CONCRETE QUANTUM LOGICS WITH GENERALISED COMPATIBILITY

JOSEF TKADLEC, Praha

(Received April 16, 1997)

Abstract. We present three results stating when a concrete (= set-representable) quantum logic with covering properties (generalization of compatibility) has to be a Boolean algebra. These results complete and generalize some previous results [3, 5] and answer partially a question posed in [2].

Keywords: Boolean algebra, concrete quantum logic, covering, Jauch-Piron state, orthocompleteness

MSC 1991: 03G12, 81P10

1. Basic notions

Let us recall the main notion we shall deal with in this paper.

Definition 1.1. A concrete logic is a pair (X, L), where $X \neq \emptyset$ and $L \subset \exp X$ such that

- (1) $\emptyset \in L$;
- (2) $A^c = X \setminus A \in L$ whenever $A \in L$;
- (3) $\bigcup M \in L$ whenever $M \subset L$ is a finite set of mutually disjoint elements.

A concrete σ -logic is a concrete logic (X, L) such that

 $(3\sigma) \bigcup M \in L$ whenever $M \subset L$ is a countable set of mutually disjoint elements.

Let us note that the above definition is not given in the most efficient way. Indeed, since \emptyset is a finite set of mutually disjoint elements and $\bigcup \emptyset = \emptyset$, condition (1) follows from condition (3). Moreover, it is obvious that condition (3) follows from condition (3 σ).

The author acknowledges the support by the grant 201/96/0117 of the Czech Grant Agency.

The following lemma will be useful in the sequel. First, let us observe that if A, $B \in L$ and $A \subset B$, then $B \setminus A = (A \cup B^c)^c \in L$ for every concrete logic (X, L).

Lemma 1.2. Let (X, L) be a concrete σ -logic and let $A_i \in L$ (i = 1, 2, ...) be such that $A_1 \supset A_2 \supset \cdots$. Then $\bigcap_{i=1}^{\infty} A_i \in L$.

Proof. The elements $A_i \setminus A_{i+1} \in L$ (i = 1, 2, ...) are mutually orthogonal, hence $\bigcup_{i=1}^{\infty} (A_i \setminus A_{i+1}) \in L$ and $\bigcap_{i=1}^{\infty} A_i = A_1 \setminus \bigcup_{i=1}^{\infty} (A_i \setminus A_{i+1}) \in L$.

2. Covering properties

Definition 2.1. Let (X, L) be a concrete logic, $Y \subset X$ and let n be a natural number. A covering of Y is a set $M \subset L$ such that $Y = \bigcup M$. A covering M is an n-covering if card $M \leq n$.

We say that (X, L) has the *n*-covering property (finite covering property, resp.) if for every $A, B \in L$ there is an *n*-covering (finite covering, resp.) of $A \cap B$.

It is well-known that a concrete logic (X, L) is a Boolean algebra if and only if $A \cap B \in L$ for every $A, B \in L$, i. e. if and only if (X, L) has the 1-covering property. Thus, the notions of n-covering property (finite covering property), introduced in [3], are generalizations of compatibility in Boolean algebras.

The next lemma will be used in the sequel.

Lemma 2.2. Let (X, L) be a concrete logic with the finite covering property. Then for every finite set $F \subset L$ there is a finite covering $G \subset L$ of $\bigcap F$.

Proof. Let us proceed by induction. First, if F is a one-element subset of L (empty set, resp.), then we can put G = F ($G = \{X\}$, resp.).

Now, let us suppose that there is a natural number $n \ge 1$ such that the lemma holds for every $F \subset L$ with card F = n. Let $F \subset L$ with card F = n + 1 and let $A \in F$. According to the previous assumption, there is a finite covering $G \subset L$ of $\bigcap (F \setminus \{A\})$. According to the finite covering property, for every $B \in G$ there is a finite covering $G \subset L$ of $G \cap G$. Thus, $\bigcup_{B \in G} G \cap G$ is a finite covering of $\bigcap F$.

Before we present the main result of this section, let us prove the following technical lemma.

Lemma 2.3. Let (X, L) be a concrete σ -logic and let $m, n \ge 2$ be natural numbers such that $m \le n+1$. Let us suppose that for every set $F \subset L$ with card $F \le n$ there is an m-coverig $G \subset L$ of $\bigcap F$. Then for every set $F \subset L$ with card $F \le n$ there is an (m-1)-covering $G \subset L$ of $\bigcap F$.

Proof. Let $F \subset L$ with $\operatorname{card} F \leqslant n$. Let us define by induction sequences $(A_{i1}, \ldots, A_{in}) \in L^n$, $(B_{i0}, \ldots, B_{in}) \in L^{n+1}$ $(i = 1, 2, \ldots)$ as follows: Let (A_{11}, \ldots, A_{1n}) be such that $F = \{A_{11}, \ldots, A_{1n}\}$. If $(A_{i1}, \ldots, A_{in}) \in L^n$ is defined for a natural number $i \geqslant 1$ then let us take $(B_{i0}, \ldots, B_{in}) \in L^{n+1}$ such that $B_{ij} = \emptyset$ for $j \geqslant m$ and $\bigcap_{j=1}^n A_{ij} = \bigcup_{j=0}^n B_{ij}$ and let us put $A_{i+1,j} = A_{ij} \setminus B_{ij}$ $(j \in \{1, \ldots, n\})$.

Let us denote

$$B_0 = \bigcap_{i=1}^{\infty} B_{i0}, \qquad B_j = \bigcup_{i=1}^{\infty} B_{ij}, \quad j \in \{1, \dots, n\}.$$

It is easy to see that the elements $B_{1j}, B_{2j}, \ldots (j \in \{1, \ldots, n\})$ are mutually disjoint, hence $B_j \in L$ for every $j \in \{1, \ldots, n\}$. Moreover, $B_m = \cdots = B_n = \emptyset$. Further,

$$B_{i0} \supset \bigcap_{j=1}^{n} A_{i+1,j} \supset B_{i+1,0} \qquad (i = 1, 2, \dots).$$

Hence, according to Lemma 1.2, $B_0 \in L$, too. Since

$$\bigcap F = B_0 \cup B_1 \cup \dots \cup B_{m-1}$$

and since $B_0 \cup B_1 \in L$ $(B_0 \cap B_1 = \emptyset)$, the proof is complete.

Theorem 2.4. Let (X, L) be a concrete σ -logic. Let us suppose that there is a natural number $n \geq 2$ such that for any set $F \subset L$ with card $F \leq n$ there is an (n+1)-covering of $\bigcap F$. Then (X, L) is a Boolean algebra.

Proof. Using Lemma 2.3 *n*-times, we obtain that (X, L) has the 1-covering property, i. e. (X, L) is a Boolean algebra.

Corollary 2.5. Every concrete σ -logic with the 3-covering property is a Boolean algebra.

This corollary generalizes [3, Proposition 4.6], where an analogous result is stated for concrete σ -logics with the 2-covering property.

Definition 3.1. Let (X, L) be a concrete logic. A *state* on (X, L) is a mapping $s: L \to [0, 1]$ such that

- (1) s(X) = 1;
- (2) $s(\bigcup M) = \sum_{A \in M} s(A)$ whenever $M \subset L$ is a finite set of mutually disjoint elements.

A state s on (X, L) is called Jauch-Piron if for every $A, B \in L$ with s(A) = s(B) = 1 there is a $C \in L$ such that $C \subset A \cap B$ and s(C) = 1.

It is easy to see that $s(\emptyset) = 0$ and $s(A^c) = 1 - s(A)$ for every state s on a concrete logic (X, L) and for every $A \in L \setminus \{\emptyset\}$. Further, for every concrete logic (X, L), every point $x \in X$ carries a two-valued state s_x on (X, L) defined by

$$s_x(A) = \begin{cases} 1, & \text{if } x \in A, \\ 0, & \text{if } x \notin A. \end{cases}$$

Before we present the main result of this section, we need the following definition.

Definition 3.2. Let (X, L) be a concrete logic and let $M, N \subset L$ be two coverings of $Y \subset X$. We say that N is a *coarsing of* M if for every $A \in M$ there is a $B \in N$ such that $A \subset B$.

Theorem 3.3. Let (X, L) be a concrete logic such that every state on it is Jauch-Piron. Let us suppose that for every $A, B \in L$ every covering of $A \cap B$ admits a countable coarsing. Then L is a Boolean algebra.

Proof. It suffices to prove that $A \cap B \in L$ for every $A, B \in L$. Let $A, B \in L$. If $A \cap B = \emptyset$, the proof is complete. Let us suppose that $A \cap B \neq \emptyset$. Then $S_{A,B} = \{s; s \text{ is a state on } (X, L) \text{ with } s(A) = s(B) = 1\}$ is nonempty (every point $x \in A \cap B$ carries a two-valued state $s_x \in S_{A,B}$). Since every state on (X, L) is Jauch-Piron, for every $s \in S_{A,B}$ there is a $C_s \in L$ such that $s(C_s) = 1$. Let us take a countable coarsing M of the covering $\{C_s; s \in S_{A,B}\}$ of $A \cap B$, a countable set $Y \subset A \cap B$ such that $Y \cap (C \setminus D) \neq \emptyset$ for every $C, D \in M$ with $C \setminus D \neq \emptyset$ and, finally, a state S that is a S-convex combination (with non-zero coefficients) of all $S_y \in S_{A,B}$. Since $S \in S_{A,B}$, there is a $S \in S_{A,B}$ such that $S \in S_{A,B}$ there is a $S \in S_{A,B}$ such that $S \in S_{A,B}$ there is a $S \in S_{A,B}$ such that $S \in S_{A,B}$ there is a $S \in S_{A,B}$ such that $S \in S_{A,B}$ such that $S \in S_{A,B}$ such that $S \in S_{A,B}$ there is a $S \in S_{A,B}$ such that $S \in S_{A,B}$ suc

Theorem 3.3 seems to be independent of the previous results in [3, 4, 7], nevertheless it has corollaries that were obtained using quite a different techniques. (Let us note that a unifying look at these attempts is presented in [8].) The following corollary was obtained (in a more general form) in [4].

Corollary 3.4. Every countable concrete logic such that every state on it is Jauch-Piron is a Boolean algebra.

The next corollary of Theorem 3.3 was obtained (in a more general form) in [7].

Corollary 3.5. Let (X, L) be a concrete logic such that every state on it is Jauch-Piron. Let us suppose that (X, L) contains only countably many maximal Boolean subalgebras and these are complete. Then (X, L) is a Boolean algebra.

Proof. It is easy to see that for every $A, B \in L$ every covering of $A \cap B$ admits a countable coarsing.

4. Covering properties and orthocompleteness

Definition 4.1. Let α be a cardinal number. A concrete logic (X, L) is called α -orthocomplete if $\bigvee M \in L$ (supremum with respect to inclusion) whenever $M \subset L$ is a set of mutually disjoint elements with card $M \leq \alpha$.

It is obvious that condition (3σ) of Definition 1.1 implies that a concrete σ -logic is ω_0 -orthocomplete (ω_0 denotes the countable cardinal)—this is usually denoted as σ -orthocompleteness.

The following theorem generalizes a result from [5] and answers partially a question posed in [2].

Theorem 4.2. Every c-orthocomplete (c denotes the cardinality of real numbers) concrete σ -logic with the finite covering property is a Boolean algebra.

Proof. Let (X,L) be a concrete σ -logic with the finite covering property and let $A,B\in L$. It suffices to prove that $A\cap B\in L$. Let us define by induction finite subsets F_i $(i=1,2,\ldots)$ of L as follows: First, $F_1\subset L$ is a finite covering of $A\cap B$. Now, let a finite set $F_i=\{A_1,\ldots,A_n\}\subset L$ be defined for a natural number $i\geqslant 1$. Let us denote by G_i the set of all intersections of the form $A_1^{e_1}\cap\cdots\cap A_n^{e_n}$, where $(e_1,\ldots,e_n)\in\{-1,1\}^n\setminus\{-1\}^n$ and $A_j^1=A_j,\ A_j^{-1}=X\setminus A_j\ (j=1,\ldots,n).\ G_i$ is a finite set of mutually disjoint subsets of X such that $\bigcap F_i=\bigcup G_i$. According to Lemma 2.2, for every $Y\in G_i$ there is a finite covering $G_Y\subset L$ of Y. Let us put $F_{i+1}=\bigcup_{Y\in G_i}G_Y$.

Let us consider all sequences C_1, C_2, \ldots such that $C_i \in F_i$ $(i = 1, 2, \ldots)$ and $C_1 \supset C_2 \supset \cdots$. According to Lemma 1.2, $\bigcap_{i=1}^{\infty} C_i \in L$ for each such sequence. Hence, we have obtained at most the continuum of mutually disjoint elements of L such that their union is $A \cap B$. Since their supremum exists, it is equal to $A \cap B$. Thus, $A \cap B \in L$.

Before we present a corollary of Theorem 4.2, let us recall a result connecting the covering properties with Jauch-Piron states [3, Theorem 3.5].

Theorem 4.3. Let (X, L) be a concrete logic such that every two-valued state on it is Jauch-Piron. Then (X, L) has the finite covering property.

Corollary 4.4. Every c-orthocomplete concrete σ -logic such that every two-valued state on it is Jauch-Piron is a Boolean algebra.

Proof. It follows from Theorem 4.3 and Theorem 4.2. \Box

Remark 4.5. The above corollary can be stated in the following (more general) way: Every c-orthocomplete quantum σ -logic with a closed full set of two-valued Jauch-Piron σ -states is a Boolean algebra. Indeed, concrete σ -logics are exactly representations of quantum σ -logics with a full set of two-valued σ -states (see e.g. [1, 6]) and Theorem 4.3 can be stated for quantum logics with a closed full set of two-valued Jauch-Piron states (the set of two-valued states is closed in the product topology in $[0,1]^L$).

The following question (posed in [2]) remains open. Here we have given the negative answer in the case that the concrete logic in question is also c-orthocomplete.

Question 4.6. Is there a concrete σ -logic that is not a Boolean algebra such that every state on it is Jauch-Piron?

References

- S. P. Gudder: Stochastic Methods in Quantum Mechanics. North Holland, New York, 1979.
- [2] V. Müller: Jauch-Piron states on concrete quantum logics. Int. J. Theor. Phys. 32 (1993), 433-442.
- [3] V. Müller, P. Pták, J. Tkadlec: Concrete quantum logics with covering properties. Int. J. Theor. Phys. 31 (1992), 843–854.
- [4] M. Navara, P. Pták: Almost Boolean orthomodular posets. J. Pure Appl. Algebra 60 (1989), 105–111.
- [5] P. Pták: Some nearly Boolean orthomodular posets. Proc. Amer. Math. Soc. To appear.
- [6] P. Pták, S. Pulmannová: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht, 1991.
- [7] J. Tkadlec: Boolean orthoposets—concreteness and orthocompleteness. Math. Bohem. 119 (1994), 123–128.
- [8] J. Tkadlec: Conditions that force an orthomodular poset to be a Boolean algebra. Tatra Mt. Math. Publ. 10 (1997), 55–62.

Author's address: Josef Tkadlec, Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University, Technická 2, 16627 Praha 6, Czech Republic, e-mail: tkadlec@math.feld.cvut.cz.