ON SIGNED EDGE DOMINATION NUMBERS OF TREES

Bohdan Zelinka, Liberec

(Received April 18, 2000)

Abstract. The signed edge domination number of a graph is an edge variant of the signed domination number. The closed neighbourhood $N_G[e]$ of an edge e in a graph G is the set consisting of e and of all edges having a common end vertex with e. Let f be a mapping of the edge set E(G) of G into the set $\{-1,1\}$. If $\sum_{x \in N[e]} f(x) \geqslant 1$ for each $e \in E(G)$, then f

is called a signed edge dominating function on G. The minimum of the values $\sum_{x \in E(G)} f(x)$,

taken over all signed edge dominating function f on G, is called the signed edge domination number of G and is denoted by $\gamma_s'(G)$. If instead of the closed neighbourhood $N_G[e]$ we use the open neighbourhood $N_G(e) = N_G[e] - \{e\}$, we obtain the definition of the signed edge total domination number $\gamma_{st}'(G)$ of G. In this paper these concepts are studied for trees.

The number $\gamma'_s(T)$ is determined for T being a star of a path or a caterpillar. Moreover, also $\gamma'_s(C_n)$ for a circuit of length n is determined. For a tree satisfying a certain condition the inequality $\gamma'_s(T) \geqslant \gamma'(T)$ is stated. An existence theorem for a tree T with a given number of edges and given signed edge domination number is proved.

At the end similar results are obtained for $\gamma'_{st}(T)$.

Keywords: tree, signed edge domination number, signed edge total domination number

MSC 2000: 05C69, 05C05

We consider finite undirected graphs without loops and multiple edges. The edge set of a graph G is denoted by E(G), its vertex set by V(G). Two edges e_1, e_2 of G are called adjacent if they are distinct and have a common end vertex. The open neighbourhood $N_G(e)$ of an edge $e \in E(G)$ is the set of all edges adjacent to e. Its closed neighbourhood $N_G[e] = N_G(e) \vee \{e\}$.

If we consider a mapping $f \colon E(G) \to \{-1,1\}$ and $s \subseteq E(G)$, then we denote $f(s) = \sum_{x \in s} f(x)$.

A mapping $f : E(G) \to \{-1, 1\}$ is called a signed edge dominating function (or signed edge total dominating function) on G, if $f(N_G[e]) \ge 1$ (or $f(N_G(e)) \ge 1$

respectively) for each edge $e \in E(G)$. The minimum of the values f(E(G)), taken over all signed edge dominating (or all signed edge total dominating) functions f on G, is called the signed edge domination number (or signed edge total domination number respectively) of G. The signed edge domination number was introduced by B. Xu in [1] and is denoted by $\gamma'_s(G)$. The signed edge total domination number of G is denoted by $\gamma'_{st}(G)$.

A signed edge dominating function will be shortly called SEDF, a signed edge total domination function will be called SETDF. The number $\gamma'_s(G)$ is an edge variant of the signed domination number [2].

Remember another numerical invariant of a graph which concerns domination. A subset D of the edge set F(G) of a graph G is called edge dominating in G if each edge of G either is in D, or is adjacent to an edge of D. The minimum number of edges of an edge dominating set in G is called the edge domination number of G and denoted by $\gamma'(G)$.

We shall study $\gamma_s'(G)$ and $\gamma_{st}'(G)$ in the case when G is a tree.

Proposition 1. Let G be a graph with m edges. Then

$$\gamma'_{s}(G) \equiv m \pmod{2}$$
.

Proof. Let f be a SFDF of G such that $\gamma_s'(G) = f(E(G))$. Let m^+ (or m^-) be the number of edges e of G such that f(e) = 1 (or f(e) = -1 respectively). We have $m = m^+ + m^-$, $\gamma_s'(G) = m^+ - m^-$ and hence $\gamma_s'(G) = m - 2m^-$. This implies the assertion.

Proposition 2. Let u, v, w be three vertices of a tree T such that u is a pendant vertex of T and v is adjacent to exactly two vertices u, w. Let f be a SFDF on T. Then

$$f(uv) = f(vw) = 1.$$

Proof. We have $N[uv] = \{uv, vw\}$ and f(N[uv]) = f(uv) + f(vw). This implies the assertion.

Proposition 3. Let T be a star with m edges. If m is odd, then $\gamma'_s(T) = 1$. If m is even, then $\gamma'_s(T) = 2$.

Proof. In a star all edges are pairwise adjacent and thus $N_T[e] = E(T)$ for each $e \in E(T)$. If f is a SEDF, then $f(E(T)) = f(N_T[e]) \geqslant 1$ and thus $\gamma_s'(T) \geqslant 1$. Let m^- be the number of edges e of T such that f(e) = -1; then $f(E(T)) = m - 2m^-$. If m is odd, we may choose a function f such that $m^- = \frac{1}{2}(m-1)$ and then $f(E(T)) = \gamma_s'(T) - 1$. If m is even, the value $m - 2m^-$ is always even; we may choose f such that $m^- = \frac{1}{2}(m-2)$ and then $F(E(T)) = \gamma_s'(T) = 2$.

Let $e \in E(T)$. The neighbourhood subtree $T_N[e]$ of T is the subtree of T whose edge set is $N_T[e]$ and whose vertex set is the set of all end vertices of the edges of $N_T[e]$. If e is a pendant edge of T, then $T_N[e]$ is the star whose central vertex is the vertex of e having the degree greater than 1; this is the maximal (with respect to subtree inclusion) subtree of T of diameter 2 containing e. In the opposite case $T_N[e]$ is the maximal subtree of T of diameter 3 whose central edge is e. The set of all subtrees $T_N[e]$ for $e \in E(T)$ will be denoted by T_N .

Theorem 1. Let T be a tree having the property that there exists a subset \mathcal{T}_0 of \mathcal{T}_N consisting of edge-disjoint trees whose union is T. Then

$$\gamma'(T) \leqslant \gamma'_s(T)$$
.

Proof. Let E_0 be the set of edges e such that $T_N[e] \in \mathcal{T}_0$. For each $e \in F_0$ the set $N_T[e]$ is the set of neighbours of e and the union of all these sets is E(T). Thus F_0 is an edge dominating set in T. Therefore $|E_0| \ge \gamma'(T)$.

Let $f: E(T) \to \{-1,1\}$ be an SEDF of T such that $f(E(T)) = \gamma'_s(T)$. As the trees from \mathcal{T}_0 are pairwise edge-disjoint, we have

$$\gamma'_s(T) = f(E(T)) = \sum_{\tau' \in \mathcal{T}_0} f(E(T')) = \sum_{e \in \mathcal{E}_0} f(N_T[e]) \geqslant \sum_{e \in E_0} 1 = |E_0| \geqslant \gamma'(T).$$

As $\gamma'(T) \geqslant 1$ for every tree T, we have a corollary.

Corollary 1. Let T have the property from Theorem 1. Then

$$\gamma_s'(T) \geqslant 1.$$

Conjecture. For every tree T we have $\gamma'_s(T) \ge 1$.

By the symbol P_m we denote the path of length m, i.e. with m edges and m+1 vertices. By C_m we denote the circuit of length m.

Theorem 2. For the signed edge domination number on a path P_m with $m \ge 2$ we have

$$\gamma'_s(P_m) = \frac{1}{3}m + 2$$
 for $m \equiv 0 \pmod{3}$,
 $\gamma'_s(P_m) = \frac{1}{3}(m+2) + 2$ for $m \equiv 1 \pmod{3}$,
 $\gamma'_s(P_m) = \frac{1}{3}(m+1) + 1$ for $m \equiv 2 \pmod{3}$.

Proof. Let f be an SEDF on P such that $f(E(P_m)) = \gamma_s'(P_m)$. Denote $E+=\{e\in E(P_m);\ f(e)=1\},\ E^-=\{e\in EP_m;\ f(e)=-1\}$. Evidently each edge of E^- must be adjacent to at least two edges of E^+ and each edge of E^+ is adjacent to at most one edge of E'. By Proposition 2 between an edge of E^- and an end vertex of P_m there are at least two edges of E^+ and also between two edges of E^- there are at least two edges of E^+ . Hence $|E'| \leq \lfloor \frac{1}{3}(m-2) \rfloor$ and $f(E(P_m)) = |E| - 2|F^-| \geqslant m - 2\lfloor \frac{1}{2}(m-2) \rfloor$. If we choose one end vertex of P_m and number the edges of P_m starting at it, we may choose a function f such that f(a) = -1 if and only if the number of e is divisible by 3 and less than m-1. The $f(E(P_m)) = m - 2\lfloor \frac{1}{2}(m-2) \rfloor$ and this is $\gamma_s'(P_m)$. And this number treted separately for particular congruence classes modulo 3 can be expressed as in the text of the theorem.

As an aside, we state an assertion on circuits; its proof is quite analogous to the proof of Theorem 2.

Theorem 3. For the signed edge domination number of a circuit C_m we have

$$\gamma'_s(C_m) = \frac{1}{3}m \quad \text{for } m \equiv 0 \pmod{3},$$

$$\gamma'_s(C_m) = \frac{1}{3}(m+2) \quad \text{for } m \equiv 1 \pmod{3},$$

$$\gamma'_s(C_m) = \frac{1}{3}(m+1) + 1 \quad \text{for } m \equiv 2 \pmod{3}.$$

Now we shall investigate caterpillars. A caterpillar is a tree C with the property that upon deleting all pendant edges from it a path is obtained: this path is called the body of the caterpillar. Particular cases of caterpillars include stars and paths.

Let the vertices of the body of C be u_1, \ldots, u_k and edges $u_i u_{i+1}$ for $i = 1, \ldots, k-1$. For $i = 1, \ldots, k$ let p_i be the number of pendant edges incident to u_i . The finite sequence $(p_i)_{i=1}^k$ determines the caterpillar uniquely. From the definition it is clear that $p_1 \ge 1$ and $p_k \ge 1$. If k = 1, then such a caterpillar is a star. If $p_1 = p_k = 1$, $p_i = 0$ for $i = 2, \ldots, k-1$, then it is a path.

Theorem 4. Let $(p_i)_{i=1}^k$ be a finite sequence of integers such that $p_1 \ge 2$, $p_k \ge 2$, $p_i \ge 1$ for $2 \le i \le k-1$. Let k_0 be the number of even numbers among the numbers $p_1 - 1$, p_2, \ldots, p_{k-1} , $p_k - 1$. Let C be the caterpillar determined by this sequence. Then $\gamma'_s(C) = k_0 + 1$.

Proof. The assumption of the theorem implies that each vertex of the body of C is incident to at least one pendant edge. For i = 1, ..., k let M_i be the set of all

edges incident to p_i . Let p_i be a vertex of the body of C and let e be a pendant edge incident to it. We have $N[e] = M_i$.

We have $\bigcup_{i=1}^k M_i = E(C)$, $M_i \cap M_{i+1} = \{u_i u_{i+1}\}$, $M_i \cap M_j = \emptyset$ for $|j-i| \geqslant 2$. Hence $f(E(C)) = \sum_{i=1}^k f(M_i) - \sum_{i=1}^{k-1} f(\{u_i, u_{i+1}\})$. The function f may be described in the following way. If i = 1 or i = k, then f(e) = -1 for exactly $\frac{1}{2}p_i$ pendant edges from M_i if p_i is even and for exactly $\frac{1}{2}(p_i - 1)$ ones if p_i is odd. If $2 \leqslant i \leqslant k - 1$, then f(e) = -1 for exactly $\frac{1}{2}p_i$ pendant edges e from M_i if p is even and for exactly $\frac{1}{2}(p_i + 1)$ ones if p_i is odd. For an edge e from the body of C always f(e) = 1. If i = 1 or i = k, then $f(M_i) = 1$ for p_i even and $f(M_i) = 2$ for p_i odd. If $2 \leqslant i \leqslant k - 1$, then $f(M_i) = 1$ for p_i odd and $f(M_i) = 2$ for p_i even. We have $\sum_{i=1}^k f(M_i) = k + k_0$, $\sum_{i=1}^k f(u_i u_{i+1}) = k - 1$, which implies the assertion.

Our considerations concerning $\gamma_s'(T)$ will be finished by an existence theorem.

Theorem 5. Let m, g be integers, $1 \leq g \leq m$, $g \equiv m \pmod{2}$. Let $g \neq m$ for m odd and $g \neq m-2$ for m even. Then there exists a tree T with m edges such that $\gamma_s'(T) = g$.

Proof. Consider the following tree T(p,q) for a positive integer p and a nonnegative integer q. Take a vertex v and p paths of length 2 having a common terminal vertex v and no other common vertex. Denote the set of edges of all these paths by E_1 . Further add q edges with a common end vertex v; they form the set E_2 . Let f be a SEDF on T(p,q) such that $f(E(T(p,q))) = \gamma_s'(T(p,q))$. We have f(e) = 1 for each $e \in E_1$ by Proposition 2. If q < p, then f(e) = -1 for each $e \in F_2$ and $\gamma_s'(T(p,q)) = 2p - q$. If $q \ge p$, then for our purpose it suffices to consider the case when p+q is odd. Then f(e) = -1 for $\frac{1}{2}(p+q-1)$ edges of E_2 and f(e) = 1 for the remaining edges. Hence $\gamma_s'(T(p,q)) = p+1$. Further let T'(p,q) be the tree obtained from T(p,q) by adding a path Q of length 7 with the terminal vertex in v. If $q \le p+1$, then exactly two edges of Q have the value of a SEDF f equal to -1. Again let f be such a SEDF that $f(T'(p,q)) = \gamma_s'(T'(p,q))$. Further f(e) = -1 for all edges $e \in E_2$. Then $\gamma_s'(T'(p,q)) = 2p - q + 3$.

Now return to the numbers m, g and consider particular cases:

C as e $3g \le m$: Put p = g - 1, q = m - 2g + 2. We have q > p and thus $\gamma'_s(T(p,q) = p + 1 = g$. The tree T(p,q) has evidently m edges. The sum p + q = m - g + 1 is odd, because $m \equiv g \pmod{2}$.

C a se 3g > m, $m + g \equiv 0 \pmod{4}$: Put $p = \frac{1}{4}(m + g)$, $q = \frac{1}{2}(m - g)$. Now q < p. Again T(p,q) has m edges and $\gamma'_s(T(p,q)) = g$.

C as g > m, $m + g \equiv 2 \pmod{4}$: Put $p = \frac{1}{4}(m + g - 2) - 2$, $q = \frac{1}{2}(m - g) - 2$. Evidently $q \geqslant 0$ if and only if g < m - 4; this is fulfilled if m is even and $g \neq m - 2$ or if m is odd and $g \neq m$. The tree T'(p,q) has m edges and $\gamma'_s(T'(p,q)) = g$.

Now we shall consider the signed edge total domination number $\gamma'_{st}(T)$ of a tree T. Note that $\gamma'_s(G)$ is well-defined for every graph G with $E(G) \neq \emptyset$; for each edge $e \in E(G)$ we have $N[e] \neq \emptyset$, because $e \in N[e]$. On the contrary if there is a connected component of G isomorphic to K_2 (the complete graph with two vertices) and e is its edge, then $N(e) = \emptyset$ and there exists no SETDF on G. Therefore $\gamma'_{st}(G)$ is defined only for graphs G which have no connected component isomorphic to K_2 . If we restrict our considerations to trees, we must suppose that the considered tree T has at least two edges.

Proposition 4. Let G be a graph with m edges and without a connected component isomorphic to K_2 . Then

$$\gamma'_{st}(G) \equiv m \pmod{2}$$
.

The proof is quite similar to the proof of Proposition 1.

Proposition 5. Let G be a graph without a connected component isomorphic to K_2 . Let $|N(e)| \leq 2$ for some edge $e \in E(G)$. Then f(x) = 1 for each $x \in N(e)$.

The proof is straightforward.

This proposition implies two corollaries.

Corollary 2. Let P_m be a path of length $m \ge 2$. Then $\gamma'_{st}(P_m) = m$.

Corollary 3. Let C_m be a circuit of length m. Then $\gamma'_{st}(C_m) = m$.

Namely, in both cases the unique SETDF is the constant equal to 1.

Theorem 6. Let T be a star with $m \ge 2$ edges. If m is odd, then $\gamma'_{st}(T) = 3$. If m is even, then $\gamma'_{st}(T) = 2$.

Proof. Let f be a SETDF such that $f(E(T)) = \gamma'_{st}(T)$. Evidently there exists at least one edge $e \in E(T)$ such that f(e) = 1. We have $E(T) = N(e) \cup \{e\}$ and $\gamma'_{st}(T) = f(E(T)) = f(N(e)) + f(e) \geqslant 1 + 1 = 2$. If m is even, the value 2 can be attained by constructing a SETDF f such that f(e) = 1 for $\frac{1}{2}m + 1$ edges e and f(e) = -1 for $\frac{1}{2}m - 1$ edges. If m is odd, then, according to Proposition 4, we have $\gamma'_{st}(T) \geqslant 3$. We may construct a SETDF f such that f(e) = 1 for $\frac{1}{2}(m+3)$ edges e and f(e) = -1 for $\frac{1}{2}(m-3)$ edges e.

We finish again by an existence theorem.

Theorem 7. Let m, g be integers, $2 \le g \le m$, $g \equiv m \pmod{2}$. Then there exists a tree T with m edges such that $\gamma'_{st}(T) = g$.

Proof. Let Ω be a path of length g-1. Let S be a star with m-g+1 edges. Let these two trees be disjoint. Identify a terminal vertex of Q with the center v of S: the tree thus obtained will be denoted by T. Let f be a SETDF such that $f(E(T)) = \gamma'_{st}(T)$. By Proposition 5 we have f(e) = 1 for each edge e of Q. For each edge e of S the set N(e) consists of $E(S) - \{e\}$ and one edge of Q. We have f(N(e)) = 1 if and only if f(e) = -1 for exactly $\frac{1}{2}(m-g)$ edges e of S. Then we have $f(E(T)) = \gamma'_{st}(T) = g$.

References

- [1] E. Xu: On signed domination numbers of graphs. Discr. Math. (submitted).
- [2] T. W. Haynes, S. T. Hedetniemi, P. J. Slater: Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.

Author's address: Bohdan Zelinka, Technical University Liberec, Voroněžská 13, 460 01 Liberec 1, Czech Republic, e-mail: bohdan.zelinka@vslib.cz.