MATHEMATICA BOHEMICA, Vol. 127, No. 3, pp. 375-384 (2002)
On the connectivity of skeletons of pseudomanifolds with boundary
R. Ayala, M. J. Chavez, A. Marquez, A. Quintero
R. Ayala, A. Quintero, Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad de Sevilla, Apartado 1160, 41080-Sevilla, Spain
M. J. Chavez, Departamento de Matematicas Aplicadas I. Escuela de Arquitectura Técnica, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012-Sevilla, Spain; A. Marquez, Departamento de Matematicas Aplicadas I. Facultad de Informatica, Universidad de Sevilla, c/ Tarfia s/n, 41012-Sevilla, Spain
Abstract:
In this note we show that $1$-skeletons and $2$-skeletons of $n$-pseudomanifolds with full boundary are $(n+1)$-connected graphs and $n$-connected $2$-complexes, respectively. This generalizes previous results due to Barnette and Woon.
Keywords: connectivity, graph, 2-complex, pseudomanifolds
Classification (MSC2000): 05C40, 57M20, 57Q05
Full text of the article:
[Previous Article] [Next Article] [Contents of this Number]
© 2005 ELibM and
FIZ Karlsruhe / Zentralblatt MATH
for the EMIS Electronic Edition