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ON SIGNED EDGE DOMINATION NUMBERS OF TREES
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Abstract. The signed edge domination number of a graph is an edge variant of the signed
domination number. The closed neighbourhood NG[e] of an edge e in a graph G is the set
consisting of e and of all edges having a common end vertex with e. Let f be a mapping of
the edge set E(G) of G into the set {−1, 1}. If ∑

x∈N [e]
f(x) � 1 for each e ∈ E(G), then f

is called a signed edge dominating function on G. The minimum of the values
∑

x∈E(G)
f(x),

taken over all signed edge dominating function f on G, is called the signed edge domination
number of G and is denoted by γ′

s(G). If instead of the closed neighbourhood NG[e] we use
the open neighbourhood NG(e) = NG[e]− {e}, we obtain the definition of the signed edge
total domination number γ′

st(G) of G. In this paper these concepts are studied for trees.
The number γ′

s(T ) is determined for T being a star of a path or a caterpillar. Moreover,
also γ′

s(Cn) for a circuit of length n is determined. For a tree satisfying a certain condition
the inequality γ′

s(T ) � γ′(T ) is stated. An existence theorem for a tree T with a given
number of edges and given signed edge domination number is proved.
At the end similar results are obtained for γ′

st(T ).
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We consider finite undirected graphs without loops and multiple edges. The edge
set of a graph G is denoted by E(G), its vertex set by V (G). Two edges e1, e2 of

G are called adjacent if they are distinct and have a common end vertex. The open
neighbourhood NG(e) of an edge e ∈ E(G) is the set of all edges adjacent to e. Its

closed neighbourhood NG[e] = NG(e) ∨ {e}.
If we consider a mapping f : E(G) → {−1, 1} and s ⊆ E(G), then we denote

f(s) =
∑
x∈s

f(x).

A mapping f : E(G) → {−1, 1} is called a signed edge dominating function (or
signed edge total dominating function) on G, if f(NG[e]) � 1 (or f(NG(e)) � 1
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respectively) for each edge e ∈ E(G). The minimum of the values f(E(G)), taken

over all signed edge dominating (or all signed edge total dominating) functions f on
G, is called the signed edge domination number (or signed edge total domination
number respectively) of G. The signed edge domination number was introduced by

B.Xu in [1] and is denoted by γ′
s(G). The signed edge total domination number of

G is denoted by γ′
st(G).

A signed edge dominating function will be shortly called SEDF, a signed edge total
domination function will be called SETDF. The number γ′

s(G) is an edge variant of

the signed domination number [2].
Remember another numerical invariant of a graph which concerns domination. A

subset D of the edge set F (G) of a graph G is called edge dominating in G if each
edge of G either is in D, or is adjacent to an edge of D. The minimum number of

edges of an edge dominating set in G is called the edge domination number of G and
denoted by γ′(G).

We shall study γ′
s(G) and γ′

st(G) in the case when G is a tree.

Proposition 1. Let G be a graph with m edges. Then

γ′
s(G) ≡ m (mod 2).

�����. Let f be a SFDF of G such that γ′
s(G) = f(E(G)). Let m+ (or m−)

be the number of edges e of G such that f(e) = 1 (or f(e) = −1 respectively). We
have m = m+ +m−, γ′

s(G) = m+ − m− and hence γ′
s(G) = m− 2m−. This implies

the assertion. �

Proposition 2. Let u, v, w be three vertices of a tree T such that u is a pendant

vertex of T and v is adjacent to exactly two vertices u, w. Let f be a SFDF on T .

Then

f(uv) = f(vw) = 1.

�����. We have N [uv] = {uv, vw} and f(N [uv]) = f(uv)+f(vw). This implies

the assertion. �

Proposition 3. Let T be a star with m edges. If m is odd, then γ′
s(T ) = 1. If m

is even, then γ′
s(T ) = 2.

�����. In a star all edges are pairwise adjacent and thus NT [e] = E(T ) for each
e ∈ E(T ). If f is a SEDF, then f(E(T )) = f(NT [e]) � 1 and thus γ′

s(T ) � 1. Let
m− be the number of edges e of T such that f(e) = −1; then f(E(T )) = m − 2m−.
If m is odd, we may choose a function f such that m− = 1

2 (m − 1) and then
f(E(T )) = γ′

s(T ) − 1. If m is even, the value m − 2m− is always even; we may
choose f such that m− = 1

2 (m − 2) and then F (E(T )) = γ′
s(T ) = 2. �
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Let e ∈ E(T ). The neighbourhood subtree TN [e] of T is the subtree of T whose

edge set is NT [e] and whose vertex set is the set of all end vertices of the edges of
NT [e]. If e is a pendant edge of T , then TN [e] is the star whose central vertex is
the vertex of e having the degree greater than 1; this is the maximal (with respect

to subtree inclusion) subtree of T of diameter 2 containing e. In the opposite case
TN [e] is the maximal subtree of T of diameter 3 whose central edge is e. The set of

all subtrees TN [e] for e ∈ E(T ) will be denoted by TN .

Theorem 1. Let T be a tree having the property that there exists a subset T0 of
TN consisting of edge-disjoint trees whose union is T . Then

γ′(T ) � γ′
s(T ).

�����. Let E0 be the set of edges e such that TN [e] ∈ T0. For each e ∈ F0 the
set NT [e] is the set of neighbours of e and the union of all these sets is E(T ). Thus

F0 is an edge dominating set in T . Therefore |E0| � γ′(T ).
Let f : E(T ) → {−1, 1} be an SEDF of T such that f(E(T )) = γ′

s(T ). As the

trees from T0 are pairwise edge-disjoint, we have

γ′
s(T ) = f(E(T )) =

∑

τ ′∈T0

f(E(T ′)) =
∑

e∈E0

f(NT [e]) �
∑

e∈E0

1 = |E0| � γ′(T ).

�

As γ′(T ) � 1 for every tree T , we have a corollary.

Corollary 1. Let T have the property from Theorem 1. Then

γ′
s(T ) � 1.

Conjecture. For every tree T we have γ′
s(T ) � 1.

By the symbol Pm we denote the path of length m, i.e. with m edges and m + 1
vertices. By Cm we denote the circuit of length m.

Theorem 2. For the signed edge domination number on a path Pm with m � 2
we have

γ′
s(Pm) =

1
3
m+ 2 for m ≡ 0 (mod 3),

γ′
s(Pm) =

1
3
(m+ 2) + 2 for m ≡ 1 (mod 3),

γ′
s(Pm) =

1
3
(m+ 1) + 1 for m ≡ 2 (mod 3).
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�����. Let f be an SEDF on P such that f(E(Pm)) = γ′
s(Pm). Denote

E+ = {e ∈ E(Pm) ; f(e) = 1}, E− = {e ∈ EPm ; f(e) = −1}. Evidently each
edge of E− must be adjacent to at least two edges of E+ and each edge of F+

is adjacent to at most one edge of E′. By Proposition 2 between an edge of E−

and an end vertex of Pm there are at least two edges of E+ and also between two
edges of E− there are at least two edges of E+. Hence |E′| � � 13 (m − 2)� and
f(E(Pm)) = |E| − 2|F−| � m − 2� 12 (m − 2)�. If we choose one end vertex of Pm

and number the edges of Pm starting at it, we may choose a function f such that

f(a) = −1 if and only if the number of e is divisible by 3 and less than m − 1. The
f(E(Pm)) = m−2� 12 (m−2)� and this is γ′

s(Pm). And this number treted separately

for particular congruence classes modulo 3 can be expressed as in the text of the
theorem. �

As an aside, we state an assertion on circuits; its proof is quite analogous to the
proof of Theorem 2.

Theorem 3. For the signed edge domination number of a circuit Cm we have

γ′
s(Cm) =

1
3
m for m ≡ 0 (mod 3),

γ′
s(Cm) =

1
3
(m+ 2) for m ≡ 1 (mod 3),

γ′
s(Cm) =

1
3
(m+ 1) + 1 for m ≡ 2 (mod 3).

Now we shall investigate caterpillars. A caterpillar is a tree C with the property

that upon deleting all pendant edges from it a path is obtained: this path is called
the body of the caterpillar. Particular cases of caterpillars include stars and paths.

Let the vertices of the body of C be u1, . . . , uk and edges uiui+1 for i = 1, . . . , k−1.
For i = 1, . . . , k let pi be the number of pendant edges incident to ui. The finite
sequence (pi)ki=1 determines the caterpillar uniquely. From the definition it is clear
that p1 � 1 and pk � 1. If k = 1, then such a caterpillar is a star. If p1 = pk = 1,

pi = 0 for i = 2, . . . , k − 1, then it is a path.

Theorem 4. Let (pi)ki=1 be a finite sequence of integers such that p1 � 2, pk � 2,
pi � 1 for 2 � i � k − 1. Let k0 be the number of even numbers among the numbers

p1 − 1, p2, . . . , pk−1, pk − 1. Let C be the caterpillar determined by this sequence.

Then γ′
s(C) = k0 + 1.

�����. The assumption of the theorem implies that each vertex of the body of
C is incident to at least one pendant edge. For i = 1, . . . , k let Mi be the set of all
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edges incident to pi. Let pi be a vertex of the body of C and let e be a pendant edge

incident to it. We have N [e] =Mi.

We have
k⋃

i=1
Mi = E(C), Mi ∩ Mi+1 = {uiui+1}, Mi ∩ Mj = ∅ for |j − i| � 2.

Hence f(E(C)) =
k∑

i=1
f(Mi)−

k−1∑
i=1

f({ui, ui+1}). The function f may be described in

the following way. If i = 1 or i = k, then f(e) = −1 for exactly 12pi pendant edges

from Mi if pi is even and for exactly 12 (pi − 1) ones if pi is odd. If 2 � i � k − 1,
then f(e) = −1 for exactly 12pi pendant edges e from Mi if p is even and for exactly
1
2 (pi + 1) ones if pi is odd. For an edge e from the body of C always f(e) = 1. If
i = 1 or i = k, then f(Mi) = 1 for pi even and f(Mi) = 2 for pi odd. If 2 � i � k−1,

then f(Mi) = 1 for pi odd and f(Mi) = 2 for pi even. We have
k∑

i=1
f(Mi) = k + k0,

k−1∑
i=1

f(uiui+1) = k − 1, which implies the assertion. �

Our considerations concerning γ′
s(T ) will be finished by an existence theorem.

Theorem 5. Let m, g be integers, 1 � g � m, g ≡ m (mod 2). Let g 
= m for m

odd and g 
= m − 2 for m even. Then there exists a tree T with m edges such that

γ′
s(T ) = g.

�����. Consider the following tree T (p, q) for a positive integer p and a non-
negative integer q. Take a vertex v and p paths of length 2 having a common terminal

vertex v and no other common vertex. Denote the set of edges of all these paths by
E1. Further add q edges with a common end vertex v; they form the set E2. Let

f be a SEDF on T (p, q) such that f(E(T (p, q))) = γ′
s(T (p, q)). We have f(e) = 1

for each e ∈ E1 by Proposition 2. If q < p, then f(e) = −1 for each e ∈ F2 and

γ′
s(T (p, q)) = 2p − q. If q � p, then for our purpose it suffices to consider the case
when p + q is odd. Then f(e) = −1 for 12 (p + q − 1) edges of E2 and f(e) = 1 for

the remaining edges. Hence γ′
s(T (p, q)) = p + 1. Further let T ′(p, q) be the tree

obtained from T (p, q) by adding a path Q of length 7 with the terminal vertex in v.

If q � p + 1, then exactly two edges of Q have the value of a SEDF f equal to −1.
Again let f be such a SEDF that f(T ′(p, q)) = γ′

s(T
′(p, q)). Further f(e) = −1 for

all edges e ∈ E2. Then γ′
s(T

′(p, q)) = 2p − q + 3.
Now return to the numbers m, g and consider particular cases:

���� 3g � m: Put p = g−1, q = m−2g+2. We have q > p and thus γ′
s(T (p, q) =

p + 1 = g. The tree T (p, q) has evidently m edges. The sum p + q = m − g + 1 is
odd, because m ≡ g (mod 2).

���� 3g > m, m+ g ≡ 0 (mod 4): Put p = 1
4 (m+ g), q = 1

2 (m− g). Now q < p.
Again T (p, q) has m edges and γ′

s(T (p, q)) = g.
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���� 3g > m, m+ g ≡ 2 (mod 4): Put p = 1
4 (m+ g − 2)− 2, q = 1

2 (m − g)− 2.
Evidently q � 0 if and only if g < m − 4; this is fulfilled if m is even and g 
= m − 2
or if m is odd and g 
= m. The tree T ′(p, q) has m edges and γ′

s(T
′(p, q)) = g. �

Now we shall consider the signed edge total domination number γ′
st(T ) of a tree

T . Note that γ′
s(G) is well-defined for every graph G with E(G) 
= ∅; for each

edge e ∈ E(G) we have N [e] 
= ∅, because e ∈ N [e]. On the contrary if there is a
connected component of G isomorphic to K2 (the complete graph with two vertices)

and e is its edge, then N(e) = ∅ and there exists no SETDF on G. Therefore γ′
st(G)

is defined only for graphs G which have no connected component isomorphic to K2.

If we restrict our considerations to trees, we must suppose that the considered tree
T has at least two edges.

Proposition 4. Let G be a graph with m edges and without a connected com-

ponent isomorphic to K2. Then

γ′
st(G) ≡ m (mod 2).

The proof is quite similar to the proof of Proposition 1.

Proposition 5. Let G be a graph without a connected component isomorphic to

K2. Let |N(e)| � 2 for some edge e ∈ E(G). Then f(x) = 1 for each x ∈ N(e).

The proof is straightforward.

This proposition implies two corollaries.

Corollary 2. Let Pm be a path of length m � 2. Then γ′
st(Pm) = m.

Corollary 3. Let Cm be a circuit of length m. Then γ′
st(Cm) = m.

Namely, in both cases the unique SETDF is the constant equal to 1.

Theorem 6. Let T be a star with m � 2 edges. If m is odd, then γ′
st(T ) = 3. If

m is even, then γ′
st(T ) = 2.

�����. Let f be a SETDF such that f(E(T )) = γ′
st(T ). Evidently there exists

at least one edge e ∈ E(T ) such that f(e) = 1. We have E(T ) = N(e) ∪ {e} and
γ′

st(T ) = f(E(T )) = f(N(e)) + f(e) � 1 + 1 = 2. If m is even, the value 2 can be

attained by constructing a SETDF f such that f(e) = 1 for 12m + 1 edges e and
f(e) = −1 for 12m − 1 edges. If m is odd, then, according to Proposition 4, we have
γ′

st(T ) � 3. We may construct a SETDF f such that f(e) = 1 for 12 (m+ 3) edges e

and f(e) = −1 for 12 (m − 3) edges e. �
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We finish again by an existence theorem.

Theorem 7. Let m, g be integers, 2 � g � m, g ≡ m (mod 2). Then there exists

a tree T with m edges such that γ′
st(T ) = g.

�����. Let Ω be a path of length g − 1. Let S be a star with m− g + 1 edges.

Let these two trees be disjoint. Identify a terminal vertex of Q with the center v

of S: the tree thus obtained will be denoted by T . Let f be a SETDF such that

f(E(T )) = γ′
st(T ). By Proposition 5 we have f(e) = 1 for each edge e of Q. For

each edge e of S the set N(e) consists of E(S) − {e} and one edge of Q. We have

f(N(e)) = 1 if and only if f(e) = −1 for exactly 12 (m − g) edges e of S. Then we
have f(E(T )) = γ′

st(T ) = g. �
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