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Abstract. In this work we apply the method of a unique partition of a complex function
f of complex variables into symmetrical functions to solving a certain type of functional
equations.
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1. INTRODUCTION

The main result of part 2 consists in the presentation of Theorem 2.1 about the
uniqueness of decomposition of an arbitrary complex multivariable function into the
sum of symmetrical functions. Part 3 and 4 are devoted to the presentation of
the general method of solving certain functional equations (compare (6)) with an
unknown complex multivariable function. This method applies the decomposition
introduced in part 2. Part 5 consists of illustrative examples of the solutions to the
equations f(iz,y) — f(z,iy) = 0 and f(—z,y)f(z,—y) — f*(z,y) + 22%y*> = 0 for
(v,y) € C2.

Let us fix k € N, k > 2 and let ¢ := exp(2ri/k). Let us assume that a set
U C C has the following property of k-symmetry: for any z, if z € U then ¢z € U.
For every number j from the set of all integers 7 and every k-symmetrical set U
a function f: U — C will be called (4, k)-symmetrical if f(exz) = 6fcf(z) for each
z € U. In the paper [1] was proved the folloving lemma
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Lemma 1.1. Let f be a complex function defined on a k-symmetrical set U. Then
f can be written as the sum

(1) f=Y Gif
of (j, k)-symmetrical functions G f , where for z € U

k—
Z e —k2), j=01,....k—1.

=0

:vl»—‘

GLf(2)

k—1

Moreover, this partition is unique in the folloving sense: if f = > g;, where g; are
i=0

(4, k)-symmetrical functions for j = 0,1,...,k — 1, then g; = GJ.f.

2. (4,1]k)-SYMMETRICAL FUNCTIONS

Let us fix k € N, k > 2 and let € := g, = exp (2ni/k). A set U C C? will be called
k-symmetrical if for any (z,y) € U the points (ez,y) and (x,ey) are also elements
of this set.

The class of the nonempty k-symmetrical sets will be denoted by Si(C?) or
shortly, Sy.

Let us fix U € S. By Fi(U), or Fy, we shall denote the complex linear space of
functions f: U — C.

For any j,l € Z a function f € Fy(U) will be called (j,1|k)-symmetrical if
flex,y) = & f(x,y) and f(x,ey) = e'f(z,y) for any (z,y) € U. The (j,1|k)-
symmetrical functions form a linear subspace of the space Fi(U). This subspace
will be denoted by FJ*'(U) or, shortly, F/'.

For any (z,y) € U, f € F(U) and m,n € 7 let

??‘
,_.
??‘
,_.

15

k2
J

emmi—nl (g ely).

G f(x,y) =

I\
<
~
I
=

In this way linear operators G"" are defined on Fj. It is easy to see that for any
f € F, we have G,"" f € F;"""". Moreover F,g’l = Fg+mk’l+”k and Gi’l = G?jmk’””k
for j,I,m,n € Z. Therefore the analysis of the spaces F,z’l and the operators Gi’l
can be restricted to the case when 5,1 =0,1,..., k — 1.

To simplify notation let K :={0,1,...,k — 1}.
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Theorem 2.1. For any U € Sy, and f € F,(U) we have
k—1

2) f=> Gy

m,n=0

The above representation of f in the form (2) is unique, i.e. if f = > @gmn for

m,n=0
some g, € F;"", then g, ,, = G;"" f for m,n € K.
Proof. For (z,y) €U, m,n € K and f € Fy(U) let
15 15
G Je) = L e ), 6 ) = 23 )
=0 1=0

These equalities define linear operators mapping the space Fi(U) into itself. It is
easily checked that

3) G =G oG =Gt o G

Let us take z € C such that U, := {y € C: (z,y) € U} # (. Obviously, if y € U,
then ey € U, and therefore U, is a k-symmetrical set. Due to Lemma 1.1 for any
y € U, we have

k—1
(4) fla,y) =Y G fa,y).
n=0

This equality holds for any (z,y) € U as if (z,y) € U then y € U,.

Let us denote G."" f(z,y) := gn(z,y) for (z,y) € U and let us take y € C such
that W, := {& € C: (z,y) € U} # 0. If € W, then ex € W,. Hence W, is a
k-symmetrical set, so for a fixed y we can apply Lemma 1.1 to the function g, on
the set W, and therefore for any z € W,

ZG “gn(z,y).

Hence using (4) and (3) for any (z,y) € U we obtain

k—1 k—1 k—1
zy) =Y gnlmy) =D > G (G ) w,y) = ZG’”"fxy
n=0 n=0m=0 m,n=0
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k=1
To prove the uniqueness of the decomposition (2) let us assume that f = > hmp,
m,n=0
for some hy, , € F'"". Then for any j,l € K we have

k—1 k—1
GIlf= Y Gllhmm= Y G (G hmn)
m,n=0 m,n=0
k—1 ] k—1 k—1 ,
= > Gi"(Z G,:’lhmm) =" GL hma = hj.
m=0 n=0 m=0

Notice. The above results can be without any difficulty generalized and proved
in the case of functions of n variables for n > 2.

3. (4,1]k)-SYMMETRICAL EXTENSIONS

Let us fix Kk € N, k > 2 and U € S,(C?). For any m,n € K, where K =
{0,1,...,k — 1}, the set

™" .= {(z,y) € U: Arg(z) € [m2n/k, (m + 1)2n/k)
A Arg (y) € [n2r/k, (n +1)2n/k)}

will be called a sector of the set U. As usual to represent Arg(0) we can take an
arbitrary real number. Consequently, if (0,0) € U then (0,0) € U™™" for arbitrarily
chosen m,n € K.
k-1
It can be seen that | J U™™ = U. Nevertheless, sectors are not pairwise disjoint.

m,n=0

Putting
Ul = {x € C: Arg(x) € [j2n/k, (j + 1)2rn/k)}

for j € K we have U™" = (U™ x U™) N U. Hence for j,l,m,n € K
Ut numn = (U7 nU™) x (U'NnU™)|NU.
Therefore
{(0,0)}nU for j £m;l #n
Urtnum™n = (U x {0})NU for j=m;l#n
({0} x UYHYNU for j #m;l =n.

If f;, € FY(U) for j,1 € K, then the function f;; is determined uniquely by f;,|U°°.
The following procedure enables us to recover the function f;; from its behaviour
on the sector U%? and is of fundamental importance for our considerations.
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Let us fix a function h: U%° — C and j,1 € K. A (j,1|k)-symmetrical extension
of the function h onto a set U is a function [h]*!: U — C such that
1. if (x,y) € UP? for p,q € K and zy # 0 then

[R5 (2, y) = TP T R(e™Pa, e~ y),

2. if zy = 0 then

o 0 for 7 #0
[h)7H0,y) =< _ .
e"9h(0,e"y) for j =0,y € U4,y # 0,
o 0 forl =0
(R (2, 0) =<
eIPh(ePx,0) for I =0,z € UP,z # 0,
) 0 for j,1 #0
17(0,0) = n7
h(0,0) for j,1 = 0.

Lemma 3.1. (a) For any j,l € K and h: U%® — C we have [h)’"! € F,gl(U)
(b) If f € F,g’l(U) then there exists a function h: U%® — C such that f = [}’

Proof. (a)If (z,y) € UP? and zy # 0 then (ez,y) € UPT14. Therefore
(B (e, y) = I PTDOHAR(eP e, e 0y) = I [A]P (x, ).

By analogy [h]7!(x,ey) = €!'[h)¥!(z,y). Now let + = 0 and y € U? — {0}. Then
ey € U and

0 for j#0

7l _ l 7l
[h] (OvEy) - {El(q+1)h(0,€_q_l€y) fOI‘ ] _ 0 =€ [h] (07y)

By analogy, when x € UP — {0}, then [h)?!(ex,0) = 7[h]’!(x,0). It can also be seen
that [h]7!(0,0) = 7 [n]7(0,0) and [R]’*!(0,£0) = £'[h]7(0,0).

To prove (b) it is sufficient to take h = f|U%°.

It follows from Lemma 3.1 that F,g’l(U) is the set of all (4, I|k)-symmetrical exten-
sions of all functions h: U%% — C onto U.

Now let us assume that on a set U € S we have defined a certain family of

functions
9mo,0,m0,1,- - MEk—1,k—1 * U— 67
where mg 0, mMo,1, ..., Mk—1,k—1 € NU{0}. Let us consider a functional equation
k—1
(5) Z 9m0,0,m0,1,-sMk—1,k—1 H fﬁj’l =0

mM0,0,MM0,15---,Mk—1,k—1 7,0=0
with unknowns f;; € F,g’l(U) for j,l € K.
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The equation (5) will be called homogeneous if for some m,n € K all addends of
the sum (5) are elements of the same space F;""(U).

Theorem 3.1. If U € Sy and if the equation (5) is homogeneous then for any
hj,: U% — C, j,1 € K the functions fj; = [h;,|’"! satisfy the equation (5) on U if
and only if the functions hj, satisfy it on U%°.

Proof. It is clear that if f;; satisfy the equation (5) on U then the functions

hjy = f;.|U%C satisfy it on U%0 and f;; = [h;,]7! for any j,1 € K.
Conversely, let us assume that the functions h;;: U%° — C satisfy the equation
3,

(5) on U and f;; = [hj;}%. Since (5) is a homogeneous equation there exist
m,n € K such that all addends of the sum (5) belong to F;""(U).
k=1
Let s := Y jmj;, t = > lmj;. Then [] fﬁj’l € F2' and therefore
J l gi=0

m—s,n—t
Imo,0,mo,1,...;mr_1,6—1 < Fk .

Let us assume that (z,y) € UP? and zy # 0 for p,q € K. Then, writing
mo,0,M0,1, -, Mk—1,k—1 ‘= M we have

k—1
> gm(zy) [T 7 (@)
M

J,1=0
k—1
_ m—s)+q(n—t — — ipm i +lgmg MGl (. — —
_E :Ep( )+a( )gM(E Py e~ y) H gIpmjitla J’hj,lj (e Pa, e )
M 41=0
k—1
_ m—s)+q(n—t) _sp+t — — mj — —
_E gPm=s)tan=t) cspttay, (o=Pp o=dy) H R (e Pr, e Ty)
M J,1=0
k—1
m,'yl _
= gpmtan E g (2o, Yo) H h; " (zo,90) =0
M 3,1=0

where (z0,y0) 1= (e Pz,e %) € U, as h;, satisfy the eqation (5) on U*C. In the
same way we check that f;; satisfy the equation (5) at the points (z,0) and (0, y) of
the set U.

4. APPLICATION

In what follows we assume that k is a fixed natural number, £ > 2 and ¢ =
exp (2mi/k).
Let us take a set U € S(C?) and consider a functional equation

(6) W(z,y, f(z.y), flez,y), ... f(ea,e'y),... . f(€" e, e Hy)) = 0
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for (z,y) € U, j,l € K, where f is an unknown complex function defined on U, while
W(z,y,p1,...,px2), for fixed (z,y) € U, is a polynomial with variables py,...,pgz.
Note that if the unknown function f is represented in the form (2), i.e.

k—1
Fla,y) =" fiulz,y)

J,1=0

for (z,y) € U, where f;; = Gi’lf, then after substituting it into (6) and rearranging
it the equation takes the form

k—1 .
(7) Z |: Z gmo,o,...,m,kfl,ki1 H fﬁjlil —0

m,n=0 “mo,0,-..,Mk—1,k—1 7,1=0

where for certain mg g, ..., mr—1x—1 € NU{0}, Gmoo.,....mp_1 ,_, are functions defined
on U such that the addends in the square bracket in (7) belong to F,"(U). Due to
the uniqueness of the decomposition (2) the equation (7) is equivalent to a system
of k% homogeneous equations on U:

k—1
(8) Z 9mo,0,eyMp_1.k—1 H f;j;j,z -0

mMo,0,--Mk—1,k—1 J,1=0

with unknowns f;;; 7,1 € K.
In order to find solutions f;; of the system (8) it is sufficient—due to Theo-
rem 3.1—to find all solutions h;; on the sector U%?; then the functions f;; = [hj,l]j’l

form a complete set of solutions of the system (8) on U. Consequently, the functions
k=1
f= > fju will form the complete set of solutions of the equation (6).
§,1=0
In order to obtain all solutions h;; of the system (8) on U%? we can apply algebraic

methods.

5. EXAMPLES
Example 5.1. Let us consider the equation
(9) fGz,y) = fla,iy) = 0.

It is an equation of the form (6) if we put k =4, ¢ =1 = exp (2ri/4).
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Let us take U = C?. Representing the unknown function f on U in the form (2)

, 3
and putting fo’lf = fju we have f = ) f;;. After substituting it into (9) in the
4,1=0
way described in part 4, we obtain the equation

3
(e il)fj,l =0
7,1=0

which is equivalent on U to the system of equations f;; = 0 for 5,1 =0,1,2,3; j # L.
3
Hence we get all solutions of the equation (9) on C: f = > f;;, where f;,; are
7=0
arbitrary elements of the space "’ (C?) for j = 0,1,2,3.

Example 5.2. Let us consider the equation

(10) f(—l',y)f(LE, _y) —fz(x,y)+2x2y2 =0
on the set U = {(z,y) € C*: xy # 0}.
It is an equation of the form (6) with &k = 2 and € = —1. Representing the function

1 ,
fonU in the form (2): f= Y f;; where f;; € FQJ’Z(U) for j,1 = 0,1, substituting
Ji1=0
it into (10) and following the procedure described in part 4 we obtain a system of

equations equivalent to the equation (10)

(11)  fe1+ ffo=F foofi1 =0, foofio+ forfi1 =0, foofo1+ frofia =0,

where F(x,y) := 2%y? for (z,y) € U.

Due to Lemma 3.2 it is sufficient to find all solutions h;; := f;;|U%° of this system
1 .
on the sector U%°. Then the functions f = Y [h;,]? will represent all solutions of
J,1=0
the equation (10) on U.

On U%9 the system (11) is equivalent to the system
hg 1 (@, y) + hio(x,y) = 2°y%, hoo(z,y) =0, hia(z,y) =0.

All its solutions can be obtained by putting for (z,y) € U%°

hoo(z,y) =0, hii(z,y) =0, hoi(z,y) = \/902312 —hio(z,y),

and hio(x,y) arbitrary, where \/x2y2 — hio(z,y) is an arbitrarily chosen square

root of #?y? — hi 4(,y). Hence each solution f of the equation (10) is of the form

0.1
f=ro+ { (F—f12,o)|U0’0]
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where f1 o is an arbitrary element of the space F;’O(U).
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