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Abstract. We present three results stating when a concrete (= set-representable) quan-
tum logic with covering properties (generalization of compatibility) has to be a Boolean
algebra. These results complete and generalize some previous results [3, 5] and answer
partially a question posed in [2].
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1. BASIC NOTIONS

Let us recall the main notion we shall deal with in this paper.

Definition 1.1. A concrete logic is a pair (X, L), where X # () and L C exp X
such that

(1) beL;
(2) A°= X\ A € L whenever A € L;
(3) UM € L whenever M C L is a finite set of mutually disjoint elements.

A concrete o-logic is a concrete logic (X, L) such that

(30) UM € L whenever M C L is a countable set of mutually disjoint elements.

Let us note that the above definition is not given in the most efficient way. In-
deed, since ) is a finite set of mutually disjoint elements and |J@ = (), condition (1)

follows from condition (3). Moreover, it is obvious that condition (3) follows from
condition (30).
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The following lemma will be useful in the sequel. First, let us observe that if A,
Be L and AC B, then B\ A= (AU B°)¢ € L for every concrete logic (X, L).

Lemma 1.2. Let (X, L) be a concrete o-logic and let A; € L (i=1,2,...) be
such that Ay D As D ---. Then () A; € L.

i=1
Proof The elements A; \Az+1 €L (z =1, 2, ...) are mutually orthogonal,
hence U(A \A;11) € L and ﬂ A= A1\ U(A \AZH)GL O

2. COVERING PROPERTIES

Definition 2.1. Let (X, L) be a concrete logic, Y C X and let n be a natural
number. A covering of Y is a set M C L such that Y = |JM. A covering M is an
n-covering if card M < n.

We say that (X, L) has the n-covering property (finite covering property, resp.) if
for every A, B € L there is an n-covering (finite covering, resp.) of AN B.

It is well-known that a concrete logic (X, L) is a Boolean algebra if and only if
ANB € L for every A, B € L, i.e. if and only if (X, L) has the 1-covering property.
Thus, the notions of n-covering property (finite covering property), introduced in [3],
are generalizations of compatibility in Boolean algebras.

The next lemma will be used in the sequel.

Lemma 2.2. Let (X,L) be a concrete logic with the finite covering property.
Then for every finite set F' C L there is a finite covering G C L of (| F.

Proof. Let us proceed by induction. First, if F' is a one-element subset of L
(empty set, resp.), then we can put G = F' (G = {X}, resp.).

Now, let us suppose that there is a natural number n > 1 such that the lemma
holds for every F' C L with card ' = n. Let F' C L with card F = n + 1 and let
A € F. According to the previous assumption, there is a finite covering G C L of
N (F\ {A}) According to the finite covering property, for every B € G there is a

finite covering Gg C L of AN B. Thus, |J Gp C L is a finite covering of [ F.
BeG
O
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Before we present the main result of this section, let us prove the following technical

lemma.

Lemma 2.3. Let (X, L) be a concrete o-logic and let m,n > 2 be natural numbers
such that m < n+ 1. Let us suppose that for every set F' C L with card F' < n there
is an m-coverig G C L of (\F. Then for every set F' C L with card F' < n there is
an (m — 1)-covering G C L of (| F.

Proof. Let FF C L with card ¥ < n. Let us define by induction se-
quences (A;1,...,Am) € L", (Bioy...,Bin) € L™ (i = 1, 2, ...) as follows:
Let (Ai11,...,A1,) be such that F = {A1,..., A1} If (Aa,..., Ain) € L™ is
defined for a natural number ¢ > 1 then let us take (B,...,Bin) € L™ such

that Bij = @ for j 2 m and 'nl Ai]’ = OBi‘j and let us p'llt Ai+1,j = Aij \ Bij
J: =

Ge{l,....n}).

J
Let us denote

B

s

By = mBiﬂa B; =

i=1 7

ijs je{l,...,n}.
1

It is easy to see that the elements B1;, Baj, ... (j € {1,...,n}) are mutually disjoint,
hence B; € L for every j € {1,...,n}. Moreover, B,, = --- = B,, = (). Further,

n
Bio D () Ait1; D Bisio  (i=1,2,...).
j=1
Hence, according to Lemma 1.2, By € L, too. Since
ﬂF:BOUBlu---UBm_l
and since By U By € L (By N By = ), the proof is complete. O
Theorem 2.4. Let (X, L) be a concrete o-logic. Let us suppose that there is a

natural number n > 2 such that for any set F' C L with card F' < n there is an
(n + 1)-covering of (\F. Then (X, L) is a Boolean algebra.

Proof. Using Lemma 2.3 n-times, we obtain that (X, L) has the 1-covering
property, i.e. (X, L) is a Boolean algebra. O

Corollary 2.5. Every concrete o-logic with the 3-covering property is a Boolean
algebra.

This corollary generalizes [3, Proposition 4.6], where an analogous result is stated
for concrete o-logics with the 2-covering property.
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3. COVERING PROPERTIES AND JAUCH-PIRON STATES

Definition 3.1.  Let (X, L) be a concrete logic. A state on (X, L) is a mapping
s: L — [0,1] such that

(1) s(X) =1;
(2) s(UM) = Y s(A) whenever M C L is a finite set of mutually disjoint ele-
AeM
ments.

A state s on (X, L) is called Jauch-Piron if for every A, B € L with s(4) = s(B) =1
there is a C' € L such that C ¢ AN B and s(C) = 1.

It is easy to see that s()) = 0 and s(A°) = 1— s(A) for every state s on a concrete
logic (X, L) and for every A € L\ {0}. Further, for every concrete logic (X, L), every
point x € X carries a two-valued state s, on (X, L) defined by

1, ifxeA,
so(4) = {o, if 2 ¢ A

Before we present the main result of this section, we need the following definition.

Definition 3.2. Let (X,L) be a concrete logic and let M, N C L be two
coverings of Y C X. We say that NV is a coarsing of M if for every A € M there is
a B € N such that A C B.

Theorem 3.3. Let (X, L) be a concrete logic such that every state on it is Jauch-
Piron. Let us suppose that for every A, B € L every covering of A N B admits a
countable coarsing. Then L is a Boolean algebra.

Proof. It suffices to prove that AN B € L for every A, B € L. Let A, B € L.
If AN B = (), the proof is complete. Let us suppose that AN B # (). Then Sa p =
{s; s is astate on (X, L) with s(4) = s(B) = 1} is nonempty (every point z € ANB
carries a two-valued state s; € S4 ). Since every state on (X, L) is Jauch-Piron,
for every s € S4 p there is a Cs € L such that s(Cs) = 1. Let us take a countable
coarsing M of the covering {Cs; s € Sa,p} of AN B, a countable set Y C AN B
such that Y N (C \ D) # 0 for every C, D € M with C'\ D # ) and, finally, a state s
that is a o-convex combination (with non-zero coefficients) of all s, (y € Y). Since
s € Sa p, there is a Dy € M such that s(Ds) = 1. Thus, Dy D Y and therefore
ANB=UM =D, € L. O

Theorem 3.3 seems to be independent of the previous results in [3, 4, 7], never-
theless it has corollaries that were obtained using quite a different techniques. (Let
us note that a unifying look at these attempts is presented in [8].) The following
corollary was obtained (in a more general form) in [4].
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Corollary 3.4. Every countable concrete logic such that every state on it is
Jauch-Piron is a Boolean algebra.

The next corollary of Theorem 3.3 was obtained (in a more general form) in [7].

Corollary 3.5. Let (X, L) be a concrete logic such that every state on it is Jauch-
Piron. Let us suppose that (X, L) contains only countably many maximal Boolean
subalgebras and these are complete. Then (X, L) is a Boolean algebra.

Proof. Tt is easy to see that for every A, B € L every covering of AN B admits
a countable coarsing. O

4. COVERING PROPERTIES AND ORTHOCOMPLETENESS

Definition 4.1. Let « be a cardinal number. A concrete logic (X, L) is called
a-orthocomplete if \/ M € L (supremum with respect to inclusion) whenever M C L
is a set of mutually disjoint elements with card M < a.

It is obvious that condition (30) of Definition 1.1 implies that a concrete o-logic
is wp-orthocomplete (wq denotes the countable cardinal)—this is usually denoted as
o-orthocompleteness.

The following theorem generalizes a result from [5] and answers partially a question
posed in [2].

Theorem 4.2. Every c-orthocomplete (c denotes the cardinality of real numbers)
concrete o-logic with the finite covering property is a Boolean algebra.

Proof. Let (X,L) be a concrete o-logic with the finite covering property and
let A, B € L. It suffices to prove that AN B € L. Let us define by induction finite
subsets F; (i =1, 2,...) of L as follows: First, F; C L is a finite covering of AN B.
Now, let a finite set F; = {A;,...,A,} C L be defined for a natural number i > 1.
Let us denote by G; the set of all intersections of the form Af* N---N At~ where
(e1.....en) € {=1.1}"\ {=1}"and A} = A;, A;' = X\ A; j=1,...,n). G
is a finite set of mutually disjoint subsets of X such that (| F; = |JG;. According

to Lemma 2.2, for every Y € G; there is a finite covering Gy C L of Y. Let us put
Fi+1 = U Gy.
YeG;
Let us consider all sequences C1,Cy,... such that C; € F; (i = 1, 2, ...) and

oo
C1 D Cy D ---. According to Lemma 1.2, (| C; € L for each such sequence. Hence,

i=1
we have obtained at most the continuum of mutually disjoint elements of L such
that their union is A N B. Since their supremum exists, it is equal to A N B. Thus,
ANBeL. O
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Before we present a corollary of Theorem 4.2, let us recall a result connecting the
covering properties with Jauch-Piron states [3, Theorem 3.5].

Theorem 4.3. Let (X, L) be a concrete logic such that every two-valued state
on it is Jauch-Piron. Then (X, L) has the finite covering property.

Corollary 4.4. Every c-orthocomplete concrete o-logic such that every two-
valued state on it is Jauch-Piron is a Boolean algebra.

Proof. It follows from Theorem 4.3 and Theorem 4.2. O

Remark 4.5. The above corollary can be stated in the following (more gen-
eral) way: Every c-orthocomplete quantum o-logic with a closed full set of two-valued
Jauch-Piron o-states is a Boolean algebra. Indeed, concrete o-logics are exactly rep-
resentations of quantum o-logics with a full set of two-valued o-states (see e.g. [1, 6])
and Theorem 4.3 can be stated for quantum logics with a closed full set of two-valued

Jauch-Piron states (the set of two-valued states is closed in the product topology
in [0, 1]%).

The following question (posed in [2]) remains open. Here we have given the nega-
tive answer in the case that the concrete logic in question is also c-orthocomplete.

Question 4.6. Is there a concrete o-logic that is not a Boolean algebra such
that every state on it is Jauch-Piron?
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