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ON SIGNED EDGE DOMINATION NUMBERS OF TREES
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(Received April 18, 2000)

Abstract. The signed edge domination number of a graph is an edge variant of the signed
domination number. The closed neighbourhood N¢le] of an edge e in a graph G is the set
consisting of e and of all edges having a common end vertex with e. Let f be a mapping of
the edge set E(G) of G into the set {—1,1}. If > f(z) > 1 for each e € E(G), then f

zEN €]
is called a signed edge dominating function on G. The minimum of the values >  f(x),
z€E(G)
taken over all signed edge dominating function f on G, is called the signed edge domination
number of G and is denoted by 74 (G). If instead of the closed neighbourhood N [e] we use
the open neighbourhood Ng(e) = Ngle] — {e}, we obtain the definition of the signed edge
total domination number v%,(G) of G. In this paper these concepts are studied for trees.

The number ~4 (T') is determined for T" being a star of a path or a caterpillar. Moreover,
also v4(Cp) for a circuit of length n is determined. For a tree satisfying a certain condition
the inequality ~4(T) > +/(T) is stated. An existence theorem for a tree T with a given
number of edges and given signed edge domination number is proved.

At the end similar results are obtained for ~%, (7).
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We consider finite undirected graphs without loops and multiple edges. The edge
set of a graph G is denoted by E(G), its vertex set by V(G). Two edges e, ez of
G are called adjacent if they are distinct and have a common end vertex. The open
neighbourhood Ng(e) of an edge e € E(G) is the set of all edges adjacent to e. Its
closed neighbourhood Ng[e] = Ng(e) V {e}.

If we consider a mapping f: E(G) — {-1,1} and s C E(G), then we denote

fls) = > f().

HASE]

A mapping f: E(G) — {-1,1} is called a signed edge dominating function (or
signed edge total dominating function) on G, if f(Ngle]) = 1 (or f(Ng(e)) > 1
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respectively) for each edge e € E(G). The minimum of the values f(E(G)), taken
over all signed edge dominating (or all signed edge total dominating) functions f on
G, is called the signed edge domination number (or signed edge total domination
number respectively) of G. The signed edge domination number was introduced by
B.Xu in [1] and is denoted by «.(G). The signed edge total domination number of
G is denoted by 7., (G).

A signed edge dominating function will be shortly called SEDF, a signed edge total
domination function will be called SETDF. The number +,(G) is an edge variant of
the signed domination number [2].

Remember another numerical invariant of a graph which concerns domination. A
subset D of the edge set F'(G) of a graph G is called edge dominating in G if each
edge of G either is in D, or is adjacent to an edge of D. The minimum number of
edges of an edge dominating set in G is called the edge domination number of G and
denoted by v/(G).

We shall study v.(G) and 7,,(G) in the case when G is a tree.

Proposition 1. Let G be a graph with m edges. Then

v.(G) =m (mod 2).

Proof. Let f be a SFDF of G such that v.(G) = f(E(G)). Let m™ (or m™)
be the number of edges e of G such that f(e) =1 (or f(e) = —1 respectively). We
have m = m™* +m™, v.(G) = m* —m~ and hence v.(G) = m — 2m~. This implies
the assertion. ]

Proposition 2. Let u,v,w be three vertices of a tree T such that u is a pendant
vertex of T and v is adjacent to exactly two vertices u,w. Let f be a SFDF on T.
Then

Fluv) = flow) = 1.

Proof. Wehave N[uv] = {uv,vw} and f(N[uv]) = f(uv)+ f(vw). This implies
the assertion. O

Proposition 3. Let T be a star with m edges. If m is odd, then v,(T) = 1. If m
is even, then ~v.(T) = 2.

Proof. Inastar all edges are pairwise adjacent and thus Nr[e] = E(T) for each
e € E(T). If f is a SEDF, then f(E(T)) = f(Nrle]) > 1 and thus v4(T) > 1. Let
m~ be the number of edges e of T such that f(e) = —1; then f(E(T)) =m —2m".
If m is odd, we may choose a function f such that m~ = f(m — 1) and then
f(E(T)) = ~4(T) — 1. If m is even, the value m — 2m~ is always even; we may

choose f such that m~ = 3(m — 2) and then F(E(T)) =~.(T) = 2. O
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Let e € E(T). The neighbourhood subtree T[e] of T is the subtree of T whose
edge set is Nr[e] and whose vertex set is the set of all end vertices of the edges of
Nrle]. If e is a pendant edge of T, then Tn[e] is the star whose central vertex is
the vertex of e having the degree greater than 1; this is the maximal (with respect
to subtree inclusion) subtree of T of diameter 2 containing e. In the opposite case
Tnle] is the maximal subtree of T of diameter 3 whose central edge is e. The set of
all subtrees Ty [e] for e € E(T') will be denoted by Ty.

Theorem 1. Let T be a tree having the property that there exists a subset 7y of
Tn consisting of edge-disjoint trees whose union is T'. Then

Y(T) < ~(T).

Proof. Let Ey be the set of edges e such that Ty[e] € Ty. For each e € F the
set Nr[e] is the set of neighbours of e and the union of all these sets is F(T"). Thus
Fp is an edge dominating set in 7. Therefore |Eo| = v/(T).

Let f: E(T) — {—1,1} be an SEDF of T such that f(E(T)) = ~.(T). As the
trees from 7y are pairwise edge-disjoint, we have

V(D)= fIBET) = Y fIBET) =) f(Nrle)) > Y 1=|Eo| >+'(T).

7'€Tg e€&o e€Eg

As 4/(T) > 1 for every tree T, we have a corollary.
Corollary 1. Let T have the property from Theorem 1. Then

7(T) > L.

Conjecture. For every tree T we have +.(T) > 1.
By the symbol P,, we denote the path of length m, i.e. with m edges and m + 1

vertices. By C,,, we denote the circuit of length m.

Theorem 2. For the signed edge domination number on a path P,, with m > 2
we have 1
Yo (Pp) = 3 +2 for m =0 (mod 3),
1
v (P) = g(m +2)+2 form=1 (mod 3),
1
v (P) = g(m +1)+1 form =2 (mod 3).
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Proof. Let f be an SEDF on P such that f(E(P,)) = v.(Pn). Denote
E+ = {e € E(P,); fle) =1}, E- = {e € EP,,; f(e) = —1}. Evidently each
edge of E~ must be adjacent to at least two edges of ET and each edge of F'T
is adjacent to at most one edge of E’. By Proposition 2 between an edge of E~
and an end vertex of P, there are at least two edges of ET and also between two
edges of E~ there are at least two edges of ET. Hence |E'| < [3(m — 2)] and
f(E(Pn)) = |E| = 2|F~| =2 m —2[4(m — 2)|. If we choose one end vertex of P,
and number the edges of P,, starting at it, we may choose a function f such that
f(a) = —1if and only if the number of e is divisible by 3 and less than m — 1. The
f(E(Pn)) =m—2[3(m—2)] and this is 7}(Pn). And this number treted separately
for particular congruence classes modulo 3 can be expressed as in the text of the
theorem. (]

As an aside, we state an assertion on circuits; its proof is quite analogous to the
proof of Theorem 2.

Theorem 3. For the signed edge domination number of a circuit C,, we have

1
Y(Cr) = 3™ for m =0 (mod 3),
Y (Cr) = %(m +2) form =1 (mod 3),

Y (Cr) = %(m—i— 1)+1 form =2 (mod 3).

Now we shall investigate caterpillars. A caterpillar is a tree C' with the property
that upon deleting all pendant edges from it a path is obtained: this path is called
the body of the caterpillar. Particular cases of caterpillars include stars and paths.

Let the vertices of the body of C be u, ..., ux and edges u;u;yq fori =1,... k—1.
For i = 1,...,k let p; be the number of pendant edges incident to u;. The finite
sequence (pi)le determines the caterpillar uniquely. From the definition it is clear
that p1 > 1 and px, > 1. If £ = 1, then such a caterpillar is a star. If p; = p = 1,
pi=0fori=2,...,k—1, then it is a path.

Theorem 4. Let (p;)¥_; be a finite sequence of integers such that p; > 2, py > 2,
pi =1 for2 <i<k-—1. Let kg be the number of even numbers among the numbers
p1—1, p2,...,pr—1, P — 1. Let C be the caterpillar determined by this sequence.
Then v,(C) = ko + 1.

Proof. The assumption of the theorem implies that each vertex of the body of
C is incident to at least one pendant edge. For i = 1,...,k let M; be the set of all
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edges incident to p;. Let p; be a vertex of the body of C' and let e be a pendant edge
incident to it. We have N[e] = M;.

k
We have U M; = E(C), M, N M1 = {uiuiﬂ}, M; N Mj = () for |] - Z| > 2.
=1

k k=1
Hence f(E(C)) =Y f(M;)— > f({us, uix1}). The function f may be described in
i=1 i=1

the following way. If i = 1 or i = k, then f(e) = —1 for exactly p; pendant edges
from M; if p; is even and for exactly %(pZ —1)onesifp;isodd. If2<i<k—1,
then f(e) = —1 for exactly %pi pendant edges e from M; if p is even and for exactly
%(Pi + 1) ones if p; is odd. For an edge e from the body of C always f(e) = 1. If
i=1ori=k,then f(M;) =1 for p; even and f(M;) =2 for p; odd. If2 <i < k-1,

k
then f(M;) =1 for p; odd and f(M;) = 2 for p; even. We have > f(M;) = k + ko,
i=1

k-1
> flusuiy1) = k — 1, which implies the assertion. O
i=1

Our considerations concerning +.(T") will be finished by an existence theorem.

Theorem 5. Let m, g be integers, 1 < g < m, g = m (mod 2). Let g # m for m
odd and g # m — 2 for m even. Then there exists a tree T' with m edges such that

Y.(T) = g.

Proof. Consider the following tree T'(p,q) for a positive integer p and a non-
negative integer q. Take a vertex v and p paths of length 2 having a common terminal
vertex v and no other common vertex. Denote the set of edges of all these paths by
FE;. Further add ¢ edges with a common end vertex v; they form the set F5. Let
f be a SEDF on T'(p,q) such that f(E(T(p,q))) = v.(T(p,q)). We have f(e) =1
for each e € Eq by Proposition 2. If ¢ < p, then f(e) = —1 for each e € F; and
v:(T(p,q)) = 2p — q. If ¢ > p, then for our purpose it suffices to consider the case
when p + ¢ is odd. Then f(e) = —1 for 2(p 4+ ¢ — 1) edges of E; and f(e) = 1 for
the remaining edges. Hence v.(T'(p,q)) = p + 1. Further let T'(p, q) be the tree
obtained from T'(p, q) by adding a path @ of length 7 with the terminal vertex in v.
If ¢ < p+ 1, then exactly two edges of () have the value of a SEDF f equal to —1.
Again let f be such a SEDF that f(T"(p,q)) = v.(T'(p,q)). Further f(e) = —1 for
all edges e € E. Then ~.(T"(p,q)) =2p — q + 3.

Now return to the numbers m, g and consider particular cases:

Case 3g<m: Putp=g—1,g=m—2g+2. We have ¢ > p and thus v.(T(p, q) =
p—+ 1= g. The tree T(p,q) has evidently m edges. The sum p+qg=m—g+1is
odd, because m = g (mod 2).

Case 3g>m, m+g=0 (mod4): Put p=L(m+g), ¢=2(m—g). Now g <p.
Again T'(p, q) has m edges and v.(T(p,q)) = g.
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Case3g>m,m+g=2(mod4): Putp=31(m+g-2)—-2,¢g=1(m—g) -2
Evidently ¢ > 0 if and only if g < m — 4; this is fulfilled if m is even and g # m — 2
or if m is odd and g # m. The tree T"(p, q) has m edges and v.(T"(p,q)) = g. O

Now we shall consider the signed edge total domination number ., (T') of a tree
T. Note that v.(G) is well-defined for every graph G with E(G) # 0; for each
edge e € E(G) we have Nle] # ), because e € Nle]. On the contrary if there is a
connected component of G isomorphic to Ky (the complete graph with two vertices)
and e is its edge, then N(e) = () and there exists no SETDF on G. Therefore v.,(G)
is defined only for graphs G which have no connected component isomorphic to Ks.
If we restrict our considerations to trees, we must suppose that the considered tree
T has at least two edges.

Proposition 4. Let G be a graph with m edges and without a connected com-
ponent isomorphic to Ks. Then

74 (G) =m (mod 2).

The proof is quite similar to the proof of Proposition 1.

Proposition 5. Let G be a graph without a connected component isomorphic to
K. Let |N(e)| < 2 for some edge e € E(G). Then f(x) = 1 for each x € N(e).

The proof is straightforward.

This proposition implies two corollaries.

Corollary 2. Let P, be a path of length m > 2. Then v.,(P,,) = m.

Corollary 3. Let C,, be a circuit of length m. Then ~.,(Cp,) = m.

Namely, in both cases the unique SETDF is the constant equal to 1.

Theorem 6. Let T be a star with m > 2 edges. If m is odd, then +.,(T) = 3. If
m is even, then v, (T) = 2.

Proof. Let f be a SETDF such that f(E(T)) = +%,(T). Evidently there exists
at least one edge e € E(T) such that f(e) = 1. We have E(T) = N(e) U {e} and
v (T) = f(E(T)) = f(N(e))+ f(e) 2 141 = 2. If m is even, the value 2 can be
attained by constructing a SETDF f such that f(e) = 1 for %m + 1 edges e and

f(e) = -1 for %m — 1 edges. If m is odd, then, according to Proposition 4, we have
v4(T) > 3. We may construct a SETDF f such that f(e) = 1 for 3(m + 3) edges e
and f(e) = —1 for 3(m — 3) edges e. O
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We finish again by an existence theorem.

Theorem 7. Let m, g be integers, 2 < g < m, g = m (mod 2). Then there exists
a tree T with m edges such that v.,(T) = g.

Proof. Let Q be a path of length g — 1. Let S be a star with m — g + 1 edges.
Let these two trees be disjoint. Identify a terminal vertex of () with the center v
of S: the tree thus obtained will be denoted by 7. Let f be a SETDF such that
f(E(T)) = +,,(T). By Proposition 5 we have f(e) = 1 for each edge e of Q. For
each edge e of S the set N(e) consists of E(S) — {e} and one edge of Q. We have
f(N(e)) = 1 if and only if f(e) = —1 for exactly 3(m — g) edges e of S. Then we
have f(E(T)) = +,(T) = g. 0
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