
125 (2000) MATHEMATICA BOHEMICA No. 3, 355–364

ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF SOME LINEAR

DELAY DIFFERENTIAL EQUATIONS

Jan Čermák, Brno

(Received September 3, 1998)

Abstract. In this paper we investigate the asymptotic properties of all solutions of the
delay differential equation

y′(x) = a(x)y(τ (x)) + b(x)y(x), x ∈ I = [x0,∞).

We set up conditions under which every solution of this equation can be represented in
terms of a solution of the differential equation

z′(x) = b(x)z(x), x ∈ I

and a solution of the functional equation

|a(x)|ϕ(τ (x)) = |b(x)|ϕ(x), x ∈ I.

Keywords: asymptotic behaviour, differential equation, delayed argument, functional
equation
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1. Introduction

We consider the linear differential equation with the delayed argument in the form

(1.1) y′(x) = a(x)y(τ(x)) + b(x)y(x), x ∈ I = [x0,∞).

The research was supported by the grant # A101/99/02 of the Grant Agency of the
Academy of Sciences of the Czech Republic.
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The asymptotic behaviour of solutions of equation (1.1) has been studied in many

papers (for results and references see, e.g., [7]). Among the works related to our
present results we can mention papers [2] by N.G. de Bruijn, [9] by T.Kato and
J. B.McLeod, [8] by M. L.Heard, [11] by F.Neuman, [6] by I.Győri and M.Pituk, [5]

by J.Diblík and [3], [4].
The idea that we wish to generalize first appeared in [9]. The authors derived

asymptotic formulas for solutions of the equation

y′(x) = a y(λx) + b y(x), x ∈ [0,∞)

in terms of functions ϕ(x) = |ψ(x)|, where ψ(x) = xβ , β =
log a

−b

log λ−1 . Note that the

function ψ(x) defines a solution of the functional (nondifferential) equation

aψ(λx) + b ψ(x) = 0, x ∈ [0,∞)

and the function ϕ(x) = |ψ(x)| fulfils

|a|ϕ(λx) = |b|ϕ(x), x ∈ [0,∞).

M.L.Heard [8] considered a more general equation

(1.2) y′(x) = a y(τ(x)) + b y(x), x ∈ I

under the hypothesis a �= 0, b < 0, τ ∈ C2(I), τ ′ being decreasing on I. The
asymptotic behaviour of all solutions of this equation was related to the behaviour

of a solution of the equation

aψ(τ(x)) + b ψ(x) = 0, x ∈ I.

The generalization of this asymptotic result to equation (1.2) with variable coeffi-
cients has been carried out in [3]. Similarly as in [8], the assumption b(x) < 0 was

necessary to preserve the validity of the corresponding estimates.
Our aim is to discuss the relationship between the asymptotic behaviour of solu-

tions of equation (1.1) and the functional equation

(1.3) |a(x)|ϕ(τ(x)) = |b(x)|ϕ(x), x ∈ I

in the case b(x) > 0. We show, under additional assumptions, that every solution

y(x) of (1.1) is asymptotic to a solution z(x) of the equation

z′(x) = b(x)z(x), x ∈ I
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and, moreover, the difference of any two solutions y1(x), y2(x) of (1.1) such that

y1(x) is asymptotic to y2(x), approaches a solution ϕ(x) of (1.3).
Throughout this paper we denote I = [x0,∞) and I∗ = [τ(x0),∞). By a solution

of (1.1) we understand a function y(x) ∈ C0(I∗) ∩ C1(I) fulfilling (1.1) for every

x ∈ I. Further, by the symbol τn(x) we denote the n-th iterate of τ(x) (for positive
integers n) or the −n-th iterate of the inverse function τ−1(x) (for negative integers
n) and put τ0(x) = x.

2. Results

We start with the study of equation (1.3) under the assumption |a(x)| = K|b(x)|
for every x ∈ I and a suitable K > 0. The following statement yields the form of a

solution ϕ(x) of (1.3) in terms of a solution α(x) of the Abel equation

(2.1) α(τ(x)) = α(x) − 1, x ∈ I.

Proposition. Let b(x), τ(x) ∈ C0(I), b(x) �= 0, |a(x)| = K|b(x)| for every x ∈ I

and a suitable K > 0, τ(x) < x and τ(x) being increasing on I. Then there exists
an increasing solution α(x) ∈ C0(I∗) of equation (2.1) and the function

(2.2) ϕ(x) = Kα(x), x ∈ I∗

defines a continuous positive and monotonic solution of (1.3).

�����. Put xj = τ−j(x0), j = −1, 0, 1, . . . and denote Ij = [xj−1, xj ], where

j = 0, 1, 2, . . . . We consider an increasing function α0(x) ∈ C0(I0) such that

α0(x−1) = α0(x0)− 1.

Then the function

α(x) = α0(τn(x)) + n, x ∈ In, n = 0, 1, 2, . . .

is a continuous increasing solution of (2.1).

Substituting ϕ(x) = Kα(x) into (1.3) it is easy to check that this function defines
a solution of (1.3) with the required properties. �

������ 1. We note that the solutions of the Abel equation (2.1) can be given

explicitly in some important cases (e.g., if τ(x) = x− r, τ(x) = λx, τ(x) = xγ). For
methods of solving the Abel equation and other functional equations we refer to [10].
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To study the asymptotic behaviour at infinity of all solutions of (1.1) we first recall

the following result which is due to I.Győri and M.Pituk [6]. The authors considered
the equation

(2.3) z′(x) = p(x)z(τ(x)), x ∈ I.

For

p−(x) = max (0,−p(x)), x ∈ I

we have

Theorem 1. Let p(x), τ(x) ∈ C0(I), τ(x) < x for every x ∈ I. If

(2.4)
∫ ∞

x0

|p(x)| dx <∞,

then every solution z(x) of (2.3) tends to a finite (possibly zero) constant L ∈ �. In

addition to (2.4) assume that

(2.5)
∫ ∞

x0

p−(x) dx < 1.

Then for every L ∈ � there exists a solution z∗(x) of (2.3) such that lim
x→∞ z∗(x) = L.

Using Theorem 1 it is easy to prove

Lemma 1. Let a(x), τ(x) ∈ C0(I), b(x) ∈ C0(I∗), τ(x) < x for every x ∈ I and

let

(2.6)
∫ ∞

x0

(
|a(x)| exp

{
−

∫ x

τ(x)
b(s) ds

})
dx <∞.

If y(x) is any solution of (1.1), then

(2.7) lim
x→∞

(
exp

{
−

∫ x

x0

b(s) ds

}
y(x)

)
= L ∈ �.

Conversely, we can choose σ � x0 such that there exists a function y∗(x) fulfilling
(1.1) on [σ,∞) and

lim
x→∞

(
exp

{
−

∫ x

x0

b(s) ds

}
y∗(x)

)
= 1.
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�����. Put z(x) = exp{− ∫ x

x0
b(s) ds}y(x) in (1.1) to obtain equation (2.3)

with

p(x) = a(x) exp

{
−

∫ x

τ(x)
b(s) ds

}
, x ∈ I.

The first part of the statement follows immediately from Theorem 1. To prove the

second part it is enough to consider σ � x0 large enough so that (2.5) holds with x0
replaced by σ. �

������ 2. If the integral condition (2.6) is fulfilled and, moreover,

∫ ∞

x0

(
a−(x) exp

{
−

∫ x

τ(x)
b(s) ds

})
dx < 1,

where a−(x) = max (0,−a(x)), x ∈ I, then we can put σ = x0. This case occurs,

e.g., provided a(x) > 0 for every x ∈ I.

������ 3. The assumption b(x) > 0 for every x ∈ I is not necessary to ensure
the validity of (2.6). However, in the sequel we consider delays τ(x) with the property

0 < τ ′(x) � λ < 1. Under such a requirement it is natural to assume positive values
of b(x) to satisfy (2.6). E.g., if b(x) � δ > 0 and τ ′(x) � λ < 1 for every x ∈ I, then
it is enough to assume a(x) = O (eγx) as x → ∞, γ < δ(1 − λ), to fulfil condition

(2.6).

Lemma 2. Let b(x) ∈ C0(I), τ(x) ∈ C1(I), let b(x) be positive and nonde-

creasing on I, |a(x)| = Kb(x) for every x ∈ I and a constant K > 0, τ(x) < x

and 0 < τ ′(x) � λ < 1 for every x ∈ I. Assume that ϕ(x) is a continuous positive
solution of (1.3) given by (2.2). If y(x) is a solution of (1.1) satisfying

y(x) = o

(
exp

{∫ x

x0

b(s) ds

})
as x→ ∞,

then

y(x) = O (ϕ(x)) as x→ ∞.

�����. Multiply both sides of equation (1.1) by exp{− ∫ x

x0
b(s) ds} to get

d
dx

[
exp

{
−

∫ x

x0

b(s) ds

}
y(x)

]
= a(x) exp

{
−

∫ x

x0

b(s) ds

}
y(τ(x)).

Integrating this equality over [x,∞) we obtain

y(x) = − exp
{∫ x

x0

b(s) ds

}∫ ∞

x

(
a(t) exp

{
−

∫ t

x0

b(s) ds

}
y(τ(t))

)
dt
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by using the relation lim
x→∞(y(x) exp{−

∫ x

x0
b(s) ds}) = 0.

Put xn = τ−n(x0), n = 0, 1, 2, . . . and assume that M > 0 is such that

|y(x)| � M exp

{ ∫ x

x0

b(s) ds

}
, x � x0.

Then

|y(x)| � M exp

{ ∫ x

x0

b(s) ds

}∫ ∞

x

(
|a(t)| exp

{
−

∫ t

τ(t)
b(s) ds

})
dt

=MK exp

{∫ x

x0

b(s) ds

}∫ ∞

x

(
b(t) exp

{
−

∫ t

τ(t)
b(s) ds

})
dt

� MK exp

{∫ x

x0

b(s) ds

}

×
∫ ∞

x

(
b(t)

−b(t) + b(τ(t))τ ′(t)
d
dt

[
exp

{
−

∫ t

τ(t)
b(s) ds

}])
dt

� MK exp

{∫ x

x0

b(s) ds

}
1
1− λ

exp

{
−

∫ x

τ(x)
b(s) ds

}

=
MK

1− λ
exp

{∫ τ(x)

x0

b(s) ds

}
, x � x1.

Further, repeating this we can deduce that

|y(x)| � MKn

(1 − λ) . . . (1− λn)
exp

{∫ τn(x)

x0

b(s) ds

}
, x � xn,

n = 1, 2, . . . . Since

exp

{∫ τn(x)

x0

b(s) ds

}
� exp

{ ∫ x1

x0

b(s) ds

}
, x � xn+1,

n = 1, 2, . . . , we can estimate y(x) as

(2.8) |y(x)| � MnK
n, xn � x � xn+1,

where Mn = M
(1−λ)...(1−λn) exp{

∫ x1
x0
b(s) ds}.

On the other hand,

(2.9) |ϕ(x)| � NKn, xn � x � xn+1,

where N > 0 is a constant. Summarizing (2.8) and (2.9) we have

y(x) = O (ϕ(x)) as x→ ∞.

�
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Lemmas 1 and 2 yield

Theorem 2. Let b(x) ∈ C0(I), τ(x) ∈ C1(I), let b(x) be positive and nonde-

creasing on I, |a(x)| = Kb(x) for every x ∈ I and a constant K > 0, τ(x) < x

and 0 < τ ′(x) � λ < 1 for every x ∈ I. Further, assume that ϕ(x) is a continuous

positive solution of (1.3) given by (2.2). Then for any solution y(x) of (1.1) there
exists a constant L ∈ � and a function g(x) such that

(2.10) y(x) = Ly∗(x) + g(x), x � σ,

where L, y∗(x) and σ � x0 are given by Lemma 1 and g(x) = O (ϕ(x)) as x→ ∞.
������ 4. In the sequel we wish to show that the O-estimate of a function

g(x) given in Theorem 2 is strong enough. We introduce a change of variables

(2.11) z(t) =
y(h(t))
ψ(h(t))

,

where ψ(x) ∈ C1(I), |ψ(x)| > 0 on I, is a solution of the functional equation

(2.12) a(x)ψ(τ(x)) + b(x)ψ(x) = 0, x ∈ I

and h(t) = α−1(t) on α(I), α(x) ∈ C1(I) being a solution of the Abel equation (2.1)
such that α′(x) > 0 for every x ∈ I. We note that the existence of a solution α(x) of

(2.1) with such properties is ensured provided τ(x) ∈ C1(I), τ(x) < x and τ ′(x) > 0
for every x ∈ I (for more information about the transformation theory of functional

differential equations see [11]).

If we assume |a(x)| = Kb(x) for every x ∈ I and a constant K > 0, then equation

(2.12) admits the solution ψ(x) = Kα(x), where K = −Ksigna(x0).
Transformation (2.11) converts equation (1.1) into the form

(2.13) w(t)ż(t) + p(t)z(t)− z(t− 1) = 0,

where

w(t) =
1

−b(h(t))ḣ(t) , p(t) = 1 +
ψ̇(h(t))ḣ(t)
ψ(h(t))

w(t) = 1 + lnKw(t)

and thus equation (1.1) becomes the type discussed by N.G. de Bruijn in [2]. The
relevant theorem reads as follows:

361



Let B and 
 be positive constants, 
 > 1, and suppose that for t � 1 the functions
wn(t) and p(n)(t), n = 0, 1, 2, . . . , are continuous and satisfy

(2.14) |w(n)(t)| < Bn+1nnt−n−�, |{p(t)− 1}(n)| < Bn+1nnt−n−� (00 = 1).

Then, if z(t) is a solution of (2.13) and lim
t→∞ z(t) = 0, we have z(t) ≡ 0.

Now we substitute back transformation (2.11) to obtain (with respect to ϕ(x) =
|ψ(x)|) the following result:
In addition to the assumptions of Theorem 2 we assume that conditions (2.14)

with the above specified w(t) and p(t) are fulfilled for t � 1. Then all conclusions of
Theorem 2 remain valid and, moreover, if the function g(x) satisfies g(x) = o (ϕ(x))
as x→ ∞, then g(x) is the identically zero function on [σ,∞).
We note that both inequalities contained in (2.14) coincide provided |a(x)| =

Kb(x).

3. Applications

In this section we give two examples to illustrate the above results.

	
����� 1. We consider the equation

(3.1) y′(x) = axy(λx) + bxy(x), x ∈ [1,∞),

where a �= 0, b > 0, 0 < λ < 1. Functional equation (2.12) becomes

axψ(λx) + bxψ(x) = 0, x ∈ I

and has a solution ψ(x) = xβ , β =
log a

−b

logλ−1
. Then

ϕ(x) = |ψ(x)| = x|β|, |β| = log
∣∣a

b

∣∣
logλ−1

is a solution of (1.3), where a(x) = ax, b(x) = bx, τ(x) = λx. The Abel equation
(2.1) can be read as

α(λx) = α(x) − 1, x ∈ [1,∞)

and admits a solution α(x) =
log x
logλ−1

with positive derivative on [1,∞). Then
h(t) = α−1(t) = λ−t. Now it is easy to verify that the assumptions of Theorem 2

and Remark 4 imposed on a(x) = ax, b(x) = bx, τ(x) = λx are satisfied and we may
summarize the results as follows:

362



Consider equation (3.1), where a �= 0, b > 0 and 0 < λ < 1. Then there exists a

σ � x0 and a function y∗(x) fulfilling (3.1) on [σ,∞) such that

y∗(x) ∼ exp
{ b
2
x2

}
as x→ ∞.

Furthermore, for any solution y(x) of (3.1) there exists a constant L ∈ � and a

function g(x), g(x) = O
(
x|β|

)
as x→ ∞, β = log

a
−b

logλ−1
, such that

y(x) = Ly∗(x) + g(x), x � σ.

If g(x) = o
(
x|β|

)
as x → ∞, then g(x) is the zero function on [σ,∞), i.e., y(x) is a

constant multiple of y∗(x).

	
����� 2. We apply our asymptotic results to equation (1.1) with a(x) =

−b(x), i.e., we consider the equation

(3.2) y′(x) = b(x)[y(x) − y(τ(x))], x ∈ I,

where b(x) ∈ C0(I), τ(x) ∈ C1(I), b(x) is positive and nondecreasing on I, τ(x) < x

and 0 < τ ′(x) � λ < 1 for every x ∈ I. Equations (2.12) and (1.3) with a(x) = −b(x)
admit a constant solution. Then we get the following statement:

Let the above introduced assumptions on b(x) and τ(x) be fulfilled. Then there

exists a σ � x0 and a function y∗(x) fulfilling (3.2) on [σ,∞) such that

y∗(x) ∼ exp
{∫ x

x0

b(s) ds

}
as x→ ∞.

Furthermore, any solution y(x) of (3.2) can be represented in the form

(3.3) y(x) = Ly∗(x) + g(x), x � σ,

where L ∈ � is a constant depending on y(x) and g(x) is a bounded function fulfilling

(3.2) on [σ,∞). Assume that conditions (2.14) specified in Remark 4 are fulfilled.
If the bounded function g(x) tends to zero, then g(x) must be identically zero on

[σ,∞).
Equation (3.2) has been studied by several authors, usually under the assumption

τ(x) = x − r or, more generally, τ(x) = x − r(x), r(x) being bounded (see, e.g.,
Atkinson and Haddock [1], J. Diblík [5] and S.N. Zhang [12]). We mention the result

derived in [5], where equation (3.2) has been considered under the assumptions b(x),
τ(x) ∈ C0(I), b(x) > 0, τ(x) < x, where τ(x) is increasing and r(x) = x − τ(x) is
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bounded for every x ∈ I. It is interesting that the structure formula derived in [5]

for solutions y(x) of (3.2) coincides with formula (3.3) including the boundedness of
g(x) even if our assumption τ ′(x) � λ < 1 implies that r(x) = x−τ(x) is unbounded.
Therefore our approach enables us to extend some asymptotic results to a wider class

of equations (3.2).


�������������. The author thanks the referee for his valuable remarks.
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