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Abstract. Sobolev’s original definition of his spaces Lm,p(Ω) is revisited. It only assumed
that Ω ⊆ �

n is a domain. With elementary methods, essentially based on Poincaré’s
inequality for balls (or cubes), the existence of intermediate derivates of functions u ∈
Lm,p(Ω) with respect to appropriate norms, and equivalence of these norms is proved.
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1. Introduction

In 1936–38, S. L. Sobolev introduced in his pioneering works [10], [11] spaces of in-
tegrable functions having weak derivatives in Lp. These function spaces have turned
out to be an appropriate framework for studying boundary value problems for par-
tial differential equations by using methods of functional analysis. A presentation
of these results obtained up to 1949–50 may be found in Sobolev’s monograph [12].
On the other hand, these function spaces became a research field of independent
interest, and since that time the theory of these spaces has undergone an enormous
development (cf. e.g. [2], [5], [9], [13]).

The commonly used definition of these spaces in the contemporary literature is as
follows. Let Ω ⊆ �

n be an open set, let m ∈ � and 1 � p � +∞. Then the vector
space

Wm,p(Ω) :=
{
u ∈ Lp(Ω): ∃Dαu ∈ Lp(Ω)∀ |α| � m

}
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is nowadays called “Sobolev space”. Here Dαu = ∂|α|u
∂x

α1
1 ·...·∂xαn

n
denotes the weak

(or generalized) derivative of u corresponding to the multi-index α = {α1, . . . , αn}
(|α| = α1 + . . . + αn) (cf. e.g. [1], [4], [8], [14]). Wm,p(Ω) is a Banach space with
respect to the norm

‖u‖W m,p(Ω) :=



( ∑
|α|�m

‖Dαu‖p
Lp(Ω)

)1/p

if 1 � p < +∞,

∑
|α|�m

‖Dαu‖L∞(Ω) if p = +∞.

The above definition of the space Wm,p(Ω) fits very well the weak formulation of
boundary value problems for partial differential equations on bounded domains, but
it is less convenient when unbounded domains are under consideration. To see this,
let us consider

Ω :=
{
x ∈ �

n : |x| > 1
}
,

u(x) :=

{
1− |x|2−n if n � 3, x ∈ Ω,

log |x| if n = 2, x ∈ Ω.

It is readily seen that

u ∈ Lq
loc(Ω) for any 1 � q < +∞,

u /∈ Lp(Ω),
∂u

∂xi
∈ Lp(Ω) (i = 1, . . . , n) for any p > n

n−1 ,

∆u = 0 in Ω, u = 0 on ∂Ω.

Therefore, for the function space setting of boundary value problems for PDE’s in
unbounded domains, the following definition seems to be more adequate:1

Lm,p(Ω) :=
{
u ∈ L1loc(Ω): ∃Dαu ∈ Lp(Ω) ∀ |α| = m

}
.

This is a slight generalization of Sobolev’s original definition [10], [11], [12] where
he used functions in L1(Ω) in place of L1loc(Ω) [notice that the letters W and L for
the notation of the above spaces in [12] vary in the contemporary literature]. Our
definition of Lm,p(Ω) coincides with that in [6], [7].
To furnish Lm,p(Ω) with a norm, we assume throughout this paper that Ω ⊆ �

n

is a domain, and we fix any G ⊂⊂ Ω,2 and define for every u ∈ Lm,p(Ω)

‖u‖m,p;Ω,G := ‖u‖L1(G) + |u|m,p;Ω,

1Without any further reference, in all that follows we restrict our discussion to the case
1 � p < +∞.

2 That is, G is open and bounded and G ⊂ Ω. Clearly, we assume G �= ∅.
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where

|u|m,p;Ω :=

( ∑
|α|=m

‖Dαu‖p
Lp(Ω)

)1/p

(note that ‖u‖m,p;Ω,G = 0 implies in particular |u|m,p;Ω = 0, hence u = P (= poly-
nomial of degree � m − 1; cf. Theorem B below) a.e. on G, and ‖P‖L1(G) = 0 gives
P ≡ 0 on G and thus u = P = 0 a.e. on Ω).
The following problems occur in the study of the spaces Lm,p(Ω):

1. existence of intermediate derivatives Dβu ∈ Lp
loc(Ω) (|β| � m − 1) for any

u ∈ Lm,p(Ω);
2. completeness of Lm,p(Ω) with respect to the norm ‖ · ‖m,p;Ω,G;
3. equivalence of the norms ‖·‖m,p;Ω,Gk

for arbitrary domains Gk ⊂⊂ Ω (k = 1, 2).
By using the method of spherical projection operators, these problems are settled

in [12] for bounded domains Ω which are finite unions of domains each of which is
starshaped with respect to a ball (cf. also [3], [7], [12]).
The aim of the present paper is to solve problems 1.–3. by an entirely different and

simpler method which is essentially based on Poincaré’s inequality over balls. This
inequality can be proved by elementary calculus arguments. Moreover, we introduce
a new class of norms on Lm,p(Ω) which are equivalent to the norm ‖ · ‖m,p;Ω,G and
give a better insight into the product space structure of Lm,p(Ω).
A more detailed presentation of our approach will appear in a forthcoming publi-

cation.

2. Notations. Preliminaries

We introduce the notation for our following discussion:

P(m) := {
P = P (x) : P (x) =

∑
|α|�m

aαxα, x ∈ �
n
}

= vector space of polynomials of degree � m in �n ;

for any set G ⊆ �
n and x ∈ G let

dx :=

{
1
4dist(x, ∂G) if G 	= �

n ,

1 if G = �
n ;

finally,

BR(x0) := {x ∈ �
n : |x − x0| < R};

in particular, we denote Bdx = Bdx(x).
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2.1 We begin by proving two auxiliary results.

Theorem A. Let G ⊂ �
n be a bounded open set. Then for any u ∈ Wm,p(G)

there exists a uniquely determined polynomial Pu ∈ P(m − 1) such that∫
G

Dα(u − Pu) dx = 0 ∀|α| � m − 1,(2.1)

‖Pu‖W m−1,p(G) � C‖u‖W m−1,p(G),(2.2)

where the constant C depends only on m, n, p and mesG.

�����. Let m = 1. Given any u ∈ W 1,p(G), then

Pu =
1

mesG

∫
G

u(y) dy

satisfies (2.1), (2.2) (with C = 1).
Suppose the claim is true for m � 1. Let u ∈ Wm+1,p(G). Define

Q(x) :=
∑

|β|=m

bβxβ , x ∈ �
n , where bβ :=

1
β! mesG

∫
G

Dβu dy.

Clearly, ∫
G

Dα(u − Q) dx = 0 ∀|α| = m,

‖Q‖W m,p(G) � C‖u‖W m,p(G)(2.2′)

(the constant C involves bounds on |xγ | (|γ| � m − 1) over G). The function
v := u − Q lies in Wm,p(G). Hence, there exists a Pv ∈ P(m − 1) such that∫

G

Dγ(v − Pv) dx = 0 ∀|γ| � m − 1,

‖Pv‖W m−1,p(G) � C‖v‖W m−1,p(G) � C′‖u‖W m,p(G).(2.2′′)

Thus, Pu := (Pv +Q) ∈ P(m) and
∫
G

Dα
(
u − (Pv +Q)

)
dx =


∫
G

Dα(u − Q) dx = 0 ∀|α| = m,∫
G

Dα(u − Q − Pv) dx = 0 ∀|α| � m − 1,

and (2.2) (with m in place of m − 1) is readily deduced from (2.2′) and (2.2′′).
The uniqueness of Pu also follows by induction. �
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Theorem B. Let G ⊆ �
n be a domain. Let u ∈ Lm,p(G) satisfy Dαu = 0 a.e. in

G for all |α| = m. Then there exists exactly one P ∈ P(m − 1) such that
u = P a.e. in G.

�����. a) Let x ∈ G be arbitrary. For 0 < � < dx we consider the standard
mollifier u� on the ball B2dx . Then

‖u − u�‖L1(Bdx ) → 0 as � → 0,
(Dαu�)(ξ) = (D

αu)�(ξ) = 0 ∀ξ ∈ Bdx , ∀|α| = m.

Hence there exists a polynomial P (�) ∈ P(m − 1) such that u�|Bdx
= P (�)|Bdx

.

The space P(m − 1) being complete with respect to the norm ∥∥ · |Bdx

∥∥
L1(Bdx )

,

there exists a P (x) ∈ P(m − 1) such that ‖P (x) − u�‖L1(Bdx ) → 0 as � → 0. Thus,
u = P (x) a.e. in Bdx .
b) Let x, y ∈ G with Bdx ∩ Bdy 	= ∅. Then Bdx ∩ Bdy is open and therefore

P (x) = P (y) on Bdx ∩ Bdy , i.e. P (x) ≡ P (y).
c) Let x0 ∈ G be arbitrary, but fixed. Define

M :=
{
x ∈ G : P (x) ≡ P (x0)

}
.

Clearly, x0 ∈ M . The set M is open, for x ∈ M and y ∈ Bdx imply Bdx ∩ Bdy 	= ∅,
and by b) we have P (y) ≡ P (x) ≡ P (x0), i.e. Bdx ⊂ M . On the other hand, M is
relatively closed. Indeed, let xk ∈ M and xk → x ∈ G. Then xk ∈ Bdx for all k � k0,
and again using b) gives P (x) ≡ P (xk0) ≡ P (x0), i.e. x ∈ M . Thus, M = G.
d) Set P := P (x0). Let Gk (k ∈ �) be bounded open sets such that Gk ⊂⊂

Gk+1 ⊂⊂ G and G =
∞⋃

k=1
Gk. Given any k ∈ � there exist xi ∈ Gk (i = 1, . . . , s)

such that Gk ⊂
s⋃

i=1
Bdxi
. By a) and c),

‖u − P‖L1(Gk) �
s∑

i=1

‖u − P‖L1(Bdxi
) = 0.

Hence u = P a.e. in Gk, and therefore u = P a.e. in G. �

2.2 The following result is fundamental to our subsequent discussion.

Theorem C. (Poincaré’s inequality). Let BR = BR(x0) be any fixed ball. Then
there exists a constant C(R) > 0 (depending also on m, n and p) such that

(2.3)


‖u‖W m−1,p(BR) � C(R)|u|m,p;BR ,

∀u ∈ Wm,p(BR) with
∫

BR

Dβu dx = 0 ∀|β| � m − 1.
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An elementary proof of this theorem 3 for m = 1 which is based on potential
estimates, may be found in [4]. The proof for m � 2 follows by induction.

3. Existence of intermediate derivatives

Without any further reference, throughout the following discussion we denote by
Ω a domain in �n . Our first result in solving problem 1 is

Theorem 3.1. Let u ∈ Lm,p(Ω). Then there exist the weak derivatives

Dβu ∈ Lp
loc(Ω) ∀|β| � m − 1.

�����. a) Let x ∈ Ω be arbitrary. As above in the proof of Theorem B, for
0 < � < dx we consider the standard mollifier u� on B2dx . For any sequence (�k)
such that 0 < �k < dx and �k → 0, we have

(3.1) ‖u − u�k
‖L1(Bdx ) → 0, |u − u�k

|m,p;Bdx
→ 0 as k → ∞.

By Theorem A (with G = Bdx), there exists a Pu�k
∈ P(m − 1) such that

(3.2)
∫

Bdx

Dβ(u�k
− Pu�k

) dx = 0 ∀|β| � m − 1.

Define vk := u�k
− Pu�k

. Then Dαvk = Dαu�k
on Bdx for all |α| = m. Using (3.1)

and (3.2), Theorem C gives

‖vk − vl‖W m−1,p(Bdx )
� C(dx)|u�k

− u�l
|m,p;Bdx

→ 0

and thus ‖vk − vl‖W m,p(Bdx ) → 0 as k, l → ∞. Hence, there exists v ∈ Wm,p(Bdx)
such that ‖v − vk‖W m,p(Bdx ) → 0 as k → ∞.
Let ϕ ∈ C∞

c (Ω). For any multiindex α with |α| = m we have∫
Bdx

(u − v)Dαϕdx =
∫

Bdx

uDαϕdx − lim
k→∞

∫
Bdx

vkD
αϕdx

= (−1)m
∫

Bdx

(Dαu)ϕdx − (−1)m lim
k→∞

∫
Bdx

(Dαu�k
)ϕdx

= 0.

3 If we replace for x ∈ �
n the Euclidean norm |x| = |x|2 =

( n∑
i=1

x2i
)1/2

by the equivalent

norm |x|∞ := max {|xi|, i = 1, . . . , n}, then a “ball” BR(x0) with respect to | · |∞-norm
is the cube WR(x0) := {x ∈ �n : |xi − x0 i| < R, i = 1, . . . , n}. In this case Poincaré’s
inequality for m = 1 admits a very simple proof by induction on n.
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By Theorem B, there exists a polynomial P ∈ P(m − 1) satisfying u − v = P a.e. in
Bdx . Thus, u = (v + P ) ∈ Wm,p(Bdx).
b) Let Ω′ ⊂⊂ Ω be arbitrary. There exist xi ∈ Ω′ (i = 1, . . . , s) such that Ω′ ⊂

s⋃
i=1

Bdxi
. From a) we have u|Bdxi

∈ Wm,p(Bdxi
) (i = 1, . . . , s). Then, by a standard

argument, u ∈ Wm,p(Ω′) (cf. e.g. [8], [12]).

c) Let Ωj be subsets of Ω satisfying Ωj ⊂⊂ Ωj+1 (j = 1, 2, . . .) and Ω =
∞⋃

j=1
Ωj .

Let u
(β)
j ∈ Lp(Ωj) denote the weak Dβ-derivative (|β| � m−1) of u in Ωj. It follows

that ∫
Ωj

u
(β)
j+1ϕdx =

∫
Ω

u
(β)
j ϕdx ∀ϕ ∈ C∞

c (Ωj),

i.e. u
(β)
j+1 = u

(β)
j a.e. in Ωj . Therefore we can choose appropriate representatives in

u
(β)
j (not relabelled) such that u

(β)
j+1(x) = u

(β)
j (x) for all x ∈ Ωj . Then the function

u(β)(x) := u
(β)
j (x) for x ∈ Ωj (j = 1, 2, . . .)

is well defined on Ω, u(β) ∈ Lp
loc(Ω) and u(β) = Dβu a.e. in Ω. �

������. Let Ω ∈ C0 (i.e. Ω is bounded and the boundary of Ω is locally the
graph of a continuous function). Let u ∈ Lm,p(Ω). Using a method from [8] for
proving the compactness of the imbedding W 1,p(Ω) ⊂ Lp(Ω), we obtain:

Dβu ∈ Lp(Ω) ∀|β| � m − 1

(cf. also [3]).

4. Norms on Lm,p(Ω). Completeness of Lm,p(Ω)

Let G ⊂⊂ Ω. By Theorem 3.1 we may define, for any u ∈ Lm,p(Ω),

||u||m−1;G :=
∑

|β|�m−1

∣∣∣∣ ∫
G

Dβu dx

∣∣∣∣,
||u||m,p;Ω,G := ||u||m−1;G + |u|m,p;Ω.

The norm || · ||m,p;Ω,G seems to be better adapted to the study of completeness and
equivalence of various norms on the space Lm,p(Ω) than the norm ‖ · ‖m,p;Ω,G con-
sidered in the introduction.
To begin with, we prove
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Lemma 4.1. There holds:
1. || · ||m−1;G is a norm on P(m − 1).
2. || · ||m,p;Ω,G is a norm on Lm,p(Ω).

�����. 1. Let be P ∈ P(m − 1) such that ||P ||m−1;G = 0. We may write
P (x) =

∑
|β|�m−1

aβxβ , x ∈ �
n . In particular, it follows that

0 =
∑

|β|=m−1

∣∣∣∣ ∫
G

DβP dx

∣∣∣∣ = ∑
|β|=m−1

|aβ|β! mesG,

i.e., aβ = 0 for all |β| = m − 1. Repeating this argument gives P ≡ 0.
2. Assume u ∈ Lm,p(Ω) satisfies ||u||m,p ; Ω,G = 0. By Theorem B, u = P a.e. in Ω,

where P ∈ P(m − 1). Then 1. implies u = 0 a.e. in Ω.
All the other properties of both norms are readily seen. �

We now define

Lm,p
G (Ω) :=

{
u ∈ Lm,p(Ω):

∫
G

Dβu dx = 0 ∀|β| � m − 1
}

.

Then

(4.1) Lm,p(Ω) = Lm,p
G (Ω)⊕ P(m − 1)|Ω (direct decomposition).

Indeed, by Theorem A there exists a uniquely determined Pu ∈ P(m − 1) such that∫
G

Dβ(u − Pu) dx = 0 ∀|β| � m − 1.

Then u0 := (u − Pu) ∈ Lm,p
G (Ω) and u = u0 + Pu.

If v ∈ Lm,p
G (Ω)∩P(m−1)|Ω, i.e. v ∈ P(m−1) and

∫
G

Dβv dx = 0 for all |β| � m−1,

it follows that v ≡ 0.
With the decomposition u = u0 + Pu just introduced, we have

||u||m,p ; Ω,G = ||Pu||m−1 ; G + |u0|m,p ; Ω.

Furthermore, if G is a domain with G ⊂⊂ Ω, then | · |m,p ; Ω is a norm on Lm,p
G (Ω)

(cf. Theorem B).
Our principal result in this section is
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Theorem 4.2. Let (uk) be a sequence of functions in Lm,p(Ω) such that

|uk − ul|m,p ; Ω → 0 as k, l → ∞.

Let x0 ∈ Ω be arbitrary, but fixed, and let Puk
= P

(x0)
uk ∈ P(m−1) be the polynomial

from Theorem A:∫
Bdx0

Dβ(uk − Puk
) dx = 0 ∀|β| � m − 1 (k = 1, 2, . . .).

Then there exists a u ∈ Lm,p(Ω) such that∥∥u − (uk − Puk
)
∥∥

W m−1,p(Ω′) → 0 as k → ∞, ∀Ω′ ⊂⊂ Ω,(4.2)

|u − uk|m,p ; Ω → 0 as k → ∞.(4.3)

�����. a) From Theorem C (Poincaré’s inequality) it follows that

‖(uk − Puk
)− (ul − Pul

)‖p
W m,p(Bdx0

)

= ‖(uk − ul)− (Puk
− Pul

)‖p
W m−1,p(Bdx0

) + |uk − ul|pm,p ; Bdx0

� (1 + (C(dx0))
p)|uk − ul|pm,p ; Bdx0

→ 0 as k, l → ∞,

i.e., (uk − Puk
) is Cauchy in Wm,p(Bdx0

).
b) Define

M :=
{
x ∈ Ω: (uk − Puk

) is Cauchy in Wm,p(Bdx)
}
.

By a), x0 ∈ M . We shall show that M is open. To this end, let x ∈ M . Given
any y ∈ Bdx we have to show that (uk − Puk

) is Cauchy in Wm,p(Bdy). Indeed, let

P
(y)
uk ∈ P(m − 1) satisfy∫

Bdy

Dβ(uk − P (y)uk
) dx = 0 ∀ |β| � m − 1

(cf. Theorem A). The same reasoning as in a) gives: (uk − P
(y)
uk ) is Cauchy in

Wm,p(Bdy). Denoting E := Bdx ∩ Bdy we find∥∥(Puk
− P (y)uk

)− (Pul
− P (y)ul

)
∥∥

W m−1,p(E)

�
∥∥(Puk

− uk)− (Pul
− ul)

∥∥
W m−1,p(Bdx )

+
∥∥(uk − P (y)uk

)− (ul − P (y)ul
)
∥∥

W m−1,p(Bdy )

→ 0 as k, l → ∞.
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Thus, (Puk
− P

(y)
uk ) is Cauchy in Wm−1,p(E) and therefore also in Wm−1,p(Bdy)

(since all norms on the finite dimensional space P(m − 1) are equivalent). Hence,
(uk − Puk

) is Cauchy in Wm,p(Bdy).
Next, we shall show that M is relatively closed, i.e., xs ∈ M , xs → x ∈ Ω implies

x ∈ M . Indeed, we have xs0 ∈ Bdx for a sufficiently large s0, and (uk − Puk
) is

Cauchy in Wm,p(Bdxs0
). Since Bdxs0

∩Bdx 	= ∅, we obtain as above that (uk −Puk
)

is Cauchy in Wm,p(Bdx). Thus, M = Ω.
c) Let Ω′ ⊂⊂ Ω be arbitrary. Then there exist xi ∈ Ω′ (i = 1, . . . , t) with Ω′ ⊂

t⋃
i=1

Bdxi
. From b) we have: the sequence (uk − Puk

) is Cauchy in Wm,p(Bdxi
)

(i = 1, . . . , t), and therefore also in Wm,p(Ω′). Hence, there exists a u ∈ Wm,p(Ω′)
(possibly depending on Ω′) such that

∥∥u − (uk − Puk
)
∥∥

W m,p(Ω′) → 0 as k → ∞.

d) Let Ωj be subsets of Ω satisfying Ωj ⊂⊂ Ωj+1 (j = 1, 2, . . .) and Ω =
∞⋃

j=1
Ωj .

Let vj ∈ Wm,p(Ωj) be the limit function of (uk − Puk
) in Wm,p(Ωj) (cf. c)). Then

vj+1 = vj a.e. in Ωj , and by choosing appropriate representatives of vj , we may
define a measurable function u on Ω, such that u = vj a.e. in Ωj (j = 1, 2, . . .). An
analogous construction for the weak derivatives Dαvj gives Dαu = Dαvj a.e. in Ωj

(j = 1, 2, . . .). We obtain u ∈ Wm,p
loc (Ω) and (4.2).

e) It remains to show that u ∈ Lm,p(Ω) and (4.3). To see this, we note that our
assumptions imply for any |α| = m the existence of functions wα ∈ Lp(Ω) such that
‖wα − Dαuk‖Lp(Ω) → 0 as k → ∞. Hence, wα = Dαu a.e. in Ωj (Ωj is from c) and
the claim follows. �

	���

��� 4.3. Let (uk) ⊂ Lm,p
Bdx0
(Ω) be Cauchy with respect to the norm

| · |m,p ; Ω.4 Then there exists u ∈ Lm,p
Bdx0
(Ω) such that

‖u − uk‖W m−1,p(Ω′) → 0 as k → ∞, ∀Ω′ ⊂⊂ Ω,

|u − uk|m,p ; Ω → 0 as k → ∞.

Indeed, the proof of Theorem 4.2 remains true with Puk
≡ 0. If we choose Ω′ =

Bdx0
then

∫
Bdx0

Dβu dx = lim
k→∞

∫
Bdx0

Dβuk dx = 0 for |β| � m − 1 and therefore
u ∈ Lm,p

Bdx0
(Ω).

The following two results give the solution of problem 2 (cf. Introduction).

4 That is, we consider the norm || · ||m,p ; Ω,G with G = Bdx0
on the subspace Lm,p

Bdx0
(Ω) of

Lm,p(Ω) (cf. Lemma 4.1).
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Theorem 4.4. Let G ⊂⊂ Ω. Let (uk) ⊂ Lm,p
G (Ω) be Cauchy with respect to the

norm | · |m,p ; Ω. Then there exists u ∈ Lm,p
G (Ω) such that

‖u − uk‖W m−1,p(Ω′) → 0 as k → ∞, ∀Ω′ ⊂⊂ Ω,

|u − uk|m,p ; Ω → 0 as k → ∞.

�����. a) By Theorem A, (and Theorem 3.1), there exists Puk
∈ P(m − 1) so

that vk := uk − Puk
∈ Lm,p

Bdx0
(Ω) (k = 1, 2, . . .), where x0 ∈ Ω is an arbitrary, fixed

point. Then (vk) is Cauchy with respect to the norm | · |m,p ; Ω, and Corollary 4.3
guarantees the existence (and uniqueness) of a v ∈ Lm,p

Bdx0
(Ω) such that

(4.4)
‖v − vk‖W m−1,p(Ω′) → 0 as k → ∞, ∀Ω′ ⊂⊂ Ω,

|v − vk|m,p ; Ω → 0 as k → ∞.

b) Again, by Theorem A we find a polynomial Q ∈ P(m − 1) such that u :=
(v +Q) ∈ Lm,p

G (Ω). It follows that

|u − uk|m,p ; Ω = |v +Q − vk − Puk
|m,p ; Ω = |v − vk|m,p ; Ω → 0

as k → ∞.
c) Observing that ||u||m−1 ; G = ||uk||m−1 ; G = 0, we obtain from (4.4) with Ω′ = G

||Q − Puk
||m−1 ; G = ||Q − u+ (u − uk) + (uk − Puk

)||m−1 ; G

� ||v − vk||m−1 ; G

� c0(mesG)1/p′‖v − vk‖W m−1,p(G) → 0
as k → ∞, where c0 is a constant which depends on m, n and p only. Since the space
P(m − 1) is finite dimensional, we have

||Q − Puk
||m−1 ; G → 0 iff ‖Q − Puk

‖W m−1,p(Ω′) → 0 for any Ω′ ⊂⊂ Ω
(cf. Lemma 4.1). Whence

‖u − uk‖W m−1,p(Ω′) =
∥∥v +Q − (vk + Puk

)
∥∥

W m−1,p(Ω′)

� ‖v − vk‖W m−1,p(Ω′) + ‖Q − Puk
‖W m−1,p(Ω′) → 0

as k → ∞. �

Theorem 4.5. Let G ⊂⊂ Ω. Then Lm,p(Ω) is a Banach space with respect to
the norm || · ||m,p ; Ω,G.

�����. The claim follows by combining the direct decomposition (4.1) with
Lemma 4.1 and Theorem 4.4. �
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5. Equivalent norms

We begin by proving a Poincaré type inequality.

Theorem 5.1. Let G ⊂⊂ Ω. Then for every Ω′ ⊂⊂ Ω there exists a constant
CΩ′ > 0, such that

(5.1) ‖u‖W m−1,p(Ω′) � CΩ′ |u|m,p ; Ω ∀u ∈ Lm,p
G (Ω).

�����. Assume (5.1) fails. Then we find a sequence (uk) ⊂ Lm,p
G (Ω) satisfying

‖uk‖W m−1,p(Ω′) = 1 (k = 1, 2, . . .), |uk|m,p ; Ω → 0 as k → ∞.

However, Theorem 4.4 implies ‖uk‖W m−1,p(Ω′) → 0 as k → ∞, a contradiction. �

The following theorem plays the key role for our discussion of equivalent norms
on Lm,p(Ω).

Theorem 5.2. Let Gi ⊂⊂ Ω (i = 1, 2). Then there exists a constant K =
KG1,G2 > 0 such that

(5.2) ||u||m,p ; Ω,G1 � K||u||m,p ; Ω,G2 ∀u ∈ Lm,p(Ω).

�����. We make use of the direct decomposition (4.1) with G = G2: given any
u ∈ Lm,p(Ω), we have u = u02 + Pu where u02 ∈ Lm,p

G2
(Ω), Pu ∈ P(m − 1). By (5.1)

with Ω′ = G1,

(5.3)

||u||m,p ; Ω,G1 = ||u02 + Pu||m−1,G1 + |u02|m,p ; Ω

� ||Pu||m−1;G1 + c0(mesG1)1/p′‖u02‖W m−1,p(G1) + |u02|m,p ; Ω

� ||Pu||m−1 ; G1 + (1 + c0(mesG1)1/p′
CG1)|u02|m,p ; Ω.

On the other hand, there exists a constant K0 = K0 ; G1,G2 > 0 such that

||P ||m−1;G1 � K0||P ||m−1 ; G2 ∀P ∈ P(m − 1).

Inserting this inequality with P = Pu into (5.3) gives

||u||m,p ; Ω,G1 � K(||Pu||m−1 ; G2 + |u02|m,p ; Ω)

where K = max{K0, 1 + c0(mesG1)1/p′
CG1}. Finally, observing that ||Pu||m−1 ; G2 =

||u02 + Pu||m−1 ; G2 , |u02|m,p ; Ω = |u02 + Pu|m,p ; Ω′ , the claim (5.2) follows. �
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Theorem 5.3. Let G ⊂⊂ Ω. Then there exist constants Ki > 0 (i = 1, 2) such
that5

(5.4) K1‖u‖m,p ; Ω,G � ||u||m,p ; Ω,G � K2‖u‖m,p ; Ω,G ∀u ∈ Lm,p(Ω).

�����. First of all, we note that

(5.5) K̃1‖P‖L1(G) � ||P ||m−1 ; G � K̃2‖P‖L1(G) ∀P ∈ P(m − 1),

where the constants K̃i > 0 (i = 1, 2) depend on m, n and mesG only.

Let u ∈ Lm,p(Ω). We have the decomposition u = u0 + Pu with u0 ∈ Lm,p
G (Ω),

Pu ∈ P(m − 1) (cf. (4.1)). From (5.1) (with Ω′ = G) we obtain ‖u0‖L1(G) �
CG(mesG)1/p′ |u0|m,p ; Ω. Thus by (5.5)

‖u‖m,p ; Ω,G = ‖u0 + Pu‖L1(G) + |u0|m,p ; Ω

� max
{
K̃−1
1 , 1 + CG(mesG)1/p′}(||Pu||m−1;G + |u0|m,p ; Ω

)
,

i.e., the first inequality in (5.4) with K1 =
(
max{K̃−1

1 , 1 + CG(mesG)1/p′})−1.
To prove the second inequality in (5.4), we use once more (5.1) (with Ω′ = G) to

obtain

||u||m,p ; Ω,G = ||Pu||m−1;G + |u0|m,p ; Ω

� K̃2‖u0 + Pu‖L1(G) + K̃2(mesG)1/p′‖u0‖Lp(G) + |u0|m,p ; Ω

� K2(‖u0 + Pu‖L1(G) + |u0|m,p ; Ω)

= K2‖u‖m,p ; Ω,G,

where K2 = max
{
K̃2, 1 + CGK̃2(mesG)1/p′}

. �

Combining Theorem 5.2 and 5.3 gives: Let Gi ⊂⊂ Ω (i = 1, 2). Then the norms
‖ · ‖m,p;Ω,G1 and ‖ · ‖m,p ; Ω,G2 are equivalent. From another point of view our choice
of the norm || · ||m,p;Ω,G (for G ⊂⊂ Ω) seems to be very natural, too. If we consider the
factor space Lm,p(Ω)/P(m−1) equipped with the usual norm then it is isometrically
isomorphic to Lm,p

G (Ω).

5 Cf. the introduction to the definition of the norm ‖ · ‖m,p ; Ω,G.
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