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Abstract. In the present paper we deal with the relations between direct product decom-
positions of a directed set L and direct product decompositions of intervals of L.

Keywords: directed set, direct product decomposition, atomicity

MSC 1991: 06A06

1. INTRODUCTION

Basic results on direct product decompositions of partially ordered sets were
proved in [1].

For a directed set L and an element s° of L we apply the notion of the internal
direct product decomposition

©°: L—»HXZ-O

el

with the central element s” in the same sense as in [5]; cf. also Section 2 below.
Here, X! are convex subsets of L containing the element s’; they are called internal
direct factors of L (with the central element s°).

We denote by D(L, s%) the system of all direct factors of L with the central element
5. This system is partially ordered by the set-theoretical inclusion. Then D(L, s°)
is a Boolean algebra.

If s' is another element of L, then the Boolean algebras D(L, s°) and D(L, s') are
isomorphic. Hence, if we consider the Boolean algebra D(L, s”) up to isomorphism,
then it suffices to write D(L) instead of D(L, s).
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In the case when L can be represented as a direct product of directly indecompos-
able direct factors we obtain that the Boolean algebra D(L) is atomic. The converse
implication does not hold in general.

Sufficient conditions for D(L) to be atomic were found in [4] in the case when L
is a lattice. In [6] sufficient conditions were given under which a complete lattice is a
direct product of directly indecomposable direct factors. This result was generalized
in [4]. For related results cf. also [2], [3].

We denote by

L,—the class of all directed sets L such that the Boolean algebra D(L) is atomic;

Ly—the class of all directed sets L such that L is a direct product of directly
indecomposable direct factors.

If L € L, and if L; is an interval of L then L; need not belong to L,.

In the present paper the following result will be proved:

(A) Let L be a directed set and let {L;};csr be a system of intervals of L such
that
(1) the system {L;}icr is a chain (under the partial order defined by the
set-theoretical inclusion) and |J L; = L;
(ii) all L; belong to Ly. !
Then L belongs to L,.

2. INTERNAL DIRECT FACTORS

We start by recalling some definitions and results from [5] concerning internal
direct product decompositions of directed sets.

In the whole paper L denotes a directed set. For u,v € L with u < v we denote
by [u,v] the corresponding interval of L. If X is a nonempty subset of L, then we
consider X to be partially ordered (with the partial order inherited from L).

Let L; (i € I) be directed sets; their direct product will be denoted by [ L;. If
il
 is an isomorphism of L onto [] L;, then the relation
i€l

(1) p: L — HLi
icl

is called a direct product decomposition of L.
For i € I and = € L we denote by x(L;, ) the component of z in L; under the
morphisms . If X C L, then we put

X(L;, ) = {z(Li,p): x € X}.
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L is called directly indecomposable if, whenever (1) is valid, then there is i(1) € T
such that card L; = 1 for each i € I'\ {i(1)}. In such a case L is isomorphic to L;).
Suppose that (1) holds. For each i € I and x € L we put

[#](Li, i) = {y € L: y(L;, ) = x(L;, ) for each j € I'\ {i}}.
Let s° be a fixed element of L,
LY = [s°)(Li, ).
Given z € L, there exists a uniquely determined element z; in LY such that
z(Li, ) = zi(Ls, @)

The mapping
(2) o — [z
defined by

(2) ¢(2) = (-0 20, Dier

is also a direct product decomposition of L. We call (2) an internal direct product
decomposition with the central element s°. The direct factors L? are called internal.
For each i € I, LY is isomorphic to L;.

In what follows, whenever we consider an internal direct product decomposition of
L or of a subset of L, then we always suppose that the corresponding central element
is s9.

From the definition of the internal product decomposition we immediately obtain:

2.1. Lemma. Let (2) be an internal direct product decomposition and let
i € I,z € L. Then the following conditions are equivalent:
(i) =€ Lg;
(i) z(LY, %) = a;
(i) (L9, ") = s° for each j € T\ {i}.

2.2. Proposition. (Theorem (A) of [5].) Suppose that two internal direct
product decompositions are given,

i L— [ A, 2 L— ][] B;

iel jeJ
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such that there exist i(1) € I and j(1) € J with A;1y = Bj1y. Then for each z € L
the relation

(A1), ¥1) = z(Bjq), v2)

is valid.

Hence, if (2) is as above, then instead of x(LY, ¢°) it suffices to write z(LY?); for
X C L, the meaning of X (L?) is analogous. Also, we will write

2) L=z

iel
instead of (2).

2.3. Lemma. Let (2') be valid and let u,v € L, u < s <w, i € I. Then

(2.3.1) v(LY) = max{t; € LY: s° < t; < v},

(2.3.2) u(LY) = min{ts € LY: 5" > to > u}.

Moreover, v = sup{v(LY)}ic; and u = inf{(L?)};e1.

Proof. The relation (2.3.1) was proved in [5], Lemma 3.2. The relation (2.3.2)
can be proved dually.

Further, in view of (2.3.1) we have v(LY) < v for each i € I. Let t € L be such
that ¢ > v(L?) for each i € I. Then for each i € I we have

t(L3) = (L) (L) = v(LY),

yielding that ¢ > v. Therefore v = sup{v(L{)}ic;. The analogous relation for u can
be verified dually. O

For A € D(L) we denote
At ={acA:a>s"), A ={acA:a<s"}.

2.4. Lemma. Let A,B € D(L). If A* C Band A~ C B, then A C B.

Proof. Suppose that AT C B, A~ C B and a € A. There exist © € A~
and v € AT such that v < @ < v. Then u,v € B. Since B is convex in L we get
a € B. O
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2.5. Lemma. Let (2') be valid and let X be a convex directed subset of L,
s9€ X,i€l. Then X(LY) =X nNLY.

Proof. In view of 2.1 we have X N LY C X (LY). Let y € X(LY). Hence there
exists € X such that y = z(L?). Since X is directed, there exist u,v € X such that
both z and sY belong to the interval [u,v]. In view of 2.3 we have u(L?),v(LY) €
X N LY. Clearly u(L?) <y < v(LY). Hence y € X N LY. O

If (2/) is valid, I; C I, and if for each i € I; we have {s°} € Z; C LY, then [] Z
i€l
denotes the set

{weL:a(l))eZ foreachic I and x(L))=s"foreachi € I\ I}
Hence, if Z C L with s° € Z, then
Zx{s"} = Z.
Also, we obviously have
2.6. Lemma. Let (2') be valid and i € I. Then

L=L{x [ L.
IENG;

Suppose that two internal direct product decompositions are given,

icl

(4) L=]][B;

=

The decomposition (3) is said to be a refinement of (4) if for each j € J there exists

a subset I(j) of I such that
B; = H A;.
i€1(j)
2.7. Proposition. Let (3) and (4) be valid. Then we have

(5) L= [[ insy

iel,jeJ
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and (5) is a common refinement of both (3) and (4). Namely, for eachi € I and each
Jjed,
(6) A; = [J(4in By),
jeT
(7) B; = [[(4:nBy).

icl

Proof. In view of Theorem (B) in [1] (cf. the relation (5) in the proof of (B))

we have
H BJ(AZ)
ieljed
and this decomposition is a common refinement of both (3) and (4).

Hence according to 2.5, the relation (5) is valid and it is a common refinement of
both (3) and (4).

Let i(1) € I. Since (5) is a refinement of (3), A, is an internal direct product
of some A; N B; ((i,5) € I x J). Without loss of generality we can assume that
A;1) # {s"}. Thus it suffices to take into account only those (i, j) € I x J for which
A; N Bj # {s°}; the set of these (i, ) will be denoted by M.

Let i € I, i #i(1) and j € J. Then A;1y N A; = {s"}, whence according to 2.5,

Ay (Ai N Bj) = Ayy N (AN Bj) = {s"},
yielding that if (i, j) € M, then i = 1(1). Hence

Ay C H i(1) N Bj)
jedJ

The internal direct factors A;;) N B; which are equal to {59} can be cancelled in
the above relation. Let j(1) € J and suppose that A;q) N Bj(1) # {s°}. By way of
contradiction, assume that

A S I (A nBy.
JENGM}

There exists @ € A;(1y N Bj(1y with z # s°. If j € J, j # j(1), then 2.5 yields that
Bj(l)(Az(l ﬂB ) = {6 },

whence z ¢ [[  (Ajq) N Bj), which is a contradiction. Therefore

jeN{HM)}
Ay = H(Ai(l) N Bj).
jeJ
Hence (6) holds. The method of proving (7) is analogous. O
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2.8. Lemma. Let (2') be valid and let X be an interval of L, s € X. Then

X =][(xnL.
i€l

Ifz € X andi € I, then 2(L?) = (LY N X).

Proof. First, let i € I be fixed. There are u,v € L such that X = [u,v]. Put
w; = uw(L?), v; = v(LY). Hence [u;,v;] is an interval of LY and X(L?) C [us,v;].
Let t € [u;,v;]. There exists z € L such that z(L?) = t and 2z(L?) = s" for each
j € I\ {i}. Since s € X we obtain that z € X and then t € X(L?). Therefore
[ui, vi] = X (L3).

We clearly have X C ]| X(LY). Let z € I1 X(LY). Then z(LY) € [u;,v;] for each
i € I, whence z € [u, ] .zerfhus X = H X(IZEJ; Now it suffices to apply 2.5 and we
obtain that X = [[(X N LY). <

The last statergeelnt of the lemma is an immediate consequence of the above con-
struction. (Namely, for each 2 € X, ©°(u) is as in (2") and then ¢°(z) € lle—[l X(L9).)

O

3. AUXILIARY RESULTS

In this section we deal with the partially ordered set D(L) consisting of all internal
direct factors of L. Then {s°} and L are the least element and the greatest element
of D(L), respectively.

We call D(L) atomic if for each A € D(L) with A # {s"} there exists an atom A;
of D(L) such that 4; C A.

If A,B € D(L) and if inf{A, B} or sup{A, B} does exist in D(L), then we denote
these elements by A A B or by AV B, respectively.

3.1. Lemma. Let L = A, X By, L =Ay X B3, A1 = A;. Then B, = Bs.
Proof. We have Ay N By = {s°} = A3 N By. Hence from 2.7 we obtain
By = (B1 N Az) x (B1 N By) = {s°} x (B1 N By) = By N By,
thus By C Bs. Analogously we get By C By. O

3.2. Lemma. Let A € D(L). Then there exists a unique A’ € D(L) such that
L=AxA.

Proof. In view of 2.6, such A’ does exist. Then 3.1 implies that A’ is uniquely
determined. O
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3.3. Lemma. Let A, B,C,A,B, € D(L). Suppose that Ay = Ax C, By =
BXC, A1 <B1 ThenASB

Proof. Leta€ A". Hencea € A; and a(C) = {s"}. At the same time, a € B;
and thus in view of 2.3 we have

a = sup{a(B), a(C)} = sup{a(B), s"}.

From a > s¥ we get a(B) > s°(B) = s°. Thus a = a(B) and hence a € B. We have
shown that AT C B. Analogously we can verify that A~ C B. Then according to
2.4 we have A C B. O

3.4. Lemma. Let A,B € D(L). Then AANB=ANB.

Proof. According to 3.2 we have
L=AxA", L=BxB.
Thus in view of 2.7,
(8) L=(AnB)x (ANnB)x (A'nB)x (A nB).

Hence by applying 2.6 we obtain that A N B belongs to D(L). If C € D(L) and
C <A C<B,then C < AN B, whence ANB=ANBKB. O

3.5. Lemma. Let A,B € D(L). Then

AVB=(ANB)x (ANB') x (A NnB).

Proof. In view of (8) and 2.6,
(ANB) x (AnB") x (AN B) € L(D);
denote this element of L(D) by P. We have
A=(ANB)x(ANB'), B=(BNA)x(BnNA),

whence A < Pand B P. Let Q € D(L), Q@ > A and Q > B. Then from (8) and
2.7 we obtain

Q=Q@NANB)x (QNANB)x (QNA'NB)x (QNANB"
=(ANB)x (ANB)Yx (ANB)x(QNA'NB)=Px(QNANB,

thus @@ > P. Therefore AV B = P. O
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3.6. Corollary. The partially ordered set L(D) is a lattice with the least
element {s°} and the greatest element L.

3.7. Lemma. For each A € L(D), A’ is a complement of A in L(D).

Proof. From L = A x A’ we obtain AN A" = {s°}, hence in view of 3.4,
AN A" = {s°}. Further, in view of 3.5,

AVA = (ANA)x (ANA) x (ANA)={s"Yy x Ax A = L.

O

Consider the mapping ¢: D(L) — D(L) defined by ¢(A) = A’ for each A €
D(L).

3.8. Lemma. The mapping ¢ is a dual isomorphism of D(L) onto D(L).

Proof. If A€ D(L), then ¢(p(A)) = A, hence ¢ is a bijection. Let A, B €
D(L), A< B. In view of 2.7,

B =(B'nA)x (B n4).

Since
{s"} < BPnA<B' nB={s"

we get B'NA = {s} and thus B’ = B'N A’ yielding that B’ < A’. Conversely, from
B’ < A’ we obtain that B = B" > A" = A. O

3.9. Lemma. Let A, B € L(D) be such that B is a complement of A in L(D).
Then B = A'.

Proof. According to the assumption we have
ANB={s"}, AvB=L.
Hence in view of 3.8 we obtain
AVvB =L AANB ={s.

Thus
ANB=ANB = {s"}.

The relation (8) is valid and hence
9) L=(AnB) x (A" nB).
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Let a € AT. Then in view of 2.3 we have
a(A'NB) =5
Put a(AN B’) = z. According to (9) and 2.3,
a = sup{xz,s’}.

Clearly z > s°, whence a = . Thus AT C AN B’. Dually we obtain that A~ C
AN B’. Thus according to 2.4, A C AN B’ yielding that A C B’. Analogously we
establish the validity of the relation B’ C A. Hence A = B’ and thus A’ = B. O

From 3.9 and 3.2 we infer

3.10. Lemma. Fach element of D(L) has a unique complement.

Now let A, B be elements of D(L), ANB=P, AVB =Q. From L = P’ x P and
from 2.7 we obtain
Q=(Q@nNP)xP

Put QNP = Q. Hence Q = ;1 x P. Analogously we have
A:Ale, B:lep,

where A1 = AN P’ and B; = BN P’. Thus in view of 3.3 we get A; < Q1, B1 < Q1;
also

AANB =AiNB =(ANP)N(BNP)=(AnNB)NP =PnP = {s°.
Further we have
Q=AVB=(ANB)x (ANB)x (AANnB)=Px(AnB") x (A NnB)
and Q; C Q, Q, N P = {s°}. Therefore

Qi=(PNQ1)x(ANB'NQ1) x (A NBNQ1)
=(ANB' N@Q1) x (A NBNQy).
Let us consider the elements A’ BN Q) and A] N By of D(L).
Let 2 € A} N B;. Then z € By, whence z € Q1 and z € B. Therefore z(P) = s°.

From L=AXx A’ = A; x P x A’ we obtain that A} = P x A’. Thus z € A’ and so
ANB CANBNQ..
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Further, let y€ AANBNQ;. Thusye BC Q = Q1 x P and so in view of y € @
we get y(P) = {s°} yielding that y € B;. Next we have y € A’ C A)]. Therefore
A'NBNQ: C AN B

Summarizing, we obtained the relation
A'NnBNQ, =A}NB;.
Analogously we can prove
ANB NQ, = A NB;.

Hence
Ql = (Al ﬂBl) X (Al ﬁBi) X (All ﬁBl) = A]_ \/Bl-
Thus we have verified the following result.

3.11. Lemma. Let A, B, P,(Q, A, and By be as above. Then A, is a complement
of By in the lattice D(Py).

3.12. Lemma. Let A, P,Q be as above, C € D(L), P C < Q,A#£C. If
0201 XP, thenAl;éCl.

Proof. If C4y = Ay, then A = A; x P implies that C = A, which is a
contradiction. O

3.13. Lemma. Let A,P,Q € D(L), P < A < Q. Then A has exactly one

complement in the interval [P, Q] of D(L).

Proof. This is a consequence of 3.10, 3.11 and 3.12. (|

3.14. Proposition. The partially ordered set D(L) is a Boolean algebra.

Proof. It is well-known that 3.13 implies the distributivity of D(L). Hence 3.6
and 3.13 suffice to complete the proof. O
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4. CONSTRUCTION OF PARTIALLY ORDERED SETS C}

In this section we suppose that the assumptions of (A) are satisfied. The case
L = {s"} being trivial we can assume without loss of generality that card L > 1 and
card L; > 1 for each i € I.

For each i(1) € I there exists an internal direct product decomposition

(10) Lin= [ Aw;
jea(i(1)

such that each Aj;(1); is directly indecomposable and card A;1); > 1. From 2.7 it
follows that such an internal direct product decomposition is uniquely determined.

In view of condition (i) in (A) we can suppose that the set I is linearly ordered
and that whenever i(1),4(2) € I, i(1) < i(2), then L;1) C L)

4.1. Lemma. Leti(1),i(2) € I, (1) < i(2), j(1) € J(i(1)). Then there exists a
uniquely determined j(2) € J(i(2)) such that

Aiyjiy € Ai)j(2)-
Proof. We have

(10") Lip) = H A2,
JEJ(i(2))
Lia) C Li2)-

Hence L;(1) is an interval of L;) and thus according to 2.8,

Ly = H (Li1y N Ay2);)-
JEJ(i(2))

Then, since A;(1); is a directly indecomposable internal direct factor of L;;) we infer
that there exists j(2) € J(i(2)) such that

Aii) & Lia) N Aiz)j2)-
This yields that whenever j € J(i(2)) and j # j(2), then
Aij) N Ai@); = {s°}
Hence the index j(2) is uniquely determined. O
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If i(1) < i(2) and if j(1),j(2) are as above, then we denote

Piyi(2) (1) = J(2).
For i(1) = i(2) we put
Piyi(2) (J1) = J(1).

4.2. Lemma. Let i(1),i(2),i(3) € I, i(1) < i(2) < i(3), j(1) € J(i(1)) and
J(2) = pi)i2)(j(1)). Then

Pi1)i3) (1 (1) = @ic)i(a) (1(2))-
Proof. Denote ©;(2)i3)(j(2)) = j(3). Then
Aii) S Ai@)i2) S Ai3)i3):

whence ©;(1)i(3) (1)) = j(3). O
Let i(1) € I and j(1) € J(i(1)). We put

B = U @i
i(2),5(2)

where i(2) runs over the set {i(2) € I: i(2) > i(1)} and for each such i(2) we have
J(2) = piyi2) (7(1))-

Let us remark that if i(1) € I and j(1), j'(1) are distinct elements of J(i(1)), then
Bl(l)](l) and Bl(l)]’(l) can be equal. Further, lfl(l) < 'L<2) and ](2) = ()01(1)1(2) (j(l)),
then according to 4.2 we have

Bi;1) = Bi2)j(2)-

Let Cy be the system of all directed sets B;(1);(1), where i(1) runs over the set I,
and for each i(1) € I, j(1) runs over the set J;1).
Let i(1) € I and k € K. Consider the relation (10) and denote

ia(l) ={j € J(i(1)): Ajny; € Ci},
Ty = )\ T,
Liy =TI A,

ACHEN

b
Ligy =TI 4w

= 7b
]€J¢(1)
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Then
(10”) Liqy = Liwy % Liy:
Also, from the definition of C} we obtain

4.3. Lemma. Let i(1),i(2) € I, i(1) <i(2). Then Lf,) is an interval of L,

and le.’(l) is an interval of L?(z)- Moreover,

Ce=|J Liy.

i(1)el

We put
*x b
Cr = U Liqy-
(VeI

4.4. Lemma. Let i(1),4(2) € I, i(1) <i(2), ® € L. Then
x( ?(1)) = z( ?(2)%

2(Ly) = 2(LYg))-
Proof. This is a consequence of (10”), 4.3 and 2.8. O
Let 2 € L. There exists i(1) € I such that # € L;1). Denote
rt = x(Lf(l)), z’ = m(L?(l))'

In view of 4.4, the mapping ¢: L — L X L defined by

U(z) = (a%,2")
is correctly defined.
Clearly 2% € Cy, and 2° € Cj.
4.5. Lemma. Let z,y € L. Then x < y if and only if z* < y* and x° < y°.

Proof. There exists i(1) € I such that both z and y belong to L;1). Let z < y.
Then in view of the definition of the mapping 1 we have 2% < y® and z® < »°.
Conversely, suppose that 2% < y* and 2® < y*. Thus (10”) yields that = < y. O
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4.6. Lemma. Let 2y € Ck, 22 € Cf. There exists ¢ € L such that ¢(z) =
(2’1,22).

Proof. Thereis i(1) € I with 21,22 € Lj1). Then z; € L;l(l) and zy € L?(l)'
Now it suffices to apply (10”). O

Also, from the definition of 1) we immediately obtain

4.7. Lemma. Letx € L. Then
(i) z € Ck & Y(x) = (z,5%),
(ii) z € Cf & ¢(z) = (59, 2).

From 4.5, 4.6 and 4.7 we infer

4.8. Lemma. The mapping 1 defines an internal direct product decomposition

L:C}CXC'Z:.

4.9. Lemma. Let A€ D(L), i(1) € I, j(1) € J(i(1)), AN A;q);a0) # {s°}-
Then Bz(l)](l) - A.

Proof. Since 4;);(1) is directly indecomposable, from AN A;1);1) # {s°} we
obtain AN Al(l)](l) = Ai(l)j(l)a thus Az(l)_](l) g A.

Let i(2) > i(1). Denote @;1)i2)(j(1)) = j(2). Hence by the same reasoning as we
have applied to A;(1);(1) we get Aj2)j2) € A. Therefore B;1);1) C A. O

4.10. Lemma. Let k € K. Then C}, is directly indecomposable.

Proof. By way of contradiction, suppose that C} is directly decomposable.
Hence it can be represented in the form

Cr=AxB, A#{s"}+#B.

There is i(1) € I and j(1) € J(i(1)) such that Cy = B;(1);(1)- Hence A;1);(1) is an
interval of Cj. This yields

Ainyia) = (Aiyja) NA) x (Aiqyja) N B).

Since A;(1);(1) is directly indecomposable, without loss of generality we can suppose
that

Aiyiay = Ay NA.

Thus in view of 4.9 we obtain the relation Cy = B;(1);1) € A, whence B = {s°%},
which is a contradiction. O
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4.11. Lemma. Let {s°} # A € D(L). Then the following conditions are
equivalent:
(i) A is an atom of D(L).
(ii) A is directly indecomposable.

The proof is the same as in [4], Lemma 2.1.

4.12. Lemma. Let A € D(L), A # {s°}. Then there exist i(1) € I and
j(1) € J(i(1)) such that AN A;q);) 7# {s°}.

Proof. There exists 7 € A with 2 # sY. Further, there exists i(1) € I such
that 2 € L;(). Consider the relation (10). There is j(1) € J(i(1)) such that

2(Aiay1)) # 5°-

Hence AN Ai(l)j(l) = A(Ai(l)j(l)) i {30}- =

Proof of (A). It suffices to apply 4.8-4.12. O

5. EXAMPLES

Let £, and £, be as in Section 1.
From 4.11 and 2.7 it easily follows that £, is a subclass of L,.

5.1. Example. Let L be the system of all finite subsets of an infinite set M;
this system is partially ordered by the set-theoretical inclusion. Then L belongs to
L, but it does not belong to Ly.

In particular, let M be the set of all positive integers, s = (). For each n € M

put v, = {1,2,...,n}, L, = [s°,v,]. Then L, € L, for eachn € M, | L, =L,
neM
hence L satisfies the assumptions of (A). Nevertheless, L ¢ L.

5.2. Example. There exists an infinite Boolean algebra X such that X has no
atom. Let L = X U {y} be such that y ¢ X and y is the greatest element of L.
Further let s be the least element of X. Then D(L) = {{s°}, L}, whence L € L,.
On the other hand, X is an interval of L and for each x € X, the interval [s°, z]
belongs to D(X), hence the partially ordered set D(X) is isomorphic to X. Therefore
D(L) fails to be atomic, i.e., X does not belong to L,.
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5.3. Example. The assertion of Lemma 2.8 cannot be extended to the case
when X is a convex subset of L with s° € X. Indeed, let M be an infinite set and
let L be the Boolean algebra of all subsets of M; put s° = (). For each m € M let

L,, = {0,{m}}. Then L = [] Lm. Let X be the system consisting of all finite
meM
subsets of M. This system is directed, convex in L and for each m € M we have
XNLy,=L,. However, X # [[ L.
meM
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