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CHARACTERIZING THE INTERVAL FUNCTION
OF A CONNECTED GRAPH
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(Received December 3, 1996)

Abstract. As was shown in the book of Mulder [4], the interval function is an important
tool for studying metric properties of connected graphs. An axiomatic characterization of
the interval function of a connected graph was given by the present author in [5]. (Using
the terminology of Bandelt, van de Vel and Verheul [1] and Bandelt and Chepoi [2], we may
say that [5] gave a necessary and sufficient condition for a finite geometric interval space to
be graphic).

In the present paper, the result given in [5] is extended. The proof is based on new ideas.
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The letters h—n will be reserved for denoting non-negative integers. By a graph we
will mean a finite undirected graph without multiple edges and loops (i.e. a graph in
the sense of Chartrand and Lesniak [3], for example). If U is a nonempty set, then
we denote by Q(U) the set of all mappings of U into the set of all subsets of U.

Let G be a connected graph, and let V(G), E(G) and dg denote its vertex set, its
edge set, and its distance function, respectively. Following Mulder [4], we define the
interval function I of G as follows:

Ig(z, 2) = {y € V(G); y belongs to an z-z path of length dg(z, 2) in G}
for all z, z € V(G). Obviously, I € Q(V(G)).

Proposition 1. Let G be a connected graph, and let J denote the interval
function of G. Put U = V(G). Then J fulfils the following Axioms A—G (for arbitrary
u, v, x,y €U):

A ifve J(u,z), then J(v,z) C J(u,x);
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ifve J(u,x) and y € J(v, x), then v € J(u,y);

u € J(u,);

| (u,u)| = 1;

J(u, z) = J(z,u);

1'1"|J(u,v)‘ =2= |J(m,y)|, v € J(u,z) and u € J(v,y), then z € J(v,y);
if|J(u,v)| =2 = |J(z,y)| andv € J(u, ), then either x € J(v,y) ory € J(u,z)
orv € J(u,y).

Q- @mJYaw

The validity of Axioms A-E follows from 1.1.2 in [4]. The verification of Axiom
G was given in [5].

Verification of Axiom F: Let the assumption in F hold. Then dg(v,y) < dg(v, )+
1 =dg(u,r) <dg(u,y) +1=dg(v,y). Hence = € J(v,y).

As will be shown in our theorem, Axioms A—G can be used for characterizing the
interval function of a connected graph. A similar result was originally proved in [5].

In the theorem of [5], instead of Axiom F the following Axiom Fy was used (u, v,
x, y are arbitrary elements in U):
Fo if |[J(u,0)| = 2 = |J(z,y)

x € J(v,y).
Because of the proof of our theorem we prefer Axiom F to Axiom Fy.

0 € J(u,z),u € J(v,y) and y € J(u,z), then

Proposition 2. Let U be a nonempty set, let J € Q(U), and let J fulfil Axioms
A-E and G. Then it fulfils Axiom F if and only if it fulfils Axiom F.

Proof. Obviously, F implies Fy. Conversely, let J fulfil Axiom F,. Consider
arbitrary u,v,z,y € U such that ’J(u,v)’ =2 = |J(x,y)|, v € J(u,z) and u €
J(v,y). We will show that = € J(v,y). Suppose, to the contrary, that = ¢ J(v,y).
Axiom Fy implies that y ¢ J(u, z). By Axiom G, v € J(u,y). Since u € J(v,y), we
conclude that © = v, which is a contradiction. Thus .J fulfils Axiom F. [

Proofs of the following two lemmas are not difficult and will be omitted. Note

that the proof of Lemma 2 depends on the fact that U is finite.

Lemma 1. Let U be a nonempty set, let J € Q(U), and let J fulfil Axioms A, B
and E. Let zq,...,Zn+m € U, let

(1) Tnt1 € J(Tna ‘,I"O)a ey Tngm € J(mnjtmfla ‘TO)
and
(2) To € J(Tpi1,%1), ..o, Tp—2 € J(Tpqp—1,Tp—1),



where 2 < k <m andn > 1. Then

Tntit1 € J(Tnyis®i), .o Tpyk € J(Tnyk—1,74) and

(3) ic1 € J(Tnpiv1, %)y .y ic1 € J(Tptk,x;) for eachi, 1 < i< k— 1.

Lemma 2. Let U be a nonempty finite set, let J € Q(U), and let J fulfil Axioms
A-E. Ifu, z € U and u # x, then

J(u,x) — {u} = U J(v, z).

veJ(u,x)
[J(u,v)[=2

Remark 1. Let U be a finite nonempty set, let J € Q(U), let J fulfil Axioms
A-E, let u, x € U and u # z. By Axiom C, u € J(u,z). Lemma 2 implies that
there exists w € U such that w € J(u,x) and ’J(u, w)| = 2. Consider an arbitrary
v € J(u,z) such that |J(u,v)| = 2. Recall that U is finite. Lemma 2 implies that

there exist wo, wi, ..., w; € U, where j > 1, such that wy = u, w; = v, w; =z,
’J(wo,w1)| =...= |J(wj,1,wj)’ =2

and
wy € J(wo,x),...,wj € J(wj—1, ).

Let U be a finite nonempty set, and let J € Q(U). We will say that a graph G is
the graph of J if V(G) = U and ¢ and z are adjacent in G if and only if ’J(t, z)’ =2
for all distinct ¢, z € U. Obviously, there exists exactly one graph of J. As follows
from Remark 1, if J fulfils Axioms A-E, then the graph of J is connected.

It is clear that if G is a connected graph, then G is the graph of .

The following theorem extends (and partially modifies) the result of [5]:

Theorem. Let U be a finite nonempty set, let J € Q(U), and let G denote the

graph of J. Then the following three statements are equivalent:
(I) G is connected and J = Ig;
(IT) J fulfils Axioms A-G (for arbitrary u,v,z,y € U);
(IIT) J fulfils Axioms A-F (for arbitrary u,v,x,y € U) and I¢(t, z) C J(t,z) for all
t,zeU.

Remark 2. Let U be a nonempty set, and let J € Q(U). It is not difficult to
show that J is a geometric interval space in the sense of Bandelt, van de Vel and
Verheul [1], Verheul [7] and Bandelt and Chepoi [2] if and only if J fulfils Axioms

A-E. By our theorem, a finite geometric interval space is graphic in the sense of [1]
and [2] if and only if it fulfils Axioms F and G.
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In proving our theorem, we will need one more lemma. Let U be a finite nonempty
set, and let Jq, Jo € Q(U). Assume that J; and J; have the same graph. Let G denote
the graph of J; and Jo, and let n > 0. We will write

J1 Sy J2 (or J1 =) J2)

if and only if Jy(r,s) C Ja(r, s) for all r, s € U such that dg(r,s) < n (or Ji(r,s) =
Ja(r, s) for all r; s € U such that dg(r, s) < n, respectively).

Lemma 3. Let U be a finite nonempty set, let n > 0, J € Q(U), and let G denote
the graph of J. Assume that J fulfils Axioms A-F (for arbitrary u,v,z,y € U) and
that Ig g(n) J. Then I =(n) J.

Proof of Lemma 3. Let D denote the diameter of G. Instead of dg and
I we write d and I, respectively. We proceed by induction on n. The case when
n < 1 is obvious. Assume that n > 2. Since I C(,) J, we have I C(,_1) J. By the
induction hypothesis, [ =, _1) J. It D <n —1, then I =(,,) J. Let D > n.

Consider arbitrary r, s € U such that d(r, s) = n. We want to prove that J(r, s) C
I(r,s). First, assume that z € I(r,s) for each z € J(r, s) such that |J(r,z)| = 2. By
virtue of Lemma 2, J(r,s) C I(r,s). Now, assume that there exists ¢ € J(r, s) such
that |J(r,t)| =2 and ¢ ¢ I(r,s).

There exist xg, ..., € I(r, s) such that 29 = s, 2, = r and the sequence
(4) TnsTpn—15---,20
is a path in G. By virtue of Remark 1, there exist 41, ..., Zntm € U, where m > 1,

such that x, 11 =, Tpym = o,

(5) ’J(mn,mn+1)| =...= |J(mn+m,1,xn+m)’ =2
and (1) holds. Since the sequence

(6) Ty Tt 1y« - -y Lndm

is a path in G, m > n. Since z, 1 ¢ I(xn,20), we have d(z,41,70) > n. Hence
m>=n+ 1.
We will show that

(7) Tin—1 & J(Tppms Tm)-

Since m > n, (1) implies that x,, € J(@m-1,Tntm)- I -1 € J(Tm, Tnim), then
Axioms B-D imply that 2,,,—1 = 2, which contradicts (5). Thus (7) holds.
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By virtue of (7), there exists k, 1 < k < m, such that
(8) Tp—1 & J(Tnik, Tk)

and if £ > 2, then (2) holds. Recall that d(z,11,20) = n. There exists h, 0 < h
< k — 1, such that

) d(Tpint1,Th) 20
and
(10) if h < k—2, then d(zpihi2,Tpt1) <n—1.

By Lemma 1, if £ > 2, then (3) holds. Combining this fact with (1), we get

(11) Tpth+1 € J(iL’n+h,iL'h).

Moreover, (3) implies that

(12) it h<k—2, then ), € J(Tp1ht2, Thi1)-
Clearly,
(13) | J(@h, zhe1)| = 2 = [T (@nths Trgnir)]-

Obviously, d(Zp4ht1, Tht1) < n. It follows from (9) that d(xy4pt1, The1) = n— 1.
We distinguish two cases.

Case 1. Let d(zpin+t1,2ht1) = n. This implies that x,1n € [(Tptht1, Thit)-
Since I C(,) J, we have

(14) Tnih € J(Tpphit, Thet)-

Combining (11), (13) and (14) with Axiom F, we get

(15) rh € J(Tpyhy1s Thit)-

It follows from (8) that h < k — 2. According to (12), x, € J(Zpihi2,Thi1)- By
(10), d(zpyni2, vhy1) <n—1. Since I =,_1) J, 2p € I(Tpynio, Tai1). Therefore,
d(xpyhi2,2n) < n— 2. This implies that d(zp4p+1,2r) < n, which contradicts (9).
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Case 2. Let d(xptht1,2ht1) = n— 1. It follows from (9) that d(xy1n11,2n) = n.
Hence zp11 € I(Znihi1,7n). Since I C,,y J, we get

(16) Th+1 € J($n+h+1, .Th).
Combining (11) and (16) with Axiom B, we get
(17) Tptht1 € J(Tnths Thit)-

Since d(Zn4h,Thi1) < n—1and I =(,_1) J, we see that x,,ypy1 € [(Tnin, Thi1). We
have d(Zn+h+1, Tht+1) < n—2. This means that d(x,4pt1, 2n) < n, which contradicts
(9) again.

Thus J(r,s) C I(r,s). We conclude that I =, J, which completes the proof of
the lemma. O

Proof of the theorem. Instead of dg and I we write d and I, respec-
tively. By Proposition 1, (I) implies (II).

Now, we will prove that (II) implies (IIT). Suppose, to the contrary, that (II) holds
but (III) does not. Then there exists n > 2 such that I C(,,_q) J but it is not true
that I C(y) J. Since J fulfils Axioms A-F, Lemma 3 implies that I =(,,_1y J. Clearly,
there exist r, s € U such that d(r,s) = n and I(r,s) — J(r,s) # 0.

First, assume that z € J(r,s) for each z € I(r,s) such that |I(r,z)| = 2. Then
we get I(r,s) C J(r,s), which is a contradiction. Now, assume that there exists
t € I(r,s) such that |I(r,t)| = 2 and ¢t ¢ J(r,s). Obviously, there exist zo, ...,
Zp—1, Tn € U such that 29 = s, £p—1 = ¢, 2, = r and (4) is a path in G. Thus
Tp—1 & J(xn,x0).

By virtue of Remark 1, there exist @41, ..., Tptm € U, where m > 1, such that
Zptm = To, and (1) and (5) hold. Since (6) is a path in G, we have m > n. If m = n,
then (7) holds. If m > n, then similarly as in the proof of Lemma 3 we get (7) again.

There exists k, 1 < k < m, such that (8) holds and if ¥ > 2, then (2) holds.
Recall that 2,—1 ¢ J(zp,20) and d(zp,z9) = n. This implies that there exists h,
0 < h < k-1, such that

(18) Tpih-1 ¢ J(@ntn,xn) and d(Tpip, zh) =n
and
(19) if h <k —2, then either 2,1y € J(Zptni1, Thi1)

or d(Tpipi1,The1) <n—1.
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By Lemma 1, if k£ > 2, then (3) holds. Combining this fact with (1), we get (11).
Moreover, it is easy to see that (13) holds.

By (18), d(nth,xn) = n. Thus z,4p—1 € [(Tpyn, Thy1). Since I S,y J, we get
Tpth—1 € J(@nin, Ths1). I 21 € J(@ppn, xp), then, combining Axioms A and E,
we get Tpih-1 € J(Xpih, Tr), which contradicts (18). Thus

(20) Thi1 & J(Tntn, vh).

Obviously, d(zp4h+1,2p+1) < n. We distinguish two cases.

Case 1. Let (15) hold. As follows from (8), h < k — 2.

First, assume that d(zp4h11,2p+1) = n. By virtue of (19), (14) holds. Combin-
ing (11), (13) and (14) with Axioms E and F, we get xp41 € J(Tn+h,Zn), which
contradicts (20).

Now, assume that d(x,p+1,Zh41) < n— 1. Combining (15) with the fact that
J Cn1y I, we get o € J(Tpyni1,Thy1). Therefore, d(xnyni1,2n) < n— 2. This
implies that d(zy,+n,xn) < n, which contradicts (18).

Case 2. Let z, ¢ J(®ntn+1,Thr1). Combining this fact with (11), (13), (20)
and Axiom G, we see that (17) holds. Since d(zyp,2h+1) = n — 1, the fact that
J C(n—1y I implies that x4 p11 € I(Zntn, Thy1). Thus d(zpipng1, Thy1) = n—2. This
means that d(z,4nt1,2n) < n— 1. It follows from (18) that d(z,pi1,2n) =n — 1.
This implies that xp11 € I(¥nihi1,7h). Since I C(,,_1y J, (16) holds. Combining
(11) and (16) with Axiom A, we see that 41 € J(Zp+h,xp), which contradicts (20).

Thus I(r,s) C J(r,s), which is a contradiction. We conclude that (II) implies

(II1).
By virtue of Lemma 3, (IIT) implies (I), which completes the proof of the theorem.
(]

Remark 3. Let G be a connected graph. An axiomatic characterization of the
set of all ordered triples (u, v, w) of vertices in G with the properties that dg(u,v) =1
and dg(u,w) = dg(v,w) + 1 was given by the present author in [6].
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