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POINT-SET DOMATIC NUMBERS OF GRAPHS
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Abstract. A subset D of the vertex set V (G) of a graph G is called point-set dominating,
if for each subset S ⊆ V (G) − D there exists a vertex v ∈ D such that the subgraph of G
induced by S ∪ {v} is connected. The maximum number of classes of a partition of V (G),
all of whose classes are point-set dominating sets, is the point-set domatic number dp(G)
of G. Its basic properties are studied in the paper.
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The point-set domatic number of a graph is a variant of the domatic number d(G)

of a graph, which was introduced by E. J. Cockayne and S. T. Hedetniemi [1], and of
the point-set domination number γp(G), which was introduced by E. Sampathkumar

and L. Pushpa Latha in [3] and [4]. We will describe its basic properties. All graphs
considered are finite undirected graphs without loops and multiple edges.

A subset D of the vertex set V (G) of a graph G is called dominating, if for each
vertex x ∈ V (G)−D there exists a vertex y ∈ D adjacent to x. It is called point-set

dominating (or shortly ps-dominating), if for each subset S ⊆ V (G)−D there exists
a vertex v ∈ D such that the set S ∪ {v} induces a connected subgraph of G. A

partition of V (G) is called domatic (or point-set domatic), if all of its classes are
dominating (or ps-dominating, respectively) sets in G. The maximum number of

classes of a domatic (or point-set domatic) partition of V (G) is called the domatic
(or point-set domatic, respectively) number of G. The domatic number of G is

denoted by d(G), the point-set domatic number of G is denoted by dp(G). Instead
of “point-set domatic” we will say shortly “ps-domatic”.

For every graph G there exists at least one ps-domatic partition of V (G), namely
{V (G)}. Therefore dp(G) is well-defined for every graph G.
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Evidently each ps-dominating set in G is a dominating set in G and thus we have

a proposition.

Proposition 1. For every graph G the inequality

dp(G) � d(G)

holds.

Each vertex of a complete graph Kn forms a one-element ps-dominating set and

therefore the following proposition holds.

Proposition 2. For every complete graph Kn its ps-domatic number satisfies

dp(Kn) = n.

A similar assertion holds for a complete bipartite graph Km,n.

Proposition 3. Let Km,n be a complete bipartite graph with 2 � m � n. Then

dp(Km,n) = m.

�����. Let U, V be the bipartition classes of Km,n. Let u ∈ U , v ∈ V and
consider the set D = {u, v}. Let S ⊆ V (Km,n) − D. If S ⊆ U , then S ∪ {v}
induces a subgraph which is a star and thus it is connected. If S ⊆ V , then so is
S ∪ {u}. Suppose that S ∩ U �= ∅, S ∩ V �= ∅. The set S itself induces a connected

subgraph, namely a complete bipartite graph. The vertex u is adjacent to a vertex
of S ∩ V and thus also S ∪ {u} induces a connected subgraph; the set D = {u, v}
is ps-dominating. If U = {u1, . . . , um}, V = {v1, . . . , vn}, we take Di = {ui, vi} for
i = 1, . . . , m − 1 and Dm = {um, vm, . . . , vn}. Then {D1, . . . , Dm} is a ps-domatic

partition of Km,n and dp(Km,n) � m. On the other hand, dp(Km,n) � d(Km,n) = m

and thus dp(Km,n) = m. �

Proposition 4. Let n be an even integer, let G be obtained from the complete

graph Kn by deleting edges of a linear factor. Then

dp(G) = n/2.

�����. Evidently each pair of non-adjacent vertices in G is ps-dominating and

there exists a partition of V (G) into n/2 such sets. On the other hand, no one-vertex
ps-dominating set exists. This implies the assertion. �
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Now we will prove some theorems. By dG(x, y) we denote the distance between

vertices x, y in a graph G. By diam(G) we denote the diameter of G.

Theorem 1. Let G be a graph. If dp(G) � 3, then diam(G) � 2.

�����. Let dp(G) = k � 3. Then there exists a ps-domatic partition
{D1, . . . , Dk} of G. Let x, y be two vertices of G. As k � 3, at least one of the
sets D1, . . . , Dk contains neither x nor y. Without loss of generality let it be D1.
We have {x, y} ⊆ V (G) − D1 and therefore there exists a vertex v ∈ D1 such that

{v, x, y} induces a connected subgraph of G. If x, y are adjacent, then dG(x, y) = 1.
If x, y are not adjacent, then v must be adjacent to both x and y and dG(x, y) = 2.

As x, y were chosen arbitrarily, we have diam(G) � 2. �

Theorem 2. Let G be a graph. If dp(G) = 2, then diam(G) � 3.

�����. Let dp(G) = 2. There exists a ps-domatic partition {D1, D2} of V (G).
Let x, y be two vertices of G. If both x, y are in D1, then {x, y} ⊆ V (G) − D2 and

dG(x, y) � 2 analogously as in the proof of Theorem 1. Similarly in the case when
both x, y are in D2. Now let x ∈ D1, y ∈ D2. As {y} ⊆ V (G) − D1, there exists

v ∈ D1 adjacent to y. As both x, v are in D1, we have dG(x, v) � 2, dG(v, y) = 1
and thus dG(x, y) � 3. As x, y were chosen arbitrarily, we have diam(G) � 3. �

Now we shall consider bipartite graphs.

Corollary. Let G be a bipartite graph. If dp(G) � 3, then G is a complete

bipartite graph.

This follows from the fact that every non-complete bipartite graph has the diam-

eter at least 3.

Theorem 3. Let G be a non-complete bipartite graph. Then dp(G) = 2 if and

only if G has a spanning tree T with diam(T ) � 3.

�����. Let T be a tree with diam(T ) � 3. If D1, D2 are the bipartition classes
of T , then {D1, D2} is a ps-domatic partition of T and dp(T ) � 2 and thus dp(T ) = 2.
If G is a graph such that T is its spanning tree and G is a non-complete bipartite

graph, then obviously also dp(G) = 2.
Now suppose that dp(G) = 2 and let {D1, D2} be a ps-domatic partition. Let

V1, V2 be the bipartition classes of G. First suppose that D1 is a proper subset of V1.
Then V1−D1 ⊆ V (G)−D1 and for each v ∈ D1 the set (V1−D1)∪{v} is independent,
i.e. it does not induce a connected subgraph of G. Hence this case is impossible and
moreoverD1 cannot be a proper subset of V2 and D2 cannot be a proper subset of V1
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or of V2. Now consider the case D1 = V1. Then D2 = V2. We have V2 ⊆ V (G)−D1

and there exists a vertex v1 ∈ V1 adjacent to all vertices of V2. Analogously, there
exists a vertex v2 ∈ V2 adjacent to all vertices of V1. All edges joining v1 with vertices
of V2 and all edges joining v2 with vertices of V1 form the spanning tree T ; its central

edge is v1v2 and its diameter is 3. The case D1 = V2, D2 = V1 is analogous. Now
the case remains when D1 ∩ V1 �= ∅, D1 ∩ V2 �= ∅, D2 ∩ V1 �= ∅, D2 ∩ V2 �= ∅. Let
V1 ∈ D1∩V1, x2 ∈ D1∩V2. We have {x1, x2} ⊆ V (G)−D2 and there exists a vertex
v ∈ D2 such that {v, x1, x2} induces a connected subgraph of G. As x1, x2 belong

to distinct bipartition classes of G, the vertex v cannot be adjacent to both of them
and thus x1, x2 are adjacent. Therefore D2 induces a complete bipartite subgraph on

the sets D2∩V1, D2∩V2 and analogously, D1 induces a complete bipartite subgraph
on the sets D1 ∩ V1, D1 ∩ V2. We have D1 ∩ V1 ⊆ V (G) − D2 and therefore there

exists a vertex w2 ∈ D2 adjacent to all vertices of D2 ∩ V1; evidently w2 ∈ D2 ∩ V2.
Analogously, there exists a vertex w1 ∈ D1 ∩ V1 adjacent to all vertices of D1 ∩ V2.

The vertex w1 is adjacent to all vertices of V2 and the vertex w2 is adjacent to all
vertices of V1. Obviously w1, w2 are adjacent. There exists a spanning tree T with

the central edge w1w2 which has the diameter 3. �

Now we turn to circuits. By Cn we denote the circuit of the length n.

Theorem 5. For the circuits we have

dp(C3) = 3,

dp(C4) = 2,

dp(C5) = 2,

dp(Cn) = 1 for n � 6.

�����. The circuit C3 is the complete graph K3 and thus dp(C3) = 3. The

circuit C4 contains a spanning tree which is a path P3 of length 3 and therefore
dp(C4) = 2; note that C4 is a bipartite graph. Consider C5 and let its vertices be

u1, . . . , u5 and edges uiui+1 for i = 1, . . . , 4 and u5u1. There exists a ps-domatic
partition {D1, D2}, where D1 = {u1, u2, u4}, D2 = {u3, u5}; thus dp(C5) � 2. As
the domatic number d(C5) = 2, we have dp(C5) = 2 as well. The circuit C6 is
a bipartite graph and does not contain any spanning tree of diameter 3, therefore

dp(C6) = 1. Now consider C7. Suppose that in C7 there exists a ps-domatic partition
{D1, D2} and denote its vertices by u1, . . . , u7 in the usual way. Any two vertices

with the distance 3 are in distinct classes of {D1, D2}; this follows from the proofs of
Theorem 1 and of Theorem 2. If u1 ∈ D1 (without loss of generality), then u4 ∈ D2,

u7 ∈ D1, u3 ∈ D2, u6 ∈ D1, u2 ∈ D2, u5 ∈ D1, u1 ∈ D2, which is a contradiction
and thus dp(C7) = 1. For n � 8 we have diam(Cn) � 4 and thus dp(Cn) = 1. �
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Theorem 6. For the complement Cn of a circuit Cn we have

dp(C3) = 1,

dp(C4) = 1,

dp(Cn) = �n/2� for n � 5.

�����. The graphs C3 and C4 are disconnected and therefore they have the
ps-domatic number 1. If n � 5, then any pair of non-adjacent vertices in Cn is a ps-

dominating set, which can be easily verified by the reader. There exists a partition
of V (Cn) into �n/2� sets, each of which is a pair of non-adjacent vertices, except at
most one which has three vertices from which only two are adjacent. There exists
no one-element ps-dominating set, therefore dp(Cn) = �n/2�. �

In the end we will prove an existence theorem.

Theorem 7. Let V be a finite set, let k be an integer, 1 � k � |V |, let
{D1, . . . , Dk} be a partition of V . Then there exists a graph G such that V (G) = V ,

dp(G) = k and {D1, . . . , Dk} is a ps-domatic partition of G.

�����. For i = 1, . . . , k choose a vertex vi ∈ Di and join it by edges with all
vertices not belonging to Di. The resulting graph is the graph G. For each subset

S ⊆ V (G) − Di there exists a vertex of Di which is adjacent to all vertices of S,
namely vi. Therefore {D1, . . . , Dk} is a ps-domatic partition of G and dp(G) � k. If

|Di| = 1 for all i, then G is Kk and dp(G) = k. If |Di| � 2 for some i, then a vertex
u ∈ Di − {vi} has the degree k − 1 and thus the domatic number satisfies d(G) � k

(by [1]) and dp(G) � d(G) � k. This implies dp(G) = k. �

In the end we will give a motivation for introducing the point-set domination. The

concept of a dominating set is usually motivated by the displacement of certain ser-
vice stations (medical, police, fire-brigade) which have to provide service for certain

places (vertices of a graph). In the case of the point-set dominating set we want that
for any chosen region (set of vertices) there might exist a station providing services

for the whole region. Note that the point-set domination number is also a variant of
the set domination number introduced in [5] and mentioned in [2].
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