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Abstract. Following the ideas of R.DeMarr, we establish a Galois connection between
distance functions on a set S and inequality relations on Xg = S x R. Moreover, we also
investigate a relationship between the functions of S and Xg.
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INTRODUCTION

Extending and supplementing some of the results of R. DeMarr [6] we establish a
few consequences of the following definitions.

Let S be a nonvoid set, and denote by Dg the family of all functions d on S? such
that 0 < d(p,q) < +oo for all p,q € S.

Moreover, let Xg =S x R, and denote by g the family of all relations < on Xg
such that (p, \) < (¢, pt) implies A < p.

If d € Dg, then for all (p,\), (¢, ) € Xg we define

While, if < € &g, then for all p,q € S we define

d<(p,q) = inf{p—A: (p,A) < (¢, 1)}
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Moreover, if f is a function of S into S and « € R, then for all (p,\) € Xg we
define
F(p,A) = (f(p), aA).

Concerning the above definitions, for instance, we prove the following statements.
Theorem 1. The mappings
d— <y and < d<

establish a Galois conection between the posets Dg and Es such that every element
of Dg is closed.

Theorem 2. The family £ of all closed elements of s consists of all relations
< € Es such that for all (p, \), (¢, p) € Xs
(1) (p,A) < (g, p) implies (p, A\ +w) < (¢, p+w) for allw € R;
(2) (p,A) < (q,u) if and only if (p,\) < (¢, +¢€) for all e > 0.

Theorem 3. Ifd € Dg, then <4 is a partial order on Xg if and only if d is a
quasi-metric on S in the sense that
(1) d(p,p) =0 for all p € S;
(2) d(p,q) =0 and d(q,p) = 0 imply p = ¢;
(3) d(p,7) < d(p,q) + d(q,r) for all p,q,r € S.

Theorem 4. For the families of all fixed points of f and F' we have

Fix(F)=Fix(f) xR if a=1 and Fix(F)=Fix(f)x{0} if a#1.

Theorem 5. Ifa > 0 and d € Dg,then the following assertions are equivalent:
(1) d(f(p), f(q)) < ad(p,q) for all p,q € S;
(2) (p;A) <a (¢, p) implies F(p, ) <a F(q; p).

Theorem 6. If0 < o <1 and d € Dg is such that d is finite valued, then for
any p,q € S there exist \g, ug € R with \g < 0 < po such that

(p7 )‘) <d F(p7 )‘) <d F(Q?M) <d (qvlj‘)

for all \, p € R with A < A\g and pg < p.

Remark. From Theorems 3, 5 and 6, by writing d¢ instead of d, we can get
some similar assertions for the relations <€ &g. Namely, by Theorem 2, we have
<=<c for all <€ &y

438



The only prerequisites for reading this paper is a knowledge of some basic facts
on posets which will be briefly laid out in the next two preparatory sections. The
proofs of most of those facts can be found in [10].

1. CLOSURE OPERATIONS ON POSETS

If < is a reflexive, antisymmetric and transitive relation on a nonvoid set X, then
the relation < is called a partial order on X, and the ordered pair X (<) = (X, <) is
called a poset (partially ordered set).

If A is a subset of a poset X, then i&f(A) and 31)1(p(A) will denote the greatest

lower bound and the least upper bound of A in X, respectively. Further, the poset
X is called complete if inf(A) and sup(A) exist for all A C X.

The following useful characterization of infimum was already observed by Ren-
nie [9]. However, despite this, it is not included in the standard textbooks.

Lemma 1.1. IfX is a poset, and moreover A C X and a € X, then the following
assertions are equivalent:
(1) a=1inf(A);
(2) for each v € X we have u < « if and only if u < x for all x € A.

Concerning the completeness of posets, according to Birkhoff [1, p. 112] we can at
once state

Theorem 1.2. If X is a poset, then the following assertions are equivalent:
(1) X is complete;
(2) inf(A) exists for all A C X.

Remark 1.3. To obtain the corresponding results for supremum, one can observe
that if X (<) is a partial ordered set, then its dual X (>) is also a partial ordered set.
Moreover, we have )él(li (A) = sup (A) for all A C X.

b's

z <)

Definition 1.4. If — is a function of a poset X (<) into itself such that

(1) < y implies z~ <y~ for all z, y € X,

(2) z <z ;and (3) x~ =2~ forall xz € X,
then the function — is called a closure operation on X (<), and the ordered triple
X(<,-) = (X, <,—) is called a closure space.

Remark 1.5. Note that the expansivity property (2) already implies that ~ <
2=~ for all z € X. Therefore, instead of the idempotency property (3), it suffices to
assume only that 7~ <z~ for all x € X.
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The following useful characterization of closure operations was already observed
by Everett [3]. However, despite this, it is not included in the standard textbooks.

Lemma 1.6. If — is a function of a poset X into itself, then the following
assertions are equivalent:
(1) the function — is a closure operation on X;
(2) for all z,y € X we havex <y~ ifand only if x~ < y~.

If X is a closure space, then the members of the family X~ = {z7: z € X} may
be called the closed elements of X. Namely, we have

Theorem 1.7. If X is a closure space and x € X, then the following assertions
are equiva]ent'
(1) «
(2) v=a7;
3) re X~

Remark 1.8. Note that if X is a closure space, then we have z— = inf{y €
X7: z <y} for all x € X. Therefore, the closed elements of X uniquely determine
the closure operation of X.

A closure space will be called complete if it is complete as a poset. Concerning
the closed elements of complete closure spaces, according to Birkhoff [1, p.112] we
can also state

Theorem 1.9. If X is a complete closure space, then X~ is a complete poset.
Remark 1.10. Note that if A C X, then we have gl_f(A) = i§f(A) and
sup(A) = (sup(4))~
X~ X

2. GALOIS CONNECTIONS BETWEEN POSETS

Definition 2.1. If X and Y are posets and * and # are functions of X and Y
into Y and X, respectively, such that

(1) 21 < xo implies a5 < 27 for all 1, 23 € X,

(2) y1 < y2 implies yjﬁ < yfk for all y1, y2 € Y,

(3) x < z*# for all v € X,

(4)y<y?* forally €Y,
then we say that the functions % and # establish a Galois connection between the
posets X and Y.
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Remark 2.2. Galois connections between posets were first investigated by
Ore [7] and Everett [3].

The following useful characterization of Galois connections was already observed
by J.Schmidt [1, p.124]. However, despite this, it is not included in the standard
textbooks.

Lemma 2.3. If X and Y are posets and x and # are functions of X and Y into
Y and X, respectively, then the following assertions are equivalent:
(1) the functions x and # establish a Galois connection between X and Y';
(2) forallz € X and y € Y we have v < y* if and only if y < x*.

The following basic theorem has already been established by Ore [7] and Everett [3].1]

Theorem 2.4. If the functions *x and # establish a Galois connection between
the posets X and Y, then
(1) o* = 2*#* forall x € X and y* =y**# forall ycY;
(2) the functions *# and #=x are closure operations on X and Y, respectively, such
that Y# = X*# and X* = Y#*;
(3) the restrictions of the functions * and # to Y# and X*, respectively, are injec-
tive, and they are inverses of each other.

Remark 2.5. Note that actually A = Y# is the largest subset of X such that
the restriction of the function * to A is injective and A*# C A.

Definition 2.6. A Galois connection between posets X and Y established by
the functions * and # will be called lower (upper) semiperfect if x = 2*# for all
reX (y=y" forallyeY).

Remark 2.7. Note that by Definition 2.1 we always have x < z*# for all z € X.
Therefore, to define the lower semiperfectness of the above Galois connection it
suffices to assume the reverse inequality.

The above definition and the following theorem are again due to Ore [7].
Theorem 2.8. A Galois connection between posets X and Y established by the

functions * and # is lower semiperfect if and only if X = Y#, or equivalently the
function * is injective.

Remark 2.9. Note that if X is a poset, then the Galois connection between the
posets P(X) and P(X), established by the mappings

A+— 1b(4) and A+— ub(A),

where 1b (A) and ub (A) are the families of all lower and upper bounds of the set A
in X, respectively, is not, in general, lower or upper semiperfect.
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The importance of this Galois connection lies mainly in the Dedekind-McNeille
completion of the poset X by the cuts 1b (ub (A4)) where A C X. (See, for instance,
[1, p.126].)

3. A GALOIS CONNECTION BETWEEN DISTANCE FUNCTIONS
AND INEQUALITY RELATIONS

Definition 3.1. Let S be a nonvoid set, and denote by Dg the family of all
functions d on S? such that 0 < d(p, q) < +oc for all p,q € S.

Moreover, let Xg =S x R, and denote by £g the family of all relations < on Xg
such that (p,\) < (¢, p) implies A < p for all (p, A), (¢, p) € X5s.

Remark 3.2. The members of the families Dg and £g will be called distance
functions and inequality relations on S and Xg, respectively.

The following theorems do not actually need the nonnegativity of distance func-
tions on S and the corresponding property of inequality relations on Xg.

Theorem 3.3. The families Dg and £s, equipped with the pointwise inequality
and the ordinary set inclusion, respectively, are complete posets.

Hint. If D C Dg, then by defining d.(p,q) = (}g} d(p, q) for all p,q € S we can

see that d, = inf(D).
On the other hand, if £ C &g, then by defining <,= (€ if £ # 0 and <.=JEs
if £ = () we can see that <.= inf(£). O

Definition 3.4. If d € Dg, then for all (p, \), (¢, ) € Xs we define
(P, A) <a (g, p) <= d(p,q) <p—A
while if <€ Eg, then for all p,q € S we define
d<(p,q) = inf{p — Az (p,A) < (g 1)}

Remark 3.5. The relation <4, for an ordinary metric d, has formerly been
studied by DeMaar [6].

However, the function d< and the following theorem seem to be completely new.
Theorem 3.6. The mappings

d— <y and <— dg
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establish a lower semiperfect Galois connection between the posets Dg and Eg.

Proof. Ifde€ Dg and <€ &g, then by the corresponding definitions it is clear
that <4s€ £ and d¢ € Dg. Therefore, by Lemma 2.3 and Remark 2.7, it suffices to
prove only that d < dg¢ if and only if <C<q4, and moreover d¢, < d.

If (p,N),(q,r) € Xg are such that (p, \) < (g, ), then by the definition of d¢
we have d¢(p,q) < p — A. Hence, if the inequality d < d¢ holds, we can infer
that d(p,q) < p — A. Thus, by the definition of <4, we also have (p,\) <4 (g, ).
Therefore, the inclusion <C <4 is also true.

Further, if p,q € S and 8 € R are such that d<(p,q) < 3, then by the definition
of d¢ there exist A, € R such that (p,\) < (¢, ) and g — A < 5. Hence, if the
inclusion <C<q4 holds, we can infer that (p, \) <4 (¢, ). Thus, by the definition of
<4, we also have d(p, q) < u— A < 8. Hence, letting 5 — d<(p, ¢), we can infer that
d(p,q) < d<(p,q). Therefore, the inequality d < dg is also true.

Finally, if p,q € S and 8 € R are such that d(p,q) < 8, then by the definition
of <4 we have (p,0) <4 (q,3). Hence, by the definition of dg,, it follows that
d<,(p,q) < B. Hence, letting 8 — d(p,q), we can infer that d<,(p,q) < d(p,q).
Therefore, the inequality d¢, < d is also true. O

Remark 3.7. Note that, by Theorem 3.6 and Definition 2.6, we actually have
d = dg, for all d € Dg. Therefore, the mapping <+— dg is onto Dg. Moreover, the
mapping d — <q4 is injective.

To briefly describe the range of the mapping d —— <4 or that of the closure
operation <+—— <y < We shall need the following

Definition 3.8. Denote by £ the family of all relations <€ &g such that for

all (pa )‘)7 (qa:u) € XS
(1) (p,A) < (g, ) implies (p, A\ +w) < (¢, 4+ w) for all w € R;
(2) (p, A) < (¢, p) if and only if (p, \) < (¢, p + ¢€) for all € > 0.

The appropriateness of the above definition is apparent from

Theorem 3.9. If <€ &g, then the following assertions are equivalent;

(1) <€ &g;
(2) <=<ug;
(3) <=<4 for some d € Dg.

Proof. Suppose that the assertion (1) holds, and (p, A), (¢, #) € Xg are such
that (p, \) <d< (g, ). Then, by the definition of <d<, we have d¢(p,q) < p— A
Therefore, by the definition of d_, for each € > 0 there exist w,7 € R such that
(p,w) < (¢,7) and 7 — w < pu — A + . Hence, by the property 3.8 (2), it follows
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that (p,w) < (¢, ¢t — A + € + w). However, by the property 3.8 (1), this is equivalent
to (p,A) < (g, + €). Hence, again by the property 3.8 (2), it follows that (p,\) <
(g, ). Therefore, <d< C<. And now, since the converse inclusion is automatic by
Theorem 3.6, the assertion (2) also holds.

Now, since the implication (2)==-(3) trivially holds, and the implication (3)=(1)
follows immediately from the definition of <4, the proof is complete. O

Remark 3.10. By Theorem 3.9, it is clear that the Galois connection established
in Theorem 3.6 is not upper semiperfect, and the mapping d — <4 is only a partial
inverse of the mapping <+— dg.

4. SOME FURTHER PROPERTIES OF THE RELATIONS <4 AND dg

By using the definition of the relation <4 we can easily prove the following theo-

rems.

Theorem 4.1. If d € Dg, then the following assertions are equivalent:
(1) <q is reflexive on Xg;
(2) d(p,p) =0 forallpeS.

Remark 4.2. More generally, we can also easily see that a relation <€ &g is
reflexive on Xg if and only if d¢(p,p) =0 for all p € S.

Theorem 4.3. Ifd € Dg, then the following assertions are equivalent:
(1) <4 Is antisymmetric;
(2) d(p,q) =0 and d(g,p) = 0 imply p = q.

Hint. If (p,A) <4 (¢, 1) and (q, ) <4 (p, A), then by the definition of <4 we
have d(p,q) < p— X and d(q,p) < A — u. Hence, by using the nonnegativity of d,
we can infer that A = p. Therefore, we actually have d(p,q) = 0 and d(g,p) = 0.
Hence, if the assertion (2) holds, we can infer that p = ¢g. Therefore, (p, \) = (g, ),
and thus the assertion (1) also holds. O

Remark 4.4. Note that the relation <g4 is reflexive (antisymmetric) if and only
if its restriction to S x {0} is reflexive (antisymmetric).

Theorem 4.5. If d € Dg, then the following assertions are equivalent:
(1) <4 is transitive;
(2) d(p,7) < d(p,q) +d(q,r) for all p,q,r € S.
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Hint. Ifd(p,q) < 400 and d(q,7) < 400, then by the definition of <, we have

(p, 0) <a (¢:d(p,q)) and (g,d(p,q)) <a (r,d(p,q) +d(q,7)).

Hence, if the assertion (1) holds, we can infer that

(p,0) <a (r,d(p,q) + d(q,7)).

Therefore, by the definition of <4, we also have d(p,r) < d(p, q) + d(q,r), and thus
the assertion (2) also holds. O

Remark 4.6. Now, by using a reasonable modification of the usual definition of
quasi-metrics [4, p. 3], we can also state that a function d € Dg is a quasi-metric on
S if and only if the relation <y is a partial order on Xg.

Theorem 4.7. Ifd € Dg, then the following assertions are equivalent:
(1) d(p,q) = d(q,p) for all p,q € S;

Hint. If d(p,q) < 400, then by the definition of <, we have

(p,0) <a (g,d(p,q))-

Hence, if the assertion (2) holds, we can infer that (¢,0) <4 (p,d(p,q)). Therefore,
by the definition of <4, we also have d(q, p) < d(p, q). Hence, by changing the roles of
p and ¢, we can see that the converse inequality is also true. Therefore, the assertion
(1) also holds. O

Remark 4.8. The latter theorem shows that symmetry is a less natural property
of distance functions than the properties considered in the previous three theorems.
This may be another reason why quasi-pseudo-metrics are more natural objects than
pseudo-metrics.

Note that if d is only an extended real-valued quasi-pseudo-metric on .S, then by
identifying p with (p,0) for all p € S we can already get a natural preorder <4 on S
such that for all p,q € S we have p <4 ¢ if and only if d(p,¢) = 0.

Theorem 4.9. Ifd € Dg, then the following assertions are equivalent:
(1) <q is symmetric;
(2) d(p,q) = +oo for allp,qg € S.

Hint. If p,q € S are such that d(p,q) < +oo, then by defining 1 = d(p,q) + 1
we have (p,0) <4 (¢, 1t). Hence, if the assertion (1) holds we can infer that (g, u) <4
(p,0). Therefore, we also have d(q,p) < —u. Hence, by using the nonnegativity of d,
we can infer that 0 < —1. Therefore, the implication (1)=>(2) is true. O
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Remark 4.10. Hence, it is clear that the relation <4 is symmetric if and only if
<a= 0.

5. A RELATIONSHIP BETWEEN THE FUNCTIONS OF S AND Xg

Definition 5.1. Let f be a function of S into itself, « € R, and

F(p,A) = (f(p), aA)

for all (p, \) € Xs.

Remark 5.2. The relationships between the functions f and F' have formerly
been studied by DeMarr [6].

The following theorems will only extend and supplement some of the observations
of the above mentioned author.

Theorem 5.3. For the families of all fixed points of f and F we have

Fix(F)=Fix(f) xR if a=1 and Fix(F)=Fix(f)x{0} if a#1.

Proof. By the corresponding definitions, for any (p, \) € Xg we have

(p,A) €Fix (F) <= F(p,A) = (p,A) < (f(p)ad) = (p,))
<~ f(p)=pand ad =)\ < peFix(f) and (a —1)A=0.

Consequently, the assertions of the theorem are immediate. O

Under the notation of Definition 5.1, we can also easily prove the following theo-
rems.

Theorem 5.4. Ifa > 0 andd € Dg, then the following assertions are equivalent:
(1) d(f(p), f(q)) < ad(p,q) for all p,q € S;

Proof. If (p,A\),(q,n) € Xg are such that (p,\) <q (¢,4), then by the de-
finition of <; we have d(p,q) < p — A. Hence, if the assertion (1) holds, we can
infer that d(f(p), f(q)) < ap — aX. Therefore, by the definition <4, we also have
(f(p),aX) <q (f(q),ap). Hence, by the definition of F, it follows that F(p, ) <4
F(q, ). Therefore, the assertion (2) also holds.
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On the other hand, if p, ¢ € S are such that d(p, ¢) < +o0, then by the definition of
<q we have (p,0) <q4 (q,d(p,q)). Hence, if the assertion (2) holds, we can infer that
F(p,0) <4 F(q,d(p,q)). Therefore, by the definition of F', we also have (f(p),0) <q4
(f(q),ad(p,q)). Hence, again by the definition of <g4, it follows that d(f(p), f(q)) <
ad(p, q). Therefore, the assertion (1) also holds. O

Theorem 5.5. If0 < a <1 andd € Dg is such that d(p,p) = 0 for all p € S,
then
(s A) <a F(p, A) <a F(p, 1) <a (p, 1)

for all p € Fix (f) and A\, p € R with A <0 < p.

Proof. Under the above conditions, we have

d(p, f(p)) < aX=X; d(f(p), f(p)) < ap—ak; d(f(p),p) < p—ap.

Hence, by the definition of <4, it follows that

(7, A) <a (f(p), X)) <a (f(p),an) <a (p, p).
Therefore, by the definition of F', the required equalities are also true. O

Theorem 5.6. If0 < o <1 and d € Dg is such that d is finite valued, then for
any p,q € S there exist A\g, o € R with A\g < 0 < po such that

(p7 )‘) <d F(p7 )‘) <d F(Q?M) <d (qvlj‘)

for all \, p € R with A < A\g and pg < p.

Proof. Let p,q€ S, and define

d(p, f(p))

Ao = (a—1)

d(f(p), f(q)) d(f(q),q)}
s

d - { ,
an /o = max ” i-a

Then, by our assumptions on d and «, it is clear that Ag, o € R are such that
Ao < 0 < po. Moreover, we can easily see that, for all A\, u € R with A < A\g and
o < w1, we have

d(p, f(p)) <ax =X d(f(p),f(q) < ap—aX; d(f(q),q) <p—ap.

Hence, by the definitions of <4 and F), it is clear that the required inequalities are

also true. O
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Theorem 5.7. Ifa >1,d € Dg and (p, ), (¢, 1) € Xg are such that
(P, A) Sa F(p, A) <a F(g, 1) <a (¢, 1),

then A = = d(p, f(p)) = d(f(p), f(q)) = d(f(q),q) = 0.
Proof. Again by the definitions of F' and <y, it is clear that

d(p, f(p)) < aX =X d(f(p), f(q)) S ap—aX d(f(q).q) <p—oap
Hence, by using our assumptions on d and «, we can easily see that

d(p, f(p))

'S -1

<0.

<< d(f(q%;z)

(1-a

Therefore, A = y = 0, and thus the required equalities are also true.

O

Remark 5.8. Note that, by writing d¢ instead of d in the results of Sections 4
and 5, we can get some similar assertions for the relations <€ £ . Namely, by
Theorem 3.9 we have S=<dc for all <€ &5
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