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Let G ⊂ � N be an open set. We consider differential operators of the form

(1) P (D) =
∑

α

aαD
α, α ∈M,

acting on distributions in G; M is a finite set of multiindices α = (α1, α2, . . . , αN ),

where the components αj (1 6 j 6 N) are nonnegative integers and aα are infinitely

differentiable complex-valued functions on G. We write

Dα = Dα1

1 Dα2

2 . . . DαN

N , where Dj = −i∂j ,

∂j is the partial derivative with respect to the j-th variable and i is the imaginary

unit. Let us fix m ∈ � N with components m1,m2, . . . ,mN ∈ � ( � is the set of all
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positive integers) in such a way that

α ∈M =⇒ α : m ≡
N

∑

k=1

αk

mk
6 1.

(After all, we can assume that

M =
{

α ∈ � N
0 ; α : m 6 1

}

,

where � 0 is the set of all nonnegative integers.) Put

(2) m = max{mk; 1 6 k 6 N}

and define for x = (x1, x2, . . . , xN ) ∈ � N and y = (y1, y2, . . . , yN) ∈ � N

(3) %m(x, y) = max
{

|xk − yk|
mk/m; 1 6 k 6 N

}

.

Then %m is a metric on � N . If λN is the Lebesgue measure in � N and

(4) Br(x, %m) =
{

y ∈ � N ; %m(x, y) 6 r
}

is the closed ball centred at x ∈ � N of radius r > 0, then

Br(x, %m) = [x1 − rm/m1 , x1 + rm/m1 ] × [x2 − rm/m2 , x2 + rm/m2 ]

× . . .× [xN − rm/mN , xN + rm/mN ]

and

(5) λN

(

Br(x, %m)
)

= 2Nrmb, where b =
N

∑

k=1

1

mk
.

(In what follows b will always have this meaning.)

For L ⊂ � N we denote by

(6) diam(L, %m) = sup
{

%m(x, y); x, y ∈ L
}

the diameter of the set L and for γ ∈ � + ( � + is the set of all nonnegative numbers
in � ) we define the outer anisotropic Hausdorff γ-dimensional measure of the set L
by setting

Hγ(∅, %m) = 0
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and for L 6= ∅

(7)

Hγ(L, %m) = sup
ε>0

inf

{

∑

n∈ �
diamγ(Ln, %m); L ⊂

⋃

n

Ln, 0 6 diam(Ln, %m) 6 ε

}

.

The distance of x ∈ � N from L ⊂ � N with respect to the metric %m will be denoted

by

(8) %m(x, L) = inf
{

%m(x, y); y ∈ L
}

.

For ε > 0 and L ⊂ � N put

(9) Lε =
{

x ∈ � N ; %m(x, L) < ε
}

.

For compact K ⊂ � N denote by Nε(K, %m) the minimal number of balls Bε(x, %m)

with x ∈ K sufficient for covering K. The lower γ-dimensional Minkowski’s content

of K 6= ∅ is given by

(10) Mγ(K, %m) = lim inf
ε↘0

Nε(K, %m) · εγ ,

the upper γ-dimensional Minkowski’s content of K 6= ∅ is given by

(11) Mγ(K, %m) = lim sup
ε↘0

Nε(K, %m) · εγ .

Further put

(12) M%m
-dimK = inf

{

γ > 0; Mγ(K, %m) = 0
}

,

which is the so-called Minkowski’s dimension of K corresponding to the metric %m.
� �"!$#&%('

1. There exist constants cN > 0, dN > 0 (depending only on N) such

that for each compact K ⊂ � N

cNMγ(K, %m) 6 lim inf
ε↘0

λN (Kε)

εmb−γ
6 dNMγ(K, %m),

cNMγ(K, %m) 6 lim sup
ε↘0

λN (Kε)

εmb−γ
6 dNMγ(K, %m),

M%m
-dimK 6 mb.

)*%(+,+.-
. Given ε > 0, observe that Nε(K, %m) closed balls of radius 2ε suffice to

cover Kε. Hence

lim inf
ε↘0

λN (Kε)
/

εmb−γ 6 Mγ(K, %m) · 2mb+N ,

lim sup
ε↘0

λN (Kε)
/

εmb−γ
6 Mγ(K, %m) · 2mb+N ;
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we see that it is sufficient to set dN = 2mb+N . Consider the map πε : � N → � N

given by

πε(x1, x2, . . . , xN ) =
(

x1 · ε
1−m/m1 , x2 · ε

1−m/m2 , . . . , xN · ε1−m/mN
)

.

For fixed z ∈ � N ,

πε

(

Bε(z, %m)
)

is the cube centred at πε(z) of side length 2 · εm/m1 · ε1−m/m1 = 2ε and for any

compact K ⊂ � N

πε(K) ⊂ πε(Kε) ⊂
⋃

z∈K

πε

(

Bε(z, %m)
)

.

Next, we use the following consequence of the Morse-Besicovitch covering theorem

(cf. [2], § 1, chap. 1, Th. 1.1):

There exists a natural number γ(N) with the following property:

If A is a bounded set in � N and if with each x ∈ A associate a closed euclidean

cube B(x) centred at x, then there are finite sets

A1, A2, . . . , Aγ(N) ⊂ A

such that

A ⊂

γ(N)
⋃

i=1

⋃

x∈Ai

B(x),

where for each fixed i ∈ {1, 2, . . . , γ(N)} we have

B(x1) ∩ B(x2) = ∅ whenever x1, x2 ∈ Ai, x1 6= x2.

Put A = πε(K). There exist A1, A2, . . . , Aγ(N) ⊂ πε(K) such that

πε(K) ⊂

γ(N)
⋃

i=1

⋃

πε(z)∈Ai

πε

(

Bε(z, %m)
)

[so K ⊂
γ(N)
⋃

i=1

⋃

z∈Si

Bε(z, %m) for Si = π−1
ε (Ai)] and Bε(z1, %m) ∩ Bε(z2, %m) = ∅

whenever z1, z2 ∈ Si, z1 6= z2. If card(M) means the number of elements in M , then

Nε(K, %m) 6 card

( γ(N)
⋃

i=1

Si

)

.
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If B◦ denotes the interior of B ⊂ � N , then we have

2NεmbNε(K, %m) 6 2Nεmbcard
(

γ(N)
⋃

i=1

Si

)

6

γ(N)
∑

i=1

∑

z∈Si

λN

(

B◦
ε (z, %m)

)

=

γ(N)
∑

i=1

λN

(

⋃

z∈Si

B◦
ε (z, %m)

)

6

γ(N)
∑

i=1

λN (Kε) = γ(N)λN (Kε).

Hence

εγNε(K, %m) 6 εγ · γ(N) · 2−N · ε−mbλN (Kε) = γ(N) · 2−NλN (Kε)
/

εmb−γ .

It is sufficient to put cN = 2N/γ(N) to obtain

cNMγ(K, %m) 6 lim inf
ε↘0

λN (Kε)
/

εmb−γ ,

cNMγ(K, %m) 6 lim sup
ε↘0

λN (Kε)
/

εmb−γ .

We conclude that Mγ(K, %m) = 0 for γ > mb, whence M%m
-dimK 6 mb, which

proves Remark 1. �

Lemma 1. Suppose that K ⊂ � N is compact and 0 6 q < mb. If

M%m
-dimK < mb− q,

then ∫

Kε

%m(x,K)−q dx < +∞

for each ε > 0.

)*%(+,+.-
. (A similar reasoning occurs, e.g., in [5].) As

M%m
-dimK < mb− q,

there exists a κ ∈ [0,mb− q[ such that Mκ(K, %m) = 0. For all sufficiently small

ε > 0 we have

λN (Kε) 6 c · εmb−κ

for a suitable c ∈ ]0,+∞[. Since mb− κ > q > 0, it follows that lim
ε↘0

εmb−κ = 0 and

so

λN (K) 6 lim
ε↘0

λN (Kε) = 0.
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Hence λN (K) = 0. Setting

Uj =
{

x ∈ � N ; 2−j−1ε 6 %m(x,K) < 2−jε
}

,

we get

Kε \K =

+∞
⋃

j=0

Uj .

Consequently,

∫

Kε

%m(x,K)−q dx =

+∞
∑

j=0

∫

Uj

%m(x,K)−q dx,

∫

Uj

%m(x,K)−q dx 6 ε−q · 2(j+1)q · λN (K2−jε) 6 ε−q · 2(j+1)q · c ·
(

2−jε
)mb−κ

= c · εmb−κ−q · 2(j+1)q−jmb+jκ = c · εmb−κ−q · 2q · 2j(q−mb+κ).

As κ−mb+ q < 0, we see that the series

+∞
∑

j=0

∫

Uj

%m(x,K)−q dx

converges, whence
∫

Kε
%m(x,K)−q dx < +∞. �

A simple compactness argument yields the next lemma.

Lemma 2. Suppose that G ⊂ � N is open, ∅ 6= F ⊂ G is relatively closed in G,

g : ]0,+∞[ → ]0,+∞[ and u : G \ F → / are functions such that
u(x) = O

(

g(%m(x, F ))
)

as x → z, x ∈ G \ F ,

for all z ∈ F ∩G \ F . Then for each compact Q ⊂ G there exist positive constants c, ε

such that for all x ∈ Q \ F with %m(x, F ) < ε we have

∣

∣u(x)
∣

∣ 6 cg
(

%m(x, F )
)

.

)*%(+,+.-
. With each z ∈ Q ∩G \ F ∩ F we associate constants rz > 0 and cz > 0

such that
∣

∣u(x)
∣

∣ 6 czg
(

%m(x, F )
)

for all x ∈ G\F with %m(x, z) < rz . We may clearly suppose that rz has been chosen

small enough to get Brz
(z, %m) ⊂ G. The open cover

{

B◦
rz

(z, %m)
}

z∈Q∩G\F∩F

6



of the compact Q ∩G \ F ∩ F contains a finite subcover {B◦
rzi

(zi, %m)}n
i=1:

F ∩G \ F ∩Q ⊂
n
⋃

i=1

B◦
rzi

(zi, %m).

We assert that there is an ε > 0 such that

(13)
(

x ∈ Q, 0 < %m(x, F ) < ε) =⇒ x ∈
n
⋃

i=1

B◦
rzi

(zi, %m).

Admitting the contrary we would get, for each choice of ε = 1/k (k ∈ � ), a point xk ∈

G \ F with

%m(xk, F ) <
1

k
, xk ∈ Q \

n
⋃

i=1

B◦
rzi

(zi, %m).

Passing to a convergent subsequence we would get lim
k→+∞

xk = z. Obviously z ∈ Q∩

F ∩G \ F , consequently z ∈ B◦
rzi

(zi, %m) for a suitable i ∈ {1, 2, . . . , n} and so xk ∈

B◦
rzi

(zi, %m) for all sufficiently large k, which contradicts xk ∈ Q \
n
⋃

i=1

B◦
rzi

(zi, %m).

Thus (13) is established for a suitable ε > 0.

We may clearly suppose that ε 6 min{rzi
}n

i=1. Put c = max{czi
}n

i=1. If x ∈ Q \F

with %m(x, F ) < ε, then (13) tells us that, for a suitable i ∈ {1, 2, . . . , n},

∣

∣u(x)
∣

∣ 6 czi
· g

(

%m(x, F )
)

6 c · g
(

%m(x, F )
)

,

which proves the lemma. �

Theorem 1. Let G ⊂ � N be an open set, F ⊂ G a relatively closed subset in G,

u : G \ F → / a locally integrable function. Suppose that

(14) M%m
-dimQ < mb− q

for each compact Q ⊂ F and

u(x) = O
(

%m(x, F )−q
)

as x → z, x ∈ G \ F ,

for each z ∈ F , where 0 6 q < mb [cf. (5)]. Then u is defined a.e. in G [i.e.λN (F ) = 0]

and it is locally integrable in G. If, moreover,

γ ≡ m(b− 1) − q > 0
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and

Mγ(Q, %m) = 0

for each compact Q ⊂ F , then the validity of the equation

P (D)u = 0 in G \ F

(in the sense of distributions) implies P (D)u = 0 in the whole G.

)*%(+,+.-
. In the proof of Lemma 1 we have seen that (14) implies λN (Q) = 0.

Since this is assumed for each compact Q ⊂ F , we have λN (F ) = 0 so that u is

defined λN -a.e. in G. We have to verify that the growth estimate of u implies that

u is integrable in a neighbourhood of any z ∈ G. It is sufficient to consider z ∈ F .

According to Lemma 2, for each ball Br(z, %m) ⊂ G there exist constants c > 0,

ε ∈ ]0, r] such that

(

x ∈ Br(z, %m) \ F, %m(x, F ) < ε
)

=⇒
∣

∣u(x)
∣

∣ 6 c · %m(x, F )−q .

We are going to show that Lemma 1 implies integrability of the function

x 7→ %m(x, F )−q

on a neighbourhood of z. Choosing δ ∈ ]0, r/2[, we have

(

y ∈ Br(z, %m) \ F, %m(y, z) 6 δ
)

=⇒ %m

(

y,B2δ(z, %m) ∩ F
)

= %m(y, F ).

For these y and

Q = B2δ(z, %m) ∩ F

we get

%m(y,Q)−q = %m(y, F )−q .

According to Lemma 1, the function y 7→ %m(y,Q)−q is integrable on a neighbour-

hood of z. Thus the integrability of the function x 7→ %m(x, F )−q as well as of u(x)

on a neighbourhood of z is verified.

Suppose now that P (D)u = 0 on G\F . D(G) will denote the class of all infinitely

differentiable functions with a compact support in G. Choose an arbitrary ϕ ∈ D(G)

and denote its support sptϕ by K. We are going to show that

(15)
〈

P (D)u, ϕ
〉

= 0.
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This is obvious if F ∩ K = ∅. So let F ∩ K 6= ∅. Fix an infinitely differentiable

function ψ on � such that

sptψ ⊂ [−1, 1],

∫

0 ψ(t) dt = 1.

For L ⊂ � N , χL will denote the characteristic function of the set L, Lε for ε > 0 [as

defined by (9)] is clearly an open set. Using the notation from (2), (5) we put for

x ∈ � N and ε > 0

(16) ψε(x) = ε−mb

∫

0
N

χF2ε
(y)

N
∏

j=1

ψ
(

(xj − yj)ε
−m/mj

)

dy1 . . . dyN .

Then ψε is an infinitely differentiable function on � N (compare Chap. I, Section 5 in

[3]). After substitution

(xj − yj)ε
−m/mj = zj (j = 1, 2, . . . , N)

we get yj = xj − εm/mjzj , so that

ψε(x) =

∫

0
N

χF2ε
(. . . , xj − εm/mjzj , . . .)

N
∏

j=1

ψ(zj) dz1 . . . dzN

=

∫

{z∈
0

N; zj∈[−1,1],16j6N}

χF2ε
(. . . , xj − εm/mjzj , . . .)

N
∏

j=1

ψ(zj) dz1 . . . dzN .

Hence

(17)
∣

∣ψε(x)
∣

∣ 6

∫

[−1,1]N

N
∏

j=1

∣

∣ψ(zj)
∣

∣ dz1 . . . dzn ≡ C0, x ∈ � N .

If x ∈ Fε then (. . . , xj − εm/mjzj , . . .) ∈ F2ε for z ∈ [−1, 1]N so that

(18) ψε(x) =

∫

[−1,1]N
1·

N
∏

j=1

ψ(zj) dz1 . . . dzN =
N
∏

j=1

∫ 1

−1

ψ(zj) dzj = 1, ∀x ∈ Fε.

If x ∈ � N \ F3ε then (. . . , xj − εm/mj zj , . . .) ∈ � N \ F2ε so that

χF2ε
(. . . , xj − εm/mjzj , . . .) = 0, ∀z ∈ [−1, 1]N .

Hence

(19) ψε(x) = 0 for each x ∈ � N \ F3ε.
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For any multiindex α = (α1, α2, . . . , αN ) we get by differentiating under the sign of

the integral

Dαψε(x)

=
1

i|α|
· ε−m(α:m)

∫

[−1,1]N
χF2ε

(. . . , xj − εm/mjzj , . . .)
N
∏

j=1

ψ(αj)(zj) dz1 . . . dzN ,

∣

∣Dαψε(x)
∣

∣ 6 ε−m(α:m)

∫

[−1,1]N

N
∏

j=1

∣

∣ψ(αj )(zj)
∣

∣dz1 . . . dzN(20)

= Cαε
−m(α:m), ∀x ∈ � N .

If T is a distribution on G we denote by sptT its support. As ψε = 1 in a neigh-

bourhood of K ∩ sptP (D)u ⊂ F we have

〈

P (D)u, ϕ
〉

=
〈

P (D)u, ψεϕ
〉

=
〈

u, tP (D)(ψεϕ)
〉

,

where tP (D) is the formal adjoint of P (D) (cf. p. 40 in [4]);

tP (D)(ψεϕ) =
∑

α:m61

ϕαD
αψε,

where ϕα are certain functions in D(G) independent of ε which depend on ϕ and

the coefficients aω of the operator P (D) only; they have the form of a finite sum of

the type

ϕα =
∑

cαβδωD
βaωD

δϕ,

where cαβδω are constants so that sptϕα ⊂ sptϕ ≡ K. We have

(21)
〈

P (D)u, ϕ
〉

=
∑

α:m61

〈u, ϕαD
αψε〉.

Fix an ε0 ∈ ]0, 1[ small enough to have Kε0
⊂ G. We will consider ε ∈ ]0, ε0]. For

α = 0 (∈ � N ) we have

(22)

∣

∣〈u, ϕ0D
0ψε〉

∣

∣ 6

∫

F3ε∩G

|u| · |ϕ0| · |ψε| dλN

6 sup
K

|ϕ0| ·

∫

K∩F3ε

|u| dλN → 0 as ε↘ 0,

because u is locally integrable in G, K ∩F3ε ↘ K ∩F as ε→ 0 and λN (K ∩F ) = 0.
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For |α| > 0 we make use of the equality

Dαψε = 0 on Fε

to get the estimate

∣

∣〈u, ϕαD
αψε〉| 6 sup

K
|ϕα| ·

∫

(K\Fε)∩F3ε

∣

∣u(x)
∣

∣ dx · Cαε
−m(α:m);

according to Lemma 2 there are constants cK and ε1 > 0 such that

∣

∣u(x)
∣

∣ 6 cK%m(x, F )−q
6 cKε

−q , ∀x ∈ (K \ Fε) ∩ Fε1
,

so that for 3ε < ε1 we get

∣

∣〈u, ϕαD
αψε〉

∣

∣ 6 sup
K

|ϕα| · Cαε
−m(α:m)

∫

F3ε∩K\Fε

cK%m(x, F )−q dx

6 sup
K

|ϕα| · Cαε
−m(α:m) · cK · ε−qλN (K ∩ F3ε).

For ε < ε0/3 we have

K ∩ F3ε ⊂
(

F ∩K3ε

)

3ε
⊂

(

F ∩K3ε

)

3ε
.

Indeed, if y ∈ K ∩ F3ε, then there exists a z ∈ F such that %m(y, z) < 3ε, whence

z ∈ F ∩K3ε and, consequently,

y ∈
(

F ∩K3ε

)

3ε
⊂

(

F ∩Kε0

)

3ε
.

Assuming

0 < ε <
min(ε0, ε1)

3
< 1

we arrive at

∣

∣〈u, ϕαD
αψε〉

∣

∣ 6 sup
K

|ϕα| · Cα · cK · ε−m(α:m)−q · λN

(

(F ∩Kε0
)3ε

)

6 L(α) · ε−m−q ·
λN ((F ∩Kε0

)3ε)

(3ε)mb−γ
· εmb−γ

= L(α) · εm(b−1)−q−m(b−1)+q ·
λN (Q3ε)

(3ε)mb−γ
,

where Q = F ∩Kε0
⊂ F is compact and L(α) = CαcK sup

K
|ϕα| · 3mb−γ . Hence

∣

∣〈u, ϕαD
αψε〉

∣

∣ 6 L(α)
λN (Q3ε)

(3ε)mb−γ
for 0 < α : m 6 1.
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By virtue of (21) we get

∣

∣〈P (D)u, ϕ〉
∣

∣ 6
∣

∣〈u, ϕ0D
0ψε〉

∣

∣ +
λN (Q3ε)

(3ε)mb−γ

∑

0<α:m61

L(α).

Passing to lim inf
ε↘0

we obtain in view of (22)

∣

∣〈P (D)u, ϕ〉
∣

∣ 6 0 + Mγ(Q)
∑

0<α:m61

L(α) = 0.

Thus (15) is verified and the proof is complete. �

The following simple lemma plays the role similar to that of Lemma 2.

Lemma 2. Let G ⊂ � N be open and ∅ 6= F ⊂ G relatively closed in G. Suppose

that u : G \ F → / and g : ]0,+∞[ → ]0,+∞[ are functions satisfying

(23) u(x) = o
(

g(%m(x, F ))
)

as x → z, x ∈ G \ F

for each z ∈ F ∩G \ F . Then for each compact H ⊂ F ∩G \ F there exist δ > 0 and

a nondecreasing function f : ]0,+∞[ → ]0,+∞[ such that, in the notation of (9),

Hδ ⊂ G,

x ∈ Hδ \ F =⇒
∣

∣u(x)
∣

∣ 6 f
(

%m(x, F )
)

· g
(

%m(x, F )
)

,

f(0+) ≡ lim
t↘0

f(t) = 0.(24)

)*%(+,+.-
. Choose an ε0 > 0 small enough to have Hε0

⊂ G. According to

Lemma 2, given a compact Q = Hε0
, there exist c > 0 and ε > 0 such that

(25)
(

x ∈ Q \ F, %m(x, F ) < ε
)

=⇒
|u(x)|

g(%m(x, F ))
6 c.

Fix a δ ∈ ]0, ε[ and define for t > 0

(26) f(t) = sup
{ |u(x)|

g(%m(x, F ))
; x ∈ Q \ F, %m(x, F ) 6 min(t, δ)

}

.

Then f(t) 6 c for t ∈ ]0,+∞[ by virtue of (25). Clearly, f is nondecreasing, for

x ∈ Hδ \ F ⊂ Q \ F we have setting τ = %m(x, F )

|u(x)|

g(%m(x, F ))
6 f(τ) = f

(

%m(x, F )
)

12



so that
∣

∣u(x)
∣

∣ 6 f
(

%m(x, F )
)

g
(

%m(x, F )
)

.

We are going to verify that lim
t↘0

f(t) = 0. Choose a decreasing sequence tk > 0 with

lim
k→∞

tk = 0. Then

lim
k→∞

f(tk) = inf
t>0

f(t) ≡ α.

If α > 0 then f(tk) > α/2 for each k and the definition of f would imply the existence

of xk ∈ Q \ F with %m(xk , F ) 6 tk such that

(27)
|u(xk)|

g(%m(xk , F ))
>
α

2
.

Passing to a convergent subsequence we could achieve the existence of the limit

lim
k→∞

xk = z; obviously, z ∈ F ∩G \ F and, in view of the assumption (23),

|u(xk)|

g(%m(xk , F ))
→ 0,

which contradicts (27). Thus (24) is verified. �

The following theorem is similar to Theorem 1.

Theorem 2. Let G ⊂ � N be an open set and let ∅ 6= F ⊂ G be relatively closed

in G. Suppose that u : G \ F → / is a locally integrable function satisfying

u(x) = o
(

%m(x, F )−q
)

as x→ z, x ∈ G \ F

for each z ∈ F , where 0 6 q < mb [cf. (5)]. If

M%m
-dimQ < mb− q

for each compact Q ⊂ F , then u is defined a.e. in G and it is locally integrable in G.

If, moreover, γ ≡ m(b− 1) − q > 0 and

Mγ(Q, %m) < +∞

for each compact Q ⊂ F , then the validity of the equation

P (D)u = 0 in G \ F

(in the sense of distributions) implies

P (D)u = 0 in the whole G.

13



)*%(+,+.-
. We have seen in the proof of Theorem 1 that u is locally integrable

in G. Choose an arbitrary ϕ ∈ D(G). We are going to verify (15). Put K = sptϕ,

which is a compact set. It is again sufficient to consider the case when K ∩ F 6= ∅.

As in the proof of Theorem 1 we construct for each ε > 0 an auxiliary function ψε.

We have
∣

∣Dαψε(x)
∣

∣ 6 Cαε
−m(α:m)

for each multiindex α. Besides that,

ψε(x) = 1, ∀x ∈ Fε,

ψε(x) = 0, ∀x ∈ � N \ F3ε.

As ψε = 1 on a neighbourhood of K ∩ F ⊃ sptϕ ∩ sptP (D)u we get

〈

P (D)u, ϕ
〉

=
〈

P (D)u, ψεϕ
〉

=
〈

u, tP (D)(ψεϕ)
〉

,

which implies (21) with ϕα ∈ D(G) independent of ε with sptϕα ⊂ K. For α = 0

(∈ � N ) we obtain as in the proof of Theorem 1

(28)
∣

∣〈u, ϕ0D
0ψε〉

∣

∣ 6 sup
K

|ϕ0|

∫

K∩F3ε

|u| dλN →

∫

K∩F

|u| dλN = 0 as ε→ 0.

We will consider ε ∈ ]0, ε0], where ε0 ∈ ]0, 1[ has been chosen small enough to satisfy

Kε0
⊂ G. We have seen that

(29) K ∩ F3ε ⊂
(

F ∩Kε0

)

3ε
for 0 < ε < ε0/3.

For 0 < α : m 6 1 we get from (18)

Dαψε = 0 on Fε

and, in view of (19), (20),

∣

∣〈u, ϕαD
αψε〉

∣

∣ 6 sup
K

|ϕα| · Cα · ε−m(α:m)

∫

F3ε∩K\Fε

|u| dλN .

Putting H = F ∩Kε0
we get from (29) for ε ∈ ]0, ε0/3[

∫

F3ε∩K\Fε

|u| dλN 6

∫

H3ε\Fε

|u| dλN .

According to Lemma 3 there exist a δ > 0 and a nondecreasing function

f : ]0,+∞[ → ]0,+∞[

14



such that Hδ ⊂ G and (24) holds together with

x ∈ Hδ \ F =⇒
∣

∣u(x)
∣

∣ 6 f
(

%m(x, F )
)

%m(x, F )−q .

Assuming 3ε < δ we have for x ∈ H3ε estimates %m(x, F ) 6 3ε and

∫

H3ε\Fε

|u| dλN 6 f(3ε)

∫

H3ε\Fε

%m(x, F )−q dλN (x).

We see that for sufficiently small ε ∈ ]0, 1[

∣

∣〈u, ϕαD
αψε〉

∣

∣ 6 sup
K

|ϕα|Cα · ε−m · f(3ε)

∫

H3ε\Fε

%m(x, F )−q dλN (x)

6 sup
K

|ϕα|Cα · ε−m−qf(3ε)λN(H3ε)

=
λN (H3ε)

(3ε)mb−γ
· f(3ε)Eα,

where

Eα = Cα sup
K

|ϕα| · 3
mb−γ ,

so that
∑

0<α:m61

∣

∣〈u, ϕαD
αψε〉

∣

∣ 6 f(3ε) ·
λN (F3ε)

(3ε)mb−γ

∑

0<α:m61

Eα.

AsMγ(H, %m) < +∞ we obtain from (24), (28)

lim inf
ε↘0

∑

α:m61

∣

∣〈u, ϕαD
αψε〉

∣

∣ 6 f(0+)Mγ(H, %m)
∑

0<α:m61

Eα = 0,

whence
∣

∣〈P (D)u, ϕ〉
∣

∣ 6 lim inf
ε↘0

∣

∣

∣

∑

α:m61

〈u, ϕαD
αψε〉

∣

∣

∣
= 0

and the proof is complete. �

� �"!$#&%('
2. Let G ⊂ � N be an open set, F ⊂ G a relatively closed subset in G.

We have seen that the assumption

M%m
-dimQ < mb− q

(0 6 q < mb) for each compact Q ⊂ F guarantees that λN (F ) = 0 and each

function u locally integrable in G \ F satisfying

(30) u(x) = O
(

%m(x, F )−q
)

as x→ z, x ∈ G \ F , ∀z ∈ F ,

15



is locally integrable in G. We say that F is P (D)-removable for functions u locally

integrable in G \ F satisfying (30), if each such function u fulfilling P (D)u = 0

in G \ F (in the sense of distributions) fulfils P (D)u = 0 in the whole G. The

previous theorems describe in terms of Minkowski’s contents sufficient conditions for

the P (D)-removability of F for functions u satisfying (30) or the growth estimate

(31) u(x) = o
(

%m(x, F )−q
)

as x → z, x ∈ G \ F , ∀z ∈ F .

It turns out that for certain operators P (D) it is possible to use Hausdorff measures

for obtaining necessary conditions for the P (D)-removability of F . Now we are going

to consider operators of the form

(32) P (D) =
∑

α:m61

aαD
α,

whose coefficients aα are complex constants. We associate with such an operator (32)

the polynomial

Pm(ξ) =
∑

α:m=1

aαξ
α

in N real variables ξ1, ξ2, . . . , ξN .

P (D) is termed semielliptic, if

(

ξ ∈ � N , Pm(ξ) = 0
)

=⇒ ξ = 0 (∈ � N ),

which means that Pm(ξ) has no nontrivial zeros in � N . (The corresponding m is

then uniquely determined—cf. [14].)

Theorem 3. Suppose that G,F have the meaning described above. Let P (D) be

a semielliptic operator. Assume that [cf. (5)]

b > 1, q 6 m(b− 1), γ ≡ m(b− 1) − q > 0.

For F to be P (D)-removable for all locally integrable functions u in G \F satisfying

(30) it is necessary that

(33H ) Hγ(F, %m) = 0

and sufficient that

(33M) Mγ(Q, %m) = 0

for each compact Q ⊂ F .

16



For the P (D)-removability of F for all locally integrable functions u satisfying

the growth condition (31) it is necessary that F have a σ-finite Hγ-measure, and

sufficient thatMγ(Q, %m) < +∞ for each compact Q ⊂ F .

The proof follows from a combination of Theorem 1, Theorem 2 above and Theo-

rem 5 in [6].

We should point out that Mγ denotes the upper Minkowski’s content in [6] so

that this Theorem 3 is more general than the corresponding result in [6].

An important example is given by the heat conduction operator

1 = ∂2
1 + . . .+ ∂2

n − ∂n+1

in � n+1 . This operator is semielliptic with the choice mj = 2 for 1 6 j 6 n,

mn+1 = 1 so that m = (2, . . . , 2, 1) ∈ � n+1 , m = 2 and the corresponding metric

% ≡ %m is given by

%(x, y) = max
{

|x1 − y1|, . . . , |xn − yn|, |xn+1 − yn+1|
1/2

}

for x = (x1, . . . , xn+1), y = (y1, . . . , yn+1).

Now we will consider an open set G ⊂ � n+1 and a relatively closed subset F ⊂ G,

where

(34) M%-dimQ < n+ 2 − q, γ = n− q

for each compact Q ⊂ F .

A function u, which is of the class C (2) on an open set U ⊂ � n+1 , is termed caloric

on U , if it satisfies 1 u = 0 on U .

Theorem 4. In order that each caloric function u on G \ F satisfying

(35) u(x) = O
(

%(x, F )−q
)

as x→ z, x ∈ G \ F , ∀z ∈ F

be extendable to a caloric function on the whole G it is necessary that

(36) Hγ(F, %) = 0

and it is sufficient that

(37) Mγ(Q, %) = 0

for each compact Q ⊂ F .
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If we replace (35) by

(38) u(x) = o
(

%(x, F )−q
)

as x → z, x ∈ G \ F , ∀z ∈ F ,

then the assertion remains valid with (36) replaced by the requirement of σ-finiteness

of Hγ(F, %) and the assumption (37) replaced by the requirementMγ(Q, %) < +∞

for each compact Q ⊂ F .

The proof follows from Theorem 3. Indeed, if u is a caloric function on G \ F

satisfying (35) then, according to Theorem 3, under the condition (34), u is defined

a.e. in G, it is locally integrable and satisfies 1 u = 0 in the sense of distributions.

Since the operator 1 is semielliptic, there exists ũ ∈ C ∞(G) satisfying 1 ũ = 0

on G in the classical sense such that ũ = u a.e. on G (cf. [14]), whence ũ = u on G\F

and ũ is the required extension.

� �"!$#&%('32
. Sufficient conditions for removability of singularities of caloric func-

tions with anisotropic growth were described in terms of the upper anisotropic

Minkowski’s contents by H. Zlonická in [15].

Another proof in [7] (based on anisotropic Whitney’s decomposition) showed that

the lower Minkowski’s content is sufficient for this purpose.

Application of the upper Minkowski’s content (derived from the euclidean metric)

in this context goes back to Bochner (compare [1], [4]).

Later Polking pointed out in [11] that a modification of Bochner’s proof makes it

possible to replace the upper Minkowski’s content by the lower Minkowski’s content;

his method is also described in [13].

Theorems of the Bochner type for operators on manifolds, where the singular set

is formed by a submanifold of a suitable dimension, have been studied by Sugimoto

and Uchida in [12].

Various applications of anisotropic metrics and anisotropic Minkowski’s contents

in connection with removability of singularities are described by Littman in [8].

In his thesis [10] M.Píštěk described (in terms of the upper anisotropic Minkows-

ki’s content) removable singularities of caloric functions which are locally integrable

in power p with a weight depending on the distance from the singular set measured

by the caloric metric. It is natural to ask whether in his investigation the upper Min-

kowski’s content could also be replaced by the lower content of the same dimension.
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