 = \Phi(\alpha U + \beta V, V) = \alpha \cdot \Phi(U, V) + \beta \cdot \Phi(V, V) = \alpha.$$

Analogously, we obtain $\beta = 0$.

Let us consider linear forms $\varphi_U(\underline{X}) \equiv \Phi(\underline{U},\underline{X})$ and $\varphi_V(\underline{X}) \equiv \Phi(\underline{V},\underline{X})$. Evidently, they are linearly independent. According to Proposition I.3 $\mathcal{N} = \operatorname{Ker} \varphi_U \cap \operatorname{Ker} \varphi_V$ is a free (n-2)-dimensional submodule. Due to the induction hypothesis we may construct a symplectic basis $\{\underline{U}_1,\underline{V}_1,\underline{U}_2,\underline{V}_2,\ldots,\underline{U}_{r-1},\underline{V}_{r-1}\}$ of \mathcal{N} with respect to the form $\Phi|\mathcal{N}^2$.

Now, let us show $\mathbf{M} = \mathcal{N} \oplus [\underline{U}, \underline{V}]$. If $\underline{X} \in [\underline{U}, \underline{V}]$ then $\underline{X} = \xi \underline{U} + \zeta \underline{V}$. Consequently,

$$0 = \varphi_U(\underline{X}) = \Phi(\underline{U}, \xi \underline{U} + \zeta \underline{V}) = \xi \cdot \Phi(\underline{U}, \underline{U}) + \zeta \cdot \Phi(\underline{U}, \underline{V}) = \zeta.$$

In a similar way we get $\xi=0$. This gives $\underline{X}=\underline{O}$ and therefore $\mathcal{N}\cap[\underline{U},\underline{V}]$ is a 0-dimensional submodule. We have (by Proposition I.4) $\mathbf{M}=\mathcal{N}\oplus[\underline{Y}]$.

⁴ For m=1 (i.e. **A** is a field) we get the usual definition of a symplectic basis over fields (see [2]).

Since $\underline{U}_j, \underline{V}_j \in \mathcal{N}$ for every $j \in \mathbb{N}(r-1)$, hence $\Phi(\underline{U}_j, \underline{U}) = \Phi(\underline{V}_j, \underline{U}) = 0$ and $\Phi(\underline{U}_j, \underline{V}) = \Phi(\underline{V}_j, \underline{V}) = 0$. Thus $\{\underline{U}_1, \underline{V}_1, \underline{U}_2, \underline{V}_2, \dots, \underline{U}_{r-1}, \underline{V}_{r-1}, \underline{U}, \underline{V}\}$ forms a symplectic basis of \mathbf{M} with respect to Φ .

- (b) Let Φ be a bilinear form of order $k \neq 0$. According to Proposition I.7 there exists a bilinear form Ψ of order 0 with $\Phi = \eta^k \Psi$. By (a) we can construct a symplectic basis for the form Ψ , which is also a symplectic basis for the form Φ .
- **4. Definition.** Let Φ be a symplectic form $\mathbf{M}^2 \to \mathbf{A}$ and let the basis $\mathcal{U} = \{\underline{U}_1, \underline{V}_1, \underline{U}_2, \underline{V}_2, \dots, \underline{U}_r, \underline{V}_r\}$ be symplectic with respect to Φ . Let us define a system of sets $\mathcal{J}_0, \dots, \mathcal{J}_m$ as follows:

$$\mathcal{J}_k = \{i \in \mathbb{N}(r); \Phi(\underline{U}_i, \underline{V}_i) = \eta^k\}, \quad 0 \leqslant k \leqslant m.$$

If we denote $\pi_k = 2 \operatorname{card}(\mathcal{J}_k)$, $0 \leqslant k \leqslant m$, then

$$\mathfrak{Ch}(\Phi,\mathcal{U}) = (\pi_0,\ldots,\pi_m)$$

is called the characteristic of the symplectic form Φ with respect to the basis \mathcal{U} .

5. Definition. For any symplectic form $\Phi \colon \mathbf{M}^2 \to \mathbf{A}$ let us denote by \mathcal{V}_k^{Φ} the set

$$\{\underline{Y} \in \mathbf{M}; \eta^k \Phi(\underline{X}, \underline{Y}) = 0, \forall \underline{X} \in \mathbf{M}\}, \quad 0 \leqslant k \leqslant m.$$

The following lemma is evident:

6. Lemma. If \mathcal{U} is a basis of \mathbf{M} and Φ is symplectic form, then

$$\mathcal{V}_k^{\Phi} = \{ \underline{Y} \in \mathbf{M}; \eta^k \Phi(\underline{U}, \underline{Y}) = 0, \forall \underline{U} \in \mathcal{U} \}, \quad 0 \leqslant k \leqslant m.$$

7. Proposition. Let Φ be a symplectic form $\mathbf{M}^2 \to \mathbf{A}$ and let \mathcal{U} be symplectic with respect to Φ . Then a submodule \mathcal{V}_k^{Φ} of \mathbf{M} as an \mathbf{T} -vector subspace has the dimension

$$\dim_{\mathbf{T}} \mathcal{V}_{k}^{\Phi} = \sum_{j=0}^{m-k-1} (k+j)\pi_{j} + m \sum_{j=m-k}^{m} \pi_{j},$$

where $(\pi_0, \ldots, \pi_m) = \mathfrak{Ch}(\Phi, \mathcal{U}).$

Proof. \mathcal{V}_k^{Φ} is clearly a submodule of \mathbf{M} . Let $\mathcal{U} = \{\underline{U}_1, \underline{V}_1, \underline{U}_2, \underline{V}_2, \dots, \underline{U}_r, \underline{V}_r\}$ and let us consider a $\underline{X} \in \mathcal{V}_k^{\Phi}$, $\underline{X} = \sum_{i=1}^r \xi_i \underline{U}_i + \sum_{i=1}^r \zeta_i \underline{V}_i$. Putting $\gamma_j = \Phi(\underline{U}_j, \underline{V}_j)$, $j \in \mathbb{N}(r)$, we obtain

$$\Phi(\underline{X},\underline{U}_i) = -\zeta_i \gamma_i$$
 and $\Phi(\underline{X},\underline{V}_i) = \xi_i \gamma_i$

which yields $\underline{X} \in \mathcal{V}_k^{\Phi} \Leftrightarrow \forall i, i \in \mathbb{N}(r); \eta^k \Phi(\underline{X}, \underline{U}_i) = \eta^k \Phi(\underline{X}, \underline{V}_i) = 0 \Leftrightarrow \forall i, i \in \mathbb{N}(r); \eta^k \gamma_i \zeta_i = \eta^k \gamma_i \xi_i = 0$. As every $\gamma_i = \eta^{k(i)}$ we get (according to Definition 4) that $\underline{X} \in \mathcal{V}_k^{\Phi}$ if and only if the following conditions are valid:

Let us construct the following system of submodules in \mathcal{V}_k^{Φ} :

$$\mathcal{V}_{kj}^{\Phi} = \left\{ \underline{X} \in \mathbf{M}; \ \underline{X} \in \mathcal{V}_{k}^{\Phi} \wedge \underline{X} = \sum_{i \in \mathcal{J}_{j}} \xi_{i} \underline{U}_{i} \right\}, \quad 0 \leqslant j \leqslant m,$$

$$\mathcal{W}_{kj}^{\Phi} = \left\{ \underline{X} \in \mathbf{M}; \ \underline{X} \in \mathcal{V}_{k}^{\Phi} \wedge \underline{X} = \sum_{i \in \mathcal{J}_{j}} \zeta_{i} \underline{V}_{i} \right\}, \quad 0 \leqslant j \leqslant m.$$

Clearly, $\mathcal{V}_{k}^{\Phi} = \mathcal{V}_{k0}^{\Phi} \oplus \mathcal{V}_{k1}^{\Phi} \oplus \ldots \oplus \mathcal{V}_{km}^{\Phi} \oplus \mathcal{W}_{k0}^{\Phi} \oplus \mathcal{W}_{k1}^{\Phi} \oplus \ldots \oplus \mathcal{W}_{km}^{\Phi}$. We get [from (0)], that \mathcal{V}_{k0}^{Φ} or \mathcal{W}_{k0}^{Φ} , has **T**-basis

$$\bigcup_{i\in\mathcal{J}_0}\{\eta^{m-k}\underline{U}_i,\dots,\eta^{m-1}\underline{U}_i\} \text{ or } \bigcup_{i\in\mathcal{J}_0}\{\eta^{m-k}\underline{V}_i,\dots,\eta^{m-1}\underline{V}_i\}, \text{ respectively};$$

therefore $\dim_{\mathbf{T}} \mathcal{V}_{k0}^{\Phi} = \dim_{\mathbf{T}} \mathcal{W}_{k0}^{\Phi} = \frac{1}{2}\pi_0 k$. Analogously, conditions (j) imply that $\dim_{\mathbf{T}} \mathcal{V}_{kj}^{\Phi} = \dim_{\mathbf{T}} \mathcal{W}_{kj}^{\Phi} = \frac{1}{2}\pi_j (k+j)$, and the condition (m-k) implies that $\dim_{\mathbf{T}} \mathcal{V}_{kj}^{\Phi} = \dim_{\mathbf{T}} \mathcal{W}_{kj}^{\Phi} = \frac{1}{2}\pi_j m$, $m-k \leq j \leq m$.

The relation for the T-dimension of \mathcal{V}_k^{Φ} is now evident.

8. Theorem (inertial law). Let a symplectic form $\Phi \colon \mathbf{M}^2 \to \mathbf{A}$ be given. If \mathcal{U} , \mathcal{V} are arbitrary symplectic bases of \mathbf{M} with respect to this form, then

$$\mathfrak{Ch}(\Phi,\mathcal{U}) = \mathfrak{Ch}(\Phi,\mathcal{V}).$$

Proof. Let $\mathfrak{Ch}(\Phi,\mathcal{U}) = (\pi_0,\ldots,\pi_m)$. Then Proposition II.7 implies

$$\dim_{\mathbf{T}} \mathcal{V}_{k}^{\Phi} = \sum_{j=0}^{m-k} \pi_{j}(k+j) + \sum_{j=m-k+1}^{m} \pi_{j} \cdot m,$$

$$\dim_{\mathbf{T}} \mathcal{V}_{k-1}^{\Phi} = \sum_{j=0}^{m-k} (\pi_{j}(k+j) - \pi_{j}) + \sum_{j=m-k+1}^{m} \pi_{j} \cdot m.$$

Consequently, we have $\dim_{\mathbf{T}} \mathcal{V}_k^{\Phi} - \dim_{\mathbf{T}} \mathcal{V}_{k-1}^{\Phi} = \sum_{j=0}^{m-k} \pi_j$. Let $\mathfrak{Ch}(\Phi, \mathcal{V}) = (\nu_0, \dots, \nu_m)$.

Then we obtain $\dim_{\mathbf{T}} \mathcal{V}_{k}^{\Phi} - \dim_{\mathbf{T}} \mathcal{V}_{k-1}^{\Phi} = \sum_{h=0}^{m-k} \nu_{h}$, i.e. $\sum_{j=0}^{m-k} \pi_{j} = \sum_{h=0}^{m-k} \nu_{h}$. Putting k = m, m = 1, ..., 0, we get

$$\pi_0 = \nu_0, \ \pi_0 + \pi_1 = \nu_0 + \nu_1, \ \dots, \ \sum_{j=0}^{m-k} \pi_j + \pi_m = \sum_{h=0}^{m-k} \nu_h + \nu_m,$$

which successively yields $\pi_0 = \nu_0, \, \pi_1 = \nu_1, \, \ldots, \, \pi_m = \nu_m$.

References

- F. W. Anderson, F. K. Fuller: Rings and Categories of Modules. Springer-Verlag, New York, 1973.
- [2] E. Artin: Geometric Algebra. Nauka, Moskva, 1969. (In Russian.)
- [3] M. F. Atiyah, I. G. MacDonald: Introduction to Commutative Algebra. Mir, Moskva, 1972. (In Russian.)
- [4] M. Jukl: Grassmann formula for certain type of modules. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 34 (1995), 69-74.
- [5] M. Jukl: Inertial laws of quadratic forms on modules over plural algebra. Math. Bohem. 120 (1995), 255–263.
- [6] M. Jukl: Linear forms on free modules over certain local ring. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 32 (1993), 49-62.
- [7] B. R. McDonald: Geometric Algebra over Local Rings. Pure and applied mathematics, New York, 1976.

Author's address: Marek Jukl, Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic, e-mail: jukl@matnw.upol.cz.