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Abstract. We generalize a well-known separation condition of Everitt and Giertz to a
class of weighted symmetric partial differential operators defined on domains in �n . Also,
for symmetric second-order ordinary differential operators we show that lim sup

t→c
(pq′)′/q2 =

θ < 2 where c is a singular point guarantees separation of −(py′)′ + qy on its minimal
domain and extend this criterion to the partial differential setting. As a particular example
it is shown that −∆y + qy is separated on its minimal domain if q is superharmonic. For
n = 1 the criterion is used to give examples of a separation inequality holding on the domain
of the minimal operator in the limit-circle case.
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1. Introduction

In this paper we investigate separation properties of unbounded operators deter-
mined by the ordinary or partial differential expressions

Mw[y] := w−1[−(py′)′ + qy],(1.1)

Mw,n[y] := w−1[− div(P∇y) + qy].(1.2)

For (1.1) we assume that p, q, and w satisfy the so-called minimal conditions of

Naimark [24]; that is, they are real valued functions defined on an interval I =
(a, b), −∞ � a < b � ∞ such that w > 0 a.e. and p−1, q, and w > 0 are locally
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integrable functions. In (1.2) ∇y denotes the gradient of y where the differentiation
is understood in the sense of distributions. w, q are real-valued functions defined
on a domain (open set) Ω ⊆ �

n ; w remains positive, but w, q are C2(Ω) and P is a
n × n real matrix valued function such that P is positive semi-definite (and hence

symmetric) in the sense that [P (x)v, v]n � 0 for x ∈ Ω where [·, ·]n denotes the
euclidean inner product on Cn and the components {pij} are C2(Ω).
Suppose D0 and D denote the domains of the minimal and maximal operators L0

and L determined by (1.1) or (1.2) on I or Ω. (Precise definitions of these concepts

will be given below.) Then Mw or Mw,n is said to be separated on D0 or D if for
J = I or Ω

(1.3) y ∈ D0 or D =⇒ w−1qy ∈ L2(w; J),

where L2(w; J) signifies the usual Hilbert space of equivalence classes of all complex

Lebesgue square integrable functions f with norm ‖f‖w,J and inner product [f, g]w,J

given by

‖f‖w,J =
( ∫

J

w|f |2 dx
)1/2

,

[f, g]w,J =
∫

J

wfg dx.

A property equivalent to separation is the following.

Definition 1. L or L0 satisfies a separation inequality on D or D0 if whenever
y ∈ D or y ∈ D0 then there are constants A,C,K > 0, B � 0, and a constant L, all
independent of y, such that

(1.4)
A‖w−1(py′)′‖2w,I +B‖w−1√pqy′‖2w,I + C‖w−1qy‖2w,I

� K‖Mw[y]‖2w,I + L‖y‖2w,I

or

(1.5)
A‖w−1 div(P∇y)‖2w,Ω +B‖w−1(q[P∇y,∇y]n)1/2‖2w,Ω + C‖w−1qy‖2w,Ω

� K‖Mw,n[y]‖2w,Ω + L‖y‖2w,Ω

hold.

Clearly (1.4), or (1.5) implies (1.3). But if (1.3) holds then a closed graph theorem
argument shows that L0 or L satisfies either (1.4) or (1.5) with A = C = 1, B = 0,

and K = L. See [3, Proposition 1] for a proof in the ordinary case. The proof in �n ,
n > 1, is similar.
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If w = 1 several criteria for separation in the ordinary case have been given by

Everitt and Giertz in a series of pioneering papers [12–16], also see Everitt, Giertz,
and Weidmann [17], and Atkinson [1]. More recent results (that include weighted
cases) may be found in Brown and Hinton [3]. Some extensions of these criteria to

the partial differential case may be found in Everitt and Giertz [16] and Evans and
Zettl [9]

One of the principal results of this paper for the ordinary case is that under various
conditions on p, q, and w, then the condition

(S1) −∞ � lim sup
t→c

w(p(w−1q)′)′/q2 = θ < 2,

where c is a singular endpoint of I implies separation at least on D0. We will show
that the same is true for the partial differential expression (1.2) under the basic
conditions assumed above on w, q and P if (S1) is replaced by

(Sn) sup
t∈Ω

w div(P∇(w−1q))/q2 = θ < 2.

One easy consequence of (S1) and standard theory is thatMw will be separated even
on D if w = p = 1 and q is bounded below, increasing, and concave downward.

Similarly we can prove that Mw,n is separated at least on D0 (and if essentially
self-adjoint on D also) if w−1q is superharmonic on Ω.
A second sufficient condition for separation on D0 for n > 1 involves the condition

(|S∗n|) [P (x)∇(w−1q),∇(w−1q)]1/2n � θw−1|q(x)|3/2, 0 < θ < 2.

This result generalizes a separation result in [3] as well as theorems given by Everitt
and Giertz in the unweighted case when P = I. It is also closely related in form to

a result of Evans and Zettl [9] but our proof appears to be simpler and applies to a
larger class of potentials q.

The precise statement of these and other results will be given in Sections 3 and 4.
The background needed to state and prove them is given immediately below.

2. Preliminaries

Since our results are more comprehensive when n = 1 we choose to treat this
theory separately from the multidimensional case, even though (1.1) is formally a

special case of (1.2). Under the minimal conditions1 stated above Mw naturally

1Naimark only considers the case w = 1; however the extension to general weights is
routine.
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determines minimal and maximal operators L0 and L in the following way. L0 is

the closure of the “preminimal operator” L′
0 which is the restriction of Mw to the

compact support functions D′
0 ⊂ D where

D := {y ∈ L2(w; I) ∩ACloc(I) : py′ ∈ ACloc(I);Mw[y] ∈ L2(w, I)}.

Here ACloc(I) denotes the locally2 absolutely continuous functions on I.

The maximal operator L is then given byMw acting on D. With these definitions
it can be shown that:

(i) L0 ⊂ L,

(ii) L′ ∗
0 = L

∗
0 = L,

(iii) L∗ = L0 = L′
0.

Thus L′
0, L0, and L are densely defined; L

′
0, L0 are symmetric, and L0, L are respec-

tively the “smallest” and “largest” closed operators in L2(w; I) naturally generated

by Mw. The density of the domains D′
0,D0, and D is easy to verify if the coeffi-

cients q, p are smooth enough that C∞
0 ⊆ D′

0; otherwise this is not obvious and is a

consequence of the adjoint relationships (ii) and (iii).
If p−1, q are locally integrable on [a, c) or (c, b] for a < c < ∞ we say that a or b

are regular ; otherwise they are singular. In our setting a or b may be either regular
or singular and we signal the regular case at either or both end-points by writing I as

a semi-closed or closed interval [a, b), (a, b], or [a, b]. We regard an infinite end-point
as singular.

Mw is said to be limit-point or LP at the singular end-point a or b if there is at
most one solution of Mw[y] = 0 which is in L2(a, c) or L2(c, b) for a < c < b. Mw is

limit-circle or LC at an end-point if both solutions are in L2(w; J) for a neighborhood
J containing the point. If one end-point is regular and the other singular the LP

case can be shown equivalent to the property that D is exactly a two dimensional
extension of D0; while if Mw is limit-circle, then D is a four dimensional extension of
D0. Still another characterization of the LP property at a singular point (say b) which
is sometimes taken as the definition is the vanishing of the Lagrange bilinear form

{y, z} at the point. We define this form by the identity (proven by two integration
by parts) ∫ t

s

wMw[y]z −
∫ s

t

wyMw[z] = {y, z}(t)− {y, z}(s),

where t, s ∈ I and {y, z}(t) := (ypz′ − py′z)(t). That Mw is limit-point at b is

equivalent to the property
lim
t→b

{y, z}(t) := 0

2Any local property will be labeled with the subscript “loc“; thus L2loc(Ω) will denote the
the locally square integrable functions on Ω.
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for all y, z ∈ D. A more restrictive condition at b which implies LP is the “strong
limit-point” (SLP) property which means that

lim
t→b
(ypz′)(t) = 0

for all y, z ∈ D. That in our setting Mw must be either limit-point or limit-circle is

called the Weyl alternative after the inventor of these concepts.3 The SLP property
has been extensively studied by Everitt; see e.g. [10–11] and [17]. For LP criteria

see Read [26] and Kauffman, Read, and Zettl [22].
IfMw is limit-point at the singular end-points one can show that separation on D0

implies separation on D. Further if L is separated then Mw is SLP at the singular
endpoints. Proofs of these statements may be found in [3, Proposition 2].

A version of minimal conditions that applies to the expression− div(P∇y)+qy has
been given by E.B.Davies using quadratic form methods in the book [5]. But most

results of interest to us have been proven using some variant of the basic conditions
give above. In particular appropriate smoothness4 is required for P and it is assumed
that q ∈ L2loc(Ω). Under such hypotheses D′

0 ⊇ C∞
0 (Ω), L

′∗
0 = L, and L

∗ = L0 = L′
0,

where L as in the ordinary case is defined by Mw,n on

D := {u ∈ L2(w; Ω): Mw,n[y] ∈ L2(w; Ω)},

where the differentiation in Mw,n is interpreted in the distributional sense. For the
details of this development see [5] or [7]. We remark however that for consistency

in the discussion of operators determined by Mw and Mw,n we shall call L0 the
“minimal operator”, while most other writers use this term to denote L′

0 in the

partial case. When Ω = �
n or �n

+ := �
n\{0}, n � 2, the idea which replaces the

LP condition is the concept that L′
0 is “essentially self-adjoint”. This means that

L0 ≡ L′
0 = L. Thus since L∗ = L0, L is self-adjoint. Equivalently L0 has a unique

self-adjoint extension; for if T is any self-adjoint extension of L0, then

T = T ∗ ⊆ L∗
0 = L = L0 ⊆ T.

Many sufficient conditions have been given for essential self-adjointness. For instance,
Simon [27] showed that the basic Schrödinger operator −∆y + qy is essentially self-
adjoint if q = q1 + q2, where 0 � q1 ∈ L2(�n ) and q2 ∈ L∞. Successively more

3 Likewise the nomenclature “limit-point” or “limit-circle” is due to Weyl and results from
his technique which associates these cases with nested families of circles in the complex
plane which converge respectively either to a point or a circle. See e.g. Coddington and
Levinson [4, Chapter 9] for an account of Weyl’s method.

4One can usually get by with P ∈ C1+α(Ω) for some α > 0 rather than our assumption
that P ∈ C2(Ω).
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powerful extensions of this result were given by Kato [21], Eastham, Evans, and

McLeod [7], and Evans [8]. Since these results are rather complicated and are pe-
ripheral to our main interest we will not state them here. Some of these papers allow
considerable oscillation of q at ∞, but not potentials which are strongly singular at
0. This gap was covered by Kalf [19] and Kalf et al. [20] who showed that −∆y + qy
is essentially self-adjoint on �n

+ if q satisfies a local Stummel condition and

q � (1− [(n− 2)/2]2)|x|−2 − γ|x|2,

with γ � 0. Essential self-adjointness criteria for L′
0 on a subdomain Ω ⊂ �

n can be

found in Jörgens [18].
Our purpose in this paper is to improve the following two separation results ob-

tained in [3] in the ordinary setting.

Theorem A. Suppose p−1 ∈ Lloc(I), w is a positive function in Lloc(I), pq � 0,
and q ∈ ACloc(I), where I = [a, b), −∞ < a < b � ∞. Then the separation
inequality (1.4) holds for all y ∈ D0 with certain constants A,C < 1, B < 2, K = 1

and L = 0 under the condition

(|S∗1|) lim sup
t→b

∣∣wp1/2(w−1q)′/q3/2
∣∣ = θ < 2.

Theorem B. Suppose p and w satisfy the minimal conditions stated above on
I = [a,∞) and additionally that pq � 0, and q, p are differentiable on I, Then the
separation inequality (1.4) holds on D0 with certain constants A,C < 1, B < 2,

K = 1, and L = 0 if

(|S1|) lim sup
t→∞

∣∣w(p(w−1q)′)′/q2
∣∣ = θ.

for some 0 � θ < 2.

Our proof of Theorem A closely followed an argument due to Everitt and Giertz
who considered the case w = p = 1. Theorem B on the other hand appears to be

new. It was motivated by a claim of Dunford and Schwartz who in [6, Chapter XIII,
9.B5, p. 1541] state without giving a proof or reference that Mw is separated on D
when I = [0,∞) if

lim sup
t→∞

|(pq′)′|q2 < 1.

As noted by Everitt and Giertz in 1974 [14] this condition may be a misprint since
p(x) = 1 and q(x) = −x for x ∈ [0,∞) satisfies the condition and yet as is shown
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by them in [12] separation does not occur. Our version is in a weighted setting and

proves (but on D0 only) a result that may have been intended.
Our extensions of the above theorems are given in Sections 3 and 4. In Theorem 1

of Section 3 we prove a version of Theorem B in the ordinary case which replaces

(|S1|) by the condition (S1) which differs from the previous condition in omitting the
absolute value sign. This allows more freedom in the choice of p, q and w. Such a

result parallels a version of Theorem A proven by Atkinson in [1] which allows some
negativity in |S∗1|. Here it was shown that if w = p = 1 then separation occurs on D
if

−4/√15 < q′/q3/2 < 4/
√
15.

Further we allow a and/or b to be singular or finite and (with some additional

tightening of the assumptions on p, q and w) pq to be nonpositive. Examples of
Theorem 1 will include limit-circle cases satisfying a separation inequality on D0
but not on D and which additionally do not satisfy the Everitt and Giertz-type
criterion of Theorem A. In Section 4 we turn to the multidimensional case and

prove separation theorems for weighted Schrödinger-type operators. The first result
(Theorem 2) extends Theorem A to this setting. The argument is similar to that

given by Everitt and Giertz [16], but the class of operators we consider is wider.
Our separation criterion is also of the same general type as that given by Evans

and Zettl [9] but because we work on D0 we do not require essential self-adjointness
at the outset and so our assumptions are less complicated and we permit strongly

singular potentials such as those considered in [19–20]. Theorem 3 is an �n extension
of the the simplest part of Theorem 1. A Corollary will imply that the minimal

operator corresponding to −∆y + qy is separated if ∆q � 0, in other words if q is
superharmonic (i.e., −∆q � 0, where ∆ signifies the Laplacean). The paper ends
with an example showing that in Theorems 1–3 the conditions θ � 2 or θ < 2 are
necessary for separation on D in all dimensions.

3. A separation result for second order symmetric ordinary

differential operators

Let λ denote a real parameter. We call λ admissible if λ � 1 and for some δ ∈
(−∞, 1), 2δ−δ2/λ > θ, where θ is defined by (S1). Also set Qλ := 2λpqw−p(p′w−1)′,
and define

(3.1) {Qλ}−(x) =
{ |Qλ(x)|, if Qλ(x) < 0

0, otherwise.

We consider the following conditions on p, q and w which may hold for an admissible
λ on Is = [s, b) or Is = (a, s] for s sufficiently close to a singular point c = a or b.

279



(C0) pq � 0.
(C1) Qλ � 0.

(C2) sup
t∈Is

( ∫ s

t

{Qλ}− dx
)( ∫ t

a

wp−2 dx
)

� 1
4 or

sup
t∈Is

( ∫ t

s

{Qλ}− dx
)(∫ b

t

wp−2 dx
)

� 1
4 .

(C3) sup
t∈Is

( ∫ t

a

{Qλ}− dx
)( ∫ s

t

wp−2 dx
)

� 1
4 or

sup
t∈Is

( ∫ b

t

{Qλ}− dx
)( ∫ t

s

wp−2 dx
)

� 1
4 .

(C4) There exists a positive continuous function f such that for ε > 0

sup
t∈Is

f(t)2
(
[εf(t)]−1

∫ t+εf(t)

t

{Qλ}− dx
)(
[εf(t)]−1

∫ t+εf(t)

t

wp−2 dx
)
<∞,

lim sup
t→c

f(t)−2
(
[εf(t)]−1

∫ t+εf(t)

t

{Qλ}− dx
)(
[εf(t)]−1

∫ t+εf(t)

t

wq−2 dx
)
= 0.

(C5) q � 0 and −Qλ � E(λ)p < ∞, where E(λ) is a positive constant depending
on λ.

Given these conditions we can state:

Theorem 1. Suppose p, q and w are twice differentiable on I. Then Mw[y] on
D0 is separated and satisfies an inequality of the form (1.4) with A = C > 0, and

B = 0 under one of (C0)–(C5) provided also that (S1) holds.

�����. We begin by choosing s large enough as needed so that the conditions

(C0)–(C5) hold, and so that in (S1)

(3.2)
w(p(w−1q)′)′(t)

q(t)2
� λ2 − (λ− δ)2

λ

� 2δ − δ2

λ
< 2− δ2

λ

for a convenient admissible λ.

LetMw,λ[y] be given by the expression w−1[−(py′)′+λqy]. We define the maximal
and minimal operators L and L0 corresponding to Mw,λ as above, but on Is. Let

C∞
0 (Is) denote the infinitely differentiable functions with compact support on Is.
Then C∞

0 (Is) ⊂ D′
0 relative to Is. Suppose y ∈ C∞

0 (Is) and and λ > 1. Repeated
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integrations by parts and evaluation of M2
w,λ show that

(3.3) ‖Mw,λ[y]‖2w,Is
=

∫
Is

wM2
w,λ[y]y dx

= ‖w−1(py′)′‖2w,Is
+

∫
Is

[
2λpqw−1|y′|2

+ (λq)2w−1
(
1− w(p(w−1q′)′

λq2

)
|y|2

]
dx.

Alternatively,

(3.4) ‖Mw,λ[y]‖2w,Is
=

∫
Is

{
(w−1p2y′′)′′ − (2λpqw−1 − p(p′w−1)′)y′

+ ((λq)2w−1 − λ(p(w−1q)′)′)y
}
y dx

=
∫

Is

{
w−1p2|y′′|2 + (2λpqw−1 − p(p′w−1)′)|y′|2

+ ((λq)2w−1 − (λp(w−1q)′)′)|y|2
}
dx

�
∫

Is

{
(2λpqw−1 − p(p′w−1)′)|y′|2

+ (λq)2w−1
(
1− w(p(w−1q′)′

λq2

)
|y|2

}
dx.

It then follows from (3.2) together with (3.3) and (C0) or (3.1), (3.4), and (C1) that

(3.5) ‖Mw,λ[y]‖2w,Is
� (λ− δ)2‖w−1qy‖|2w,Is

.

However, it is also true that

(3.6) ‖Mw,λ[y]‖w,Is � ‖Mw[y‖w,I + (λ− 1)‖w−1qy‖w,Is .

And therefore
‖Mw[y]‖w,Is � (1− δ)‖w−1qy‖w,Is .

If the conditions (C2) or (C3) are satisfied instead of (C1), it follows from [25,
Theorems 1.14 and 6.2] that there is the Hardy-type inequality∫

Is

{Qλ}−|y′|2 dx � C

∫
Is

w−1p2|y′′|2 dx,

where C < 1. This together with (3.4) yields that

‖Mw,λ[y]‖2w,Is
� (1 − C)

∫
Is

{
w−1p2|y′′|2 + [(λ2)w−1q2 − (λp(w−1q)′)′]|y|2}dx

and the proof is completed as before. �
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If (C4) is satisfied, it follows from [2, Theorem 2.1] that there is a sum inequality

of the form ∥∥√
{Qλ}−y′

∥∥2
Is

� ε
{‖w−1qy‖2w,Is

+ ‖w−1py′′‖2w,Is

}
.

Again, using (3.4) gives the inequality

‖Mw,λ[y]‖2w,Is
� (1− ε)

∫
Is

{
w−1p2|y′′|2 + [(λ2 − ε)w−1q2 − (λp(w−1q)′)′]|y|2}dx.

With large enough λ and small enough ε we obtain that

‖Mw,λ[y]‖w,I �
[√
(λ− δ)2 − ε

]‖w−1qy‖w,Is

>
[
(λ− δ)−√

ε
] ‖w−1qy‖w,Is ,

which combined with (3.6) gives that

‖Mw[y]‖w,Is �
[
(1− δ)−√

ε
] ‖w−1qy‖w,Is

with [(1− δ)−√
ε ] > 0.

Finally, under (C5) we rearrange (3.4) so that

‖Mw,λ[y]‖2w,Is
+ E(λ)

∫
Is

p|y′|2 dx �
∫

Is

(λq)2w−1
(
1− w(p(w−1q′)′

λq2

)
|y|2 dx.

Combining this with the inequalities∫
Is

p|y′|2 dx � [Mw,λ[y], y]w,Is � (12ε)‖Mw,λ[y]‖2Is
+ ( 12ε )‖y‖2w,Is

(the last of which being a consequence of Cauchy-Schwartz and the arithmetic-
geometric mean inequality) gives that

(1 + 12E(λ)ε)‖Mw,λ[y]‖2w,Is
+ E(λ)

2ε ‖y‖w,Is

�
∫

Is

(λq)2w−1
(
1− w(p(w−1q′)′

λq2

)
|y|2 dx

and the proof is repeated as before.

Thus under any of these assumptions we have obtained a separation inequality for
C∞
0 functions on Is. Now let L

′′
0 denote the restriction of L

′
0 to C

∞
0 (Is). We sketch

a standard argument showing that that L′′
0 = L0. It is clear that L ⊆ L′′∗

0 . If we can
show that L′′∗

0 ⊆ L, it will follow that L∗ = L′′∗
0 = L0. Suppose (α, β) belongs to
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the graph of L′′∗
0 so that [L

′′
0y, α]w,Is = [y, β]w,Is . Making use of the differentiability

of p we write −(py′)′ = −p′y′ − py′′. Integration by parts then gives [y′′, z]w,Is = 0,
where

z =
∫ t

a

p′α ds+
∫ t

a

(t− s)(qα− β) ds− pα.

The Fundamental Lemma of the calculus of variations implies that z is a linear
function. Since z′ is absolutely continuous, two differentiations show that α ∈ D
and β = L(α). Thus L′′∗

0 = L. Since L∗ = L′′∗
0 = L0, we can approximate y ∈ D0

and Mw,λ[y] by sequences {yn}, Mw,λ[yn], where the yn ∈ C∞
0 (Is). From this it

will follow (cf. [9, p. 313] or [3, Lemma 1]) that the inequality is true on D0 defined
relative to Is.

Next we want to extend these results to I. To this end, define a pair of smooth
compact support functions ϕ1, ϕ2 on [s, b) or (a, s] such that ϕ1(s) = 1, ϕ′

1(s) = 0

and ϕ2(s) = 0, ϕ′
2(s) = 1. Then for a given y in D0 (on I), the function ỹ = yχIs −ψ,

where ψ = y(s)ϕ1 + y′(s)ϕ2 is in D0 on Is. By the previous reasoning there is an
inequality of the form

‖w−1qỹ‖w,Is � K‖Mw[ỹ]‖w,Is .

However this together with the triangle inequality implies that

‖w−1qy‖w,Is � K{‖Mw[y]‖w,Is + ‖Mw[ψ]‖w,Is}+ ‖w−1qψ‖w,Is .

Since ψ has compact support the last two norms are finite, so that ‖w−1qy‖w,Is <∞.
As we pointed out above this fact and a closed graph argument gives the inequality

for D0 (on Is)

‖w−1qy‖w,Is � K{‖Mw[y]‖w,Is + ‖y‖w,Is}(3.7)

� K{‖Mw[y]‖w,I + ‖y‖w,I}.

However, since the Green’s function G(t, s) ofMw is evidently bounded on [a, s]×[a, s]
if a is regular or on [s, b]× [s, b] if b is regular we can obtain an inequality of the form

‖y‖w,[a,s] � K1‖Mw[y]‖w,[a,s] or ‖y‖w,[s,b] � K1‖Mw[y]‖w,[s,b]

for all y ∈ D such that y(a) = y′(a) = 0 or y(b) = y′(b) = 0. Since q, w−1 are also
bounded on [a, s] it follows that

(3.8) ‖w−1qy‖w,[a,s] � K1K2‖Mw[y]‖w,[a,s] � K1K2‖Mw[y]‖w,I,

where K2 is a bound on w−1q. (3.7), (3.8) together followed by application of the
triangle inequality gives that

‖w−1(py′)′‖w,I � (K1K2 +K)‖Mw[y]‖w,I +K‖y‖w,I.
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������ 	
 The hypotheses (C1)–(C4) of Theorem 1 can viewed as examples of

conditions which guarantee either that the spectrum of a certain minimal operator
is nonnegative or that a certain quadratic form is nonnegative. Let M̃w,λ[y] :=
w−1[−(Py′)′ + Qλy], where P = w−1p2. Assume that P and Qλ satisfy minimal

conditions and let L̃0,λ,s signify the minimal operator determined by M̃ on Is. We
also define the quadratic form Φλ,s by

Φλ,s(z) =
∫

Is

[
P |z′|2 +Qλ|z|2

]
dx.

We then consider the conditions

(C6) For sufficiently large λ, s L̃0,λ,s has nonnegative continuous spectrum.
(C7) If z = y′, where y ∈ C∞

0 (Is) then Φλ,s(z) � 0.

It is well known that (C6)=⇒ (C7).

Corollary 1. Let p, q, and w satisfy the hypotheses of Theorem 1. Then Mw is

separated and the inequality of Theorem 1 holds under (C6) or (C7) provided (S1)
is satisfied. In (C6) P and Qλ need not satisfy minimal conditions.

�����. We repeat the proof of Theorem 1 noting that (C6) and (C7) can
replace (C1)–(C4) in that they guarantee that∫

Is

[
w−1p2|y′′|2 + (

2λpqw−1 − p(p′w−1)′
)|y′|2]dx � 0,

if y′ ∈ C∞
0 (Is). �

Corollary 2. If I = [a,∞), w = 1, and pq � 0 then M is separated on D0 if
(pq′)′ � 0. If p > 0 and q is bounded below then M is also separated on D.
�����. That M is separated on D0 is immediate from Theorem 1 using (C0).

That M is limit-point if p > 0 and q is bounded below is well known (see e.g. [6,

XIII.6.14, p. 1405]; consequently M is separated on D. �

����
���
 In all the cases that follow w−1q is unbounded since otherwise
separation holds trivially.

1. Let p(t) = tα, w(t) = tδ, q(t) = Ctβ , and I = [a,∞), a > 0, where C is a positive
constant. Then (C0) is satisfied for all λ > 0 and (S1) holds if (α−δ+β−1)(β−δ) � 0,
β > α − 2, or β = α − 2 and (2α − δ − 3)(α − 2 − δ) < 2C. Thus if p(t) = tα and

α � 2 we can let q(t) = tβ for β > 0. In both cases the operator is limit-point at ∞
so that separation will also hold on D.
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2. Let I, p(t), w, and C be as above, but take q(t) = −Ctβ. (C1) holds if α(α− δ−
1) < 0 and β < α− 2. (S1) holds if (α− δ + β − 1)(β − δ) � 0. We note that in the
unweighted case we cannot obtain from (C1) any nontrivial example of separation.
For δ = 0 implies that α ∈ (0, 1) and therefore β < −1 so that q is bounded.
3. Let I = [0,∞), p(t) = eαt, w(t) = eδt, and q(t) = Ceβt, where C > 0. (C0)
of Theorem 1 holds and (S1) is satisfied if (β − δ)(β + α − δ) > 0 and β > α, or

(β − δ)(β + α− δ) � 0, or 0 < (α− δ)(2α− δ) < 2 if β = α.

4. Let everything be as in Example 3 but take q(t) = −Ceβt. For (C1) to be satisfied

we need that 0 < α < δ and β < α. (2.1) implies that (β − δ)(β + α − δ) < 0 and
β > α, or (β − δ)(β + α− δ) � 0, or 0 > (α − δ)(2α− δ) > −2 if β = α.
5. If w = 1, p = (q′)−1, q′, q � 0, and I = [a,∞) separation on D0 is a consequence
of Theorem A. Under the same assumptions on w and q, if p = (q′)−r for r > 1, and
q′′ > 0 then (C0) and (S1) hold so there is separation at least on D0.
6. If w = p = 1, q = −t−2/8, and I = (0,∞) we find that

q′′

q2
= −48.

Consequently λ = 1 is admissible if δ > −6. A calculation shows that the second
condition of (C3) applies with s = 0. Equivalently, the classical Hardy inequality

yields that

2
∫

I

{q}−|y′|2 dx �
∫

I

|y′′|2 dx

so that (C7) holds. We conclude that separation occurs on D0 and by (3.5)–(3.6)
there is the inequality∫

I

t−2|y|2 dx � 64
49

∫
I

∣∣y′′ + (18 t−2)y∣∣2 dx.
The solutions of M [y] = 0 are of the form y = tα, where α = 1/2 ± √

2/4. Both

solutions are square integrable near 0 so that M is limit-circle at 0. Therefore we
have an example of separation holding on D0 but not on D. Note also that since∣∣∣∣ q′

q3/2

∣∣∣∣ = 4√2,
Theorem A does not apply.

7. Let I = (0, 1], p = −ct1/2, w = 1, q = 1
8ct

−3/2 − 1
2 , where c > 0 is a constant.

A calculation with λ = 1 shows that (C5) is satisfied and that (S1) holds because
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(pq′)′ = − 38c2t−3 < 0. This example does not satisfy a version of |S∗1| formulated
for the singular point 0 since θ is found to be 83/2( 316 )

2/3 ≈ 7.413. Moreover M is
limit-circle at 0 since it is a perturbation of an Euler operator with two L2 integrable
solutions at 0.

4. Partial differential operators

We write

T (y) :=
n∑

i,j=1

Di(pij(x)Djy) ≡ div(P∇y)

so thatMw,n[y] = w−1[−T (y)+qy]. Our goal will be to prove separation inequalities
on D′

0 ≡ C∞
0 (Ω) of the form (1.5) by generalizing Theorem A and Theorem 1.

Since L∗ = L0 ≡ L′
0 a closure argument like that given in [16, Lemma 2] will show

that the inequality holds on D0. Finally, if L′
0 is essentially self-adjoint (so that

L0 = L = L∗) the inequality will hold on D. We note, however, that separation
is a stronger property than essential self-adjointness. Let Tw,0 and Tw respectively

denote the minimal and maximal operators on a domain Ω determined by w−1T .

Lemma 1. Suppose T ′
w,0 is essentially self-adjoint and that L is separated. Then

L0 is essentially self-adjoint.

�����. We need show only that L is self-adjoint. Let (u, v) ∈ Graph (L∗) =
Graph (L0). Then [Ly, u]w,Ω = [y, v]w,Ω. Since L is separated, the Cauchy-Schwartz

inequality implies that [w−1T (y), u]w,Ω and [w−1qy, u]w,Ω are finite. Hence by the
essential self-adjointness of T ′

w,0 and self-adjointness of multiplication operators

[w−1T (y), u]w,Ω = [y, w−1T (u)]w,Ω and [w−1qy, u]w,Ω = [y, w−1qu]w,Ω.

It follows that

[Ly, u]w,Ω = [y, Lu]w,Ω = [y, v]w,Ω,

and so since D is dense v = Lu. �

Theorem 2. Under condition (|S∗n|) Mw,n satisfies the separation inequality

(1.5) on D0 with certain coefficients A > 1, C < 1, B < 2, and L = 0.

�����. Without loss of generality we can as in [16] and by the remarks at
the beginning of this section give the proof only for real functions in C∞

0 (Ω). Let
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y ∈ C∞
0 (Ω). We begin with the identity

∫
Ω

{
wM2

n,w[y] + γ(wMn,w[y])(w
−1T [y])

}
dx =∫

Ω

{
w−1(1− γ)T [y]2 + w−1(γ − 2)T [y]qy + w−1q2y2

}
dx,(4.1)

where γ ∈ (0, 1). Application of the arithmetic-geometric mean inequality to the the
term γ(wMn,w)(w−1T [y]) in (4.1) gives for δ > 0 the estimate

(4.2)

∣∣∣∣∫
Ω
(wMn,w[y])(w−1T [y]) dx

∣∣∣∣ � 1
2

{
δ‖Mn,w[y]‖2w,Ω + δ

−1‖w−1T [y]‖2w,Ω

}
.

Next integration by parts, the condition (|S∗n|), and the arithmetic-geometric mean
inequality applied to w−1T [y]qy yields successively that

∫
Ω
w−1T [y]qy dx =

∫
Ω

n∑
i,j=1

Di(pij(x)Djy)(w−1q)y dx

= −
∫
Ω
[P (x)∇y,∇(w−1q)]ny dx−

∫
Ω
w−1[P (x)∇y,∇y]nq dx

�
∫
Ω

∣∣[P (x)∇y,∇(w−1q)]n
∣∣ |y| dx−

∫
Ω
w−1 |[P (x)∇y,∇y]nq| dx

�
∫
Ω
‖P (x)1/2∇y‖n‖P (x)1/2∇(w−1q)‖n |y| dx

−
∫
Ω
w−1 |[P (x)∇y,∇y]nq| dx

� θ

∫
Ω
‖P (x)1/2∇y‖nw(x)−1q(x)3/2|y| dx

−
∫
Ω
w−1 |[P (x)∇y,∇y]nq| dx (by (|S∗n|))(4.3)

� θ

(∫
Ω
‖P (x)1/2∇y‖nw(x)−1q(x) dx

)1/2 (∫
Ω
w−1q(x)2y2 dx

)1/2
−

∫
Ω
w−1 |[P (x)∇y,∇y]nq| dx

� 1
2θ

[∫
Ω
‖P (x)1/2∇y‖nw(x)

−1q(x) dx+
∫
Ω
w−1q(x)2y2 dx

]
−

∫
Ω
w−1 |[P (x)∇y,∇y]nq| dx.
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We now substitute (4.2) and (4.3) into (4.1) to obtain

(1 + γδ/2)‖Mn,w[y]‖2w,Ω � (1 − γ − γ
2δ )‖w−1T [y]‖2w,Ω

+ (2− γ)
{‖w−1([P∇y,∇y]nq)1/2‖2w,Ω

− θ‖w−1([P∇y,∇y]nq)1/2‖w,Ω ‖w−1qy‖w,Ω
}

+ ‖w−1qy‖2w,Ω

� (1 − γ − γ
2δ )‖w−1T [y]‖2w,Ω

+ (2− γ)(1− 1
2θ)‖w−1[P∇y,∇y]1/2n q‖2w,Ω

+ [(1− (2 − γ)(12θ)]‖w−1qy‖2w,Ω.

This is the inequality (1.5) if we choose γ < 1 such that

(2− γ)(12θ) < 1⇔ γ > 2− 2
θ

and δ large enough that (1− γ − γ
2δ ) > 0. �

Theorem 3. Under condition (Sn) and if q � 0, then Mw,n satisfies the separa-

tion inequality (1.5) on D0 with A = C = K = 1 and B,L = 0.
�����. Let y ∈ C∞

0 (Ω) and set Mw,n,λ := w−1[−T (y) + λqy]. By a direct
computation

[M2
w,n,λ[y], y]w,Ω =

∫
Ω
{−T (w−1[−T (y) + λqy]) + λqw−1[−T (y) + λqy]}y dx

= ‖w−1T (y)‖2w,Ω −
∫
Ω
{T (w−1λqy)y + w−1λqT (y)y} dx

+
∫
Ω
w−1(λq)2|y|2 dx

� −2Re
( ∫

Ω
div(P∇yw−1λq)y dx

)
+

∫
Ω
w−1(λq)2|y|2 dx

= 2Re

( ∫
Ω
P∇y · ∇(w−1λqy) dx

)
+

∫
Ω
w−1(λq)2|y|2 dx

= 2Re

( ∫
Ω
{[P∇y,∇y]nw−1λq + [P∇y,∇(w−1λq)]ny} dx

)
+

∫
Ω
w−1(λq)2|y|2 dx

= 2Re

( ∫
Ω
[P∇y,∇y]nw−1λq dx

)
+ 2Re

( ∫
Ω
[P∇y,∇(w−1λq)]ny dx

)
+

∫
Ω
w−1(λq)2|y|2 dx
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= 2λ
∫
Ω
{[P∇y,∇y]nw−1q dx+ λ

∫
Ω
P∇(w−1q) · ∇(|y|2) dx

+
∫
Ω
w−1(λq)2|y|2 dx

�
∫
Ω
[w−1(λq)2 − λdiv(P∇(w−1q)]|y|2 dx.

The proof is then completed as in the (C0) case of Theorem 1. (Note that the

basic assumptions on the matrix P and the nonnegativity of q guarantee that∫
Ω[P∇y,∇y]nw−1q dx � 0. �

The next result parallels Corollary 2 for n > 1.

Corollary 3. If w = 1 and P = In then there is a separation inequality of form
(1.5) if ∆q � 0.

������ �
 We can show that θ � 2 in Theorem 2 and θ < 2 in Theorems 1
and 3 is a necessary condition for separation on D for all dimensions n. To see this,
let Ω be �n\B(0, 1) (B(0, 1) is the unit ball centered at the origin), and set

y = |x|µ, w = |x|δ,
q = K0|x|β , P = |x|αIn,

where In is the identity matrix. Then a calculation shows that

(4.4) y ∈ L2(w; Ω)⇔
∫
Ω
|r|δ+2µrn−1 dr dσ <∞ ⇔ 2µ+ δ + n− 1 < −1,

where σ represents the angular measure in polar coordinates. Also

(4.5)
∫
Ω
w|w−1qy|2 dx =∞ ⇔ 2µ � δ − 2β − n.

In Theorem 2 the condition (|S∗n|) gives

(4.6) sup
x∈Ω

|K0|−1/2|β − δ‖x|(α−β)/2−1 = θ,

Suppose in (4.6) that θ = 2 + ε. We will show that we can choose α, β, δ, and µ
such that (4.4) and (4.5) are satisfied. First we suppose that Ly = 0. This implies

that K0 = µ(α + µ − 2 + n). Next take α = 2 − n so that K0 = µ2. Now (4.4)
⇔ −2µ > δ + n and (4.5) ⇔ 2µ � δ + n. In other words, assuming that δ < −n,
y ∈ D and ‖w−1qy‖w,Ω =∞ if and only if

1
2 (δ + n) � µ < − 12 (δ + n).
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Next if β = α− 2 = −n, then (4.6) is equivalent to

| − n− δ|
|µ| ≡ |n+ δ|

|µ| = θ ≡ 2 + ε.

This will hold if

1
2 (δ + n) < (δ + n)(2 + ε)

−1 < µ = −(δ + n)(2 + ε)−1 < − 12 (δ + n).

For n = 1 (Theorem A) our example bears on question that is implicit in the paper

[15] of Everitt and Giertz. They showed [15, Theorem 3] that M [y] = −y′′ + qy was
separated on D if in (|S∗1|) θ < 2 while separation need not happen on D if θ > 4/

√
3.

But the situation when θ ∈ [2, 4/√3) was left open. This problem seems still to be
open; however our example shows that if nontrivial p, w are allowed θ cannot exceed

2 in Theorem A if separation is to occur on D.
A slightly modified analysis works for Theorems 1 and 3. Here

w div(P∇(w−1q)) = K0(β − δ)(β − δ + α)|x|β+α−2,

and thus (Sn) becomes

(4.7) sup
|x∈Ω|

K−1
0 (β − δ)(β − δ + α)|x|α−β−2 = θ,

Suppose θ � 2. The choice β = −n, α = 2−n, and µ such that Ly = 0 gives in (4.7)

θ = µ−2(n+ δ)(2n+ δ − 2).

Therefore we can take

µ = −
√
1
θ (n+ δ)(2n+ δ − 2).

If δ < −n then (4.4) will hold. Moreover

2 � θ ⇔ 2θ−1(n+ δ) � (n+ δ)

and

2θ−1(n+ δ) < −2
√
1
θ (n+ δ)[(n+ δ) + (n− 2)] = 2µ

so that 2µ > n+ δ and (4.5) also is satisfied.
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