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CONNECTED RESOLVING DECOMPOSITIONS IN GRAPHS
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Abstract. For an ordered k-decomposition D = {G1, G2, . . . , Gk} of a connected graph G

and an edge e of G, the D-code of e is the k-tuple cD(e) = (d(e,G1), d(e, G2), . . . , d(e,Gk)),
where d(e, Gi) is the distance from e to Gi. A decomposition D is resolving if every two
distinct edges of G have distinct D-codes. The minimum k for which G has a resolving
k-decomposition is its decomposition dimension dimd(G). A resolving decomposition D of
G is connected if each Gi is connected for 1 6 i 6 k. The minimum k for which G has a
connected resolving k-decomposition is its connected decomposition number cd(G). Thus
2 6 dimd(G) 6 cd(G) 6 m for every connected graph G of size m > 2. All nontrivial
connected graphs with connected decomposition number 2 or m are characterized. We
provide bounds for the connected decomposition number of a connected graph in terms of
its size, diameter, girth, and other parameters. A formula for the connected decomposition
number of a nonpath tree is established. It is shown that, for every pair a, b of integers with
3 6 a 6 b, there exists a connected graph G with dimd(G) = a and cd(G) = b.
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1. Introduction

A decomposition of a graph G is a collection of subgraphs of G, none of which

have isolated vertices, whose edge sets provide a partition of E(G). A decomposition

into k subgraphs is a k-decomposition. A decomposition D = {G1, G2, . . . , Gk} is

ordered if the ordering (G1, G2, . . . , Gk) has been imposed on D. If each subgraph

Gi (1 6 i 6 k) is isomorphic to a graph H , then D is called an H-decomposition of

G. Decompositions of graphs have been the subject of many studies. J. Bosák [1]

has written a book devoted to the subject.
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For edges e and f in a connected graph G, the distance d(e, f) between e and

f is the minimum nonnegative integer k for which there exists a sequence e =

e0, e1, . . . , ek = f of edges of G such that ei and ei+1 are adjacent for i = 0, 1, . . . ,

k − 1. Thus d(e, f) = 0 if and only if e = f , d(e, f) = 1 if and only if e and f

are adjacent, and d(e, f) = 2 if and only if e and f are nonadjacent edges that are

adjacent to a common edge of G. Also, this distance equals the standard distance

between vertices e and f in the line graph L(G). For an edge e of G and a subgraph

F of G, we define the distance between e and F as

d(e, F ) = min
f∈E(F )

d(e, f).

Let D = {G1, G2, . . . , Gk} be an ordered k-decomposition of a connected graph

G. For e ∈ E(G), the D-code (or simply the code) of e is the k-vector

cD(e) = (d(e, G1), d(e, G2), . . . , d(e, Gk)) .

Hence exactly one coordinate of cD(e) is 0, namely the ith coordinate if e ∈ E(Gi).

The decomposition D is said to be a resolving decomposition for G if every two

distinct edges ofG have distinct D-codes. The minimum k for whichG has a resolving

k-decomposition is its decomposition dimension dimd(G). A resolving decomposition

of G with dimd(G) elements is a minimum resolving decomposition for G. Thus if

G is a connected graph of size at least 2, then dimd(G) > 2. The following result

appeared in [2].

Theorem A. Let G be a connected graph order n > 3.

(a) Then dimd(G) = 2 if and only if G = Pn.

(b) If n > 5, then dimd(G) 6 n.

The concept of resolvability in graphs has appeared in the literature. Slater intro-

duced and studied these ideas with different terminology in [9], [10]. Slater described

the usefulness of these ideas when working with U.S. sonar and coast guard Loran

(Long range aids to navigation) stations. Harary and Melter [8] discovered these

concepts independently. Recently, these concepts were rediscovered by Johnson [6],

[7] of the Pharmacia Company while attempting to develop a capability of large

datasets of chemical graphs. Resolving decompositions in graphs were introduced

and studied in [2] and further studied in [4], [5]. We refer to the book [3] for graph

theory notation and terminology not described here.

A resolving decomposition D = {G1, G2, . . . , Gk} of a connected graph G is con-

nected if each subgraph Gi (1 6 i 6 k) is a connected subgraph in G. The minimum
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k for which G has a connected resolving k-decomposition is its connected decomposi-

tion number cd(G). A connected resolving decomposition of G with cd(G) elements

is called a minimum connected resolving decomposition of G. If G has m > 2 edges,

then the m-decomposition D = {G1, G2, . . . , Gm}, where each Gi (1 6 i 6 m) con-

tains a single edge, is a connected resolving decomposition of G. Thus cd(G) is

defined for every connected graph G of size at least 2. Moreover, every connected

resolving k-decomposition is a resolving k-decomposition, and so

(1) 2 6 dimd(G) 6 cd(G) 6 m.

for every connected graph G of size m > 2.

To illustrate these concepts, consider the graph G of Figure 1. Let D =

{G1, G2, G3}, where E(G1) = {e1, e5, f1, f5, f4}, E(G2) = {e2, e3, f2}, and E(G3) =

{e4, e6, f3, f6, f7}. The D-codes of the edges of G are:

cD(e1) = (0, 1, 2), cD(e2) = (1, 0, 2), cD(e3) = (2, 0, 1), cD(e4) = (2, 1, 0),

cD(e5) = (0, 4, 1), cD(e6) = (1, 4, 0), cD(f1) = (0, 1, 1), cD(f2) = (1, 0, 1),

cD(f3) = (1, 1, 0), cD(f4) = (0, 2, 1), cD(f5) = (0, 3, 1), cD(f6) = (1, 3, 0),

cD(f7) = (1, 2, 0).

Thus D is a resolving decomposition of G. By Theorem A, dimd(G) = |D| = 3.

However, D is not connected since G1 and G2 are not connected subgraphs in G. On

the other hand, let D∗ = {G∗
1, G

∗
2, G

∗
3, G

∗
4, G

∗
5}, where E(G∗

1) = {e1, f1}, E(G∗
2) =

{e5, f4, f5}, E(G∗
3) = {e2, e3, f2}, E(G∗

4) = {e4, f3}, and E(G∗
5) = {e6, f6, f7}. Then

D∗ is a connected resolving decomposition of G. But D∗ is not minimum since the

decomposition D′ = {G′
1, G

′
2, G

′
3, G

′
4}, where E(G′

1) = {e1}, E(G′
2) = {e3}, E(G′

3) =

{e5}, and E(G′
4) = E(G) − {e1, e3, e5}, is a connected resolving decomposition of

G with fewer elements. Indeed, it can be verified that D′ is a minimum connected

resolving decomposition of G and so cd(G) = |D′| = 4.

e5 f5
f4 f3

e3

e4

f2

e6 f6

f7 f1

e2

e1

Figure 1. A graph G with dimd(G) = 3 and cd(G) = 4
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The example just presented also illustrates an important point. Let D = {G1,

G2, . . . , Gk} be a resolving decomposition of G. If e ∈ E(Gi) and f ∈ E(Gj), where

i 6= j and i, j ∈ {1, 2, . . . , k}, then cD(e) 6= cD(f) since d(e, Gi) = 0 and d(e, Gj) 6= 0.

Thus, when determining whether a given decomposition D of a graph G is a resolving

decomposition for G, we need only verify that the edges of G belonging to same

element in D have distinct D-codes. The following two observations are useful.

Observation 1.1. Let D be a resolving decomposition of G and e1, e2 ∈ E(G).

If d(e1, f) = d(e2, f) for all f ∈ E(G) − {e1, e2}, then e1 and e2 belong to distinct

elements of D.

Observation 1.2. Let G be a connected graph. Then dimd(G) = cd(G) if and

only if G contains a minimum resolving decomposition that is connected.

2. Refinements of decompositions of a graph

Let D and D∗ be two decompositions of a connected graph G. Then D∗ is called

a refinement of D if every element in D∗ is a subgraph of some element of D. A

refinement D∗ of D is connected if D∗ is a connected decomposition of G. For the

graph G of Figure 1, the decomposition D∗ of G is a connected refinement of D. We

have seen that D is resolving and its refinement D∗ is also resolving. This is not

coincident, as we show now.

Theorem 2.1. Let D and D∗ be two decompositions of a connected graph G. If

D is a resolving decomposition of G and D∗ is a refinement of D, then D∗ is also a

resolving decomposition of G.

���������
. Let D = {G1, G2, . . . , Gk} and D

∗ = {H1, H2, . . . , H`} be two decompo-

sitions of G, where k 6 `, such that eachHi (1 6 i 6 `) is a subgraph of Gj for some j

with 1 6 j 6 k. Let e and f be distinct edges of G. We show that cD∗(e) 6= cD∗(f).

Since D is a resolving decomposition of G, it follows that cD(e) 6= cD(f). Thus

d(e, Gj) 6= d(f, Gj) for some j with 1 6 j 6 k, say d(e, G1) 6= d(f, G1). If G1 is

an element of D∗, then d(e, G1) 6= d(f, G1) and so cD∗(e) 6= cD∗(f). Thus we may

assume that G1 = Hi1 ∪ Hi2 ∪ . . . ∪ His
, where 1 6 i1 < i2 < . . . < is 6 ` and

s > 2. Observe that at least one of e and f does not belong to G1, for otherwise,

d(f, G1) = 0 = d(f, G1). We consider two cases.�������
1. Exactly one of e and f is in G1, say e ∈ E(G1) and f /∈ E(G1). Thus

e ∈ E(Hip
) for some p with 1 6 p 6 s and so d(e, Hip

) = 0. Since f /∈ E(G1), it

follows that f /∈ E(Hip
) and so d(v, Hip

) 6= 0. Hence cD∗(e) 6= cD∗(f).
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�������
2. e, f /∈ E(G1). Let e′, f ′ ∈ E(G1) such that d(e, G1) = d(e, e′) and

d(f, G1) = d(f, f ′), where say d(e, e′) < d(f, f ′). If e′, f ′ ∈ E(Hip) for some p

with 1 6 p 6 s, then d(e, Hip
) = d(e, e′) < d(f, f ′) = d(f, Hip

), implying that

cD∗(e) 6= cD∗(f). If e′ ∈ E(Hip
) and f ∈ E(Hiq

), where 1 6 p 6= q 6 s, then

d(e, Hip
) = d(e, e′) < d(f, f ′) 6 d(f, Hip

), again, implying that cD∗(e) 6= cD∗(f).

Therefore, D∗ is a resolving decomposition of G. �

By Theorem 2.1, a connected resolving decomposition of a connected graph can

be obtained from a resolving decomposition by means of refinement. However, a

connected refinement of a resolving decomposition is not necessary to be minimum.

Indeed, using an extensive case-by-case analysis, we can show that the graph G of

Figure 1 has two distinct minimum resolving decompositions (up to isomorphic),

namely, {G1, G2, G3} and {H1, H2, H3}, where G1 = G2 = P3 ∪ P4, G3 = P4,

H1 = H2 = P2 ∪ 2P3, and H3 = P4. For example, D = {G1, G2, G3}, where

E(G1) = {e1, e5, f1, f5, f4}, E(G2) = {e2, e3, f2}, and E(G3) = {e4, e6, f3, f6,

f7} and D̃ = {H1, H2, H3}, where E(H1) = {e1, e6, f1, f4, f6}, E(H2) = {e2, e3,

f2}, and E(H3) = {e4, e5, f3, f5, f7}. The decompositions D and D̃ are shown

in Figure 2. Since each connected refinement of D contains at least five elements,

each connected refinement of D̃ contains at least seven elements, and cd(G) = 4, it

follows that no minimum connected resolving decomposition of G is a refinement of

any minimum resolving decomposition of G.

D :

D̃ :

Figure 2. The two distinct minimum resolving decompositions D and  D of G
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3. Bounds for connected decomposition numbers of graphs

We have seen that if G is a connected graph of size m > 2, then 2 6 cd(G) 6 m.

In this section, we first characterize those connected graphs G of size m > 2 such

that cd(G) = 2 or cd(G) = m.

Theorem 3.1. Let G be a connected graph of order n > 3 and size m. Then

(a) cd(G) = 2 if and only if G = Pn, and

(b) cd(G) = m if and only if G = K3 or G = K1,n−1.

���������
. We first verify (a). Let Pn : v1, v2, . . . , vn and let D = {G1, G2} be

the decomposition of Pn in which E(G1) = {v1v2} and G2 is the path v2, v3, . . . , vn.

Thus D is connected. For 2 6 i 6 n− 1, the edge vivi+1 is the unique edge of G2 at

distance i − 1 from G1. Therefore, D is a connected resolving decomposition of Pn

and so cd(Pn) = 2. For the converse, let G be a connected graph of order n > 3 and

cd(G) = 2. By (1) dimd(G) = 2 as well. It then follows by Theorem A that G = Pn.

Next we verify (b). It is routine to show that cd(K3) = 2 and cd(K1,n−1) = n− 1

and so the graphs described in (b) have cd(G) = m. For the converse, let G be a

connected graph of order n > 3 and size m > 2 such that cd(G) = m. If m = 2, then

G = P3 and cd(P3) = 2 by (a). If m = 3, then G ∈ {P4, K3, K1,3}. Since cd(P4) = 2

and cd(K3) = cd(K1,3) = 3, it follows that G = K3 or G = K1,3. Now let G be

a connected graph of size m > 4 and let E(G) = {e1, e2, . . . , em}. If G 6= K1,n−1,

then G contains a path P4 of order 4 with three edges, say e1, e2, and e3, such that

d(e1, e2) = 1, d(e1, e3) = 2, and d(e2, e3) = 1. Then D = {G1, G2, . . . , Gm−1}, where

E(G1) = {e1, e2} and E(Gi) = {ei+1} for 2 6 i 6 m − 1, is a connected resolving

decomposition of G. Thus cd(G) 6 |D| = m − 1. �

It was shown in [2] that dimd(K3) = 3 and dimd(K1,n−1) = n − 1. Thus the

following corollary is a consequence of (1) and Theorem 3.1.

Corollary 3.2. Let G be a connected graph of order n > 3 and of size m. Then

dimd(G) = m if and only if G = K3 or G = K1,n−1.

Next, we present bounds for cd(G) of a connected graph G in terms of its size and

diameter.

Proposition 3.3. If G is a connected graph of size m > 2 and diameter d, then

2 6 cd(G) 6 m − d + 2.

���������
. We have seen that cd(G) > 2 for every connected graph G of sizem > 2.

Thus it remains to verify the upper bound. Let u, v ∈ V (G) such that d(u, v) = d
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and let P : u = v1, v2, . . . , vd+1 = v be a u − v path of length d in G. Also, let

E(G) −E(P ) = {e1, e2, . . . , em−d}. Let D = {G1, G2, . . . , Gm−d+2}, where E(Gi) =

{ei} for 1 6 i 6 m−d, E(Gm−d+1) = {v1v2}, and E(Gm−d+2) = E(P −v1). Then D

is a connected decomposition of G. Since d(vivi+1, Gm−d+1) = i− 1 for 2 6 i 6 d, it

follows that D is a resolving decomposition of G. Therefore, cd(G) 6 |D| = m−d+2.

�

By Theorem 3.1, the lower bound in Proposition 3.3 is sharp. If d = 1, then

G = Kn for some n > 3. Since dimd(Kn) = cd(Kn), it then follows by Theorem A

that the upper bound in Proposition 3.3 is not sharp for d = 1. If d = 2, then

G = K1,m is the only graph with cd(G) = m− d + 2 = m by Theorem 3.1. Thus we

may assume that m > d > 3. If m = d, then G = Pm+1 and cd(G) = 2 = m− d + 2.

If m > d + 1, let G be the graph obtained from the path Pd+1 : u1, u2, . . . , ud+1 by

adding the m− d > 1 new vertices v1, v2, . . . , vm−d and joining each of these vertices

to ud. Then the diameter of G is d and size of G is m. Moreover, it can be verified

that cd(G) = m− d+2. Thus the upper bound in Proposition 3.3 is sharp for d > 2.

The girth of a graph is the length of its shortest cycle. Next, we provide bounds

for the connected decomposition number of a connected graph in terms of its size

and girth.

Theorem 3.4. If G is a connected graph of size m > 3 and girth ` > 3, then

3 6 cd(G) 6 m − ` + 3.

Moreover, cd(G) = m − ` + 3 if and only if G is a cycle of order at least 3.

���������
. Since ` > 3, it follows that G is not a path and so cd(G) > 3 by Theo-

rem 3.1. It remains to verify the upper bound. If ` = 3, then cd(G) 6 m by (1) and

so the upper bound holds. Thus we may assume that ` > 4. Let C` : v1, v2, . . . , v`, v1

be a cycle of length ` in G, let d = b`/2c, and let D = {G1, G2, . . . , Gm−`+3} be

a decomposition of G, where E(G1) = {v1v2}, E(G2) = {v2v3, v3v4, . . . , vdvd+1},

E(G3) = {vd+1vd+2, vd+2vd+3, . . . , v`−1v`, v`v1}, and each of Gi (4 6 i 6 m − ` + 3)

contains exactly one edge in E(G) − E(C`). Thus D is connected. Furthermore,

cD(v1v2) = (0, 1, 1, . . .), cD(vivi+1) = (i − 1, 0, min{i, d − i + 1}, . . .) for 2 6 i 6 d,

cD(vd+1vd+2) = (d, 1, 0, . . .), cD(vivi+1) = (` − i + 1, min{i − d, ` − i + 2}, 0, . . .)

for d + 2 6 i 6 ` − 1, and cD(v`v1) = (1, 2, 0, . . .), it follows that the D-codes of

vertices of G are distinct. Thus D is a connected resolving decomposition of G and

so cd(G) 6 |D| = m − ` + 3.

If G is a cycle Cn of order n > 3, then ` = m = n and so cd(G) = 3. For

the converse, let G 6= Cn be a connected graph of order n > 3, size m > 3, and
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girth ` > 3 and let C` : v1, v2, . . . , v`, v1 be a smallest cycle in G, where ` < n.

Since G is connected and G 6= Cn, it follows that m > 4 and there exists a vertex

v ∈ V (G) − V (C`) such that v is adjacent to a vertex of C`, say vv1 ∈ E(G). We

consider three cases.
�������

1. ` = 3. Then G contains an induced subgraph H1 of Figure 3(a),

where dashed lines indicate that the given edges may or may not be present. Let

D = {G1, G2, . . . , Gm−`+2}, where E(G1) = {vv1, v1v2}, E(G2) = {v2v3}, E(G3) =

{v1v3}, and each of Gi (4 6 i 6 m − ` + 2) contains exactly one edge in E(G) −

(E(C`) ∪ {vv1}). Since d(vv1, G2) = 1 and d(v1v2, G2) = 2, it follows that D is a

connected resolving decomposition of G and so cd(G) 6 |D| = m − ` + 2.

v3

v

v2

v1
H1 :

(a)

v4 v1

v2v3

v

H2 :

(b)

Figure 3. The subgraphs H1 and H2

�������
2. ` = 4. Then G contains an induced subgraph H2 of Figure 3(b),

where the dashed line indicate that the given edge may or may not be present. Let

D = {G1, G2, . . . , Gm−`+2}, where E(G1) = {vv1, v1v2}, E(G2) = {v2v3}, E(G3) =

{v1v4, v3v4}, and each of Gi (4 6 i 6 m − ` + 2) contains exactly one edge in

E(G)− (E(C`)∪{vv1}). Since d(vv1, G2) = 2, d(v1v2, G2) = 1, d(v1v4, G2) = 2, and

d(v3v4, G2) = 1, it follows that D is a connected resolving decomposition of G and

so cd(G) 6 |D| = m − ` + 2.
�������

3. ` > 5. Since C` is a smallest cycle in G, it follows that v is adjacent

exactly one vertex of C`. Let d = b`/2c and let D = {G1, G2, . . . , Gm−`+2} be a

decomposition of G, where E(G1) = {vv1, v1v2}, E(G2) = {v2v3, v3v4, . . . , vdvd+1},

E(G3) = {vd+1vd+2, vd+2vd+3, . . . , v`−1v`, v`v1}, and each of Gi (4 6 i 6 m − ` + 2)

contains exactly one edge in E(G) − (E(C`) ∪ {vv1}). Thus D is connected. Since

cD(vv1) = (0, 2, 2, . . .), cD(v1v2) = (0, 1, 1, . . .), cD(vivi+1) = (i − 1, 0, min{i, d − i +

1}, . . .) for 2 6 i 6 d, cD(vd+1vd+2) = (d, 1, 0, . . .), cD(vivi+1) = (` − i + 1, min{i −

d, ` − i + 2}, 0, . . .) for d + 2 6 i 6 ` − 1, and cD(v`v1) = (1, 2, 0, . . .), it follows that

D is a connected resolving decomposition of G. Thus cd(G) 6 |D| = m − ` + 2. �
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Next, we present an upper bound for cd(G) of a connected graph G in terms of

its order. For a connected graph G, let

f(G) = min{k(G − E(T )) : T is a spanning tree of G},

where k(G − E(T )) is the number of components of G − E(T ).

Theorem 3.5. If G is a connected graph of order n > 5, then

cd(G) 6 n + f(G) − 1.

���������
. If G is a tree of order n, then f(G) = 0. Since the size of G is n− 1, it

follows by (1) that cd(G) 6 n − 1 and so the result is true for a tree. Thus we may

assume that G is a connected graph that is not a tree. Suppose that f(G) = k. Let T

be a spanning tree of G such that k(G−E(T )) = k, where E(T ) = {e1, e2, . . . , en−1}

and H1, H2, . . . , Hk are k components of G − E(T ). Let

D = {G1, G2, . . . , Gn−1, H1, H2, . . . , Hk},

where E(Gi) = {ei} for 1 6 i 6 n − 1. Then D is a connected decomposition of G

with n + k − 1 elements.

We now show that D is a resolving decomposition of G. Let e and f be two edges

of G. If e and f belongs to distinct elements of D, then cD(e) 6= cD(f). Thus we may

assume that e and f belong to the same element Hi in D, where 1 6 i 6 k. We show

that cD(e) 6= cD(f). Let e = uv and let P be the unique u − v path in T , and let

u′ and v′ be the vertices on P adjacent to u and v, respectively. If f is adjacent to

at most one of uu′ and vv′, then either d(e, uu′) 6= d(f, uu′) or d(e, vv′) 6= d(f, vv′),

and so cD(e) 6= cD(f). Hence we may assume that f is adjacent to both uu′ and vv′.

If u′ = v′, then f is incident with the vertex u′. Since n > 5 and T is a spanning

tree, there is a vertex x ∈ V (G)−{u, v, u′} such that x is adjacent in T with exactly

one of u, v and u′. If u′x ∈ E(T ), then d(f, u′x) = 1 6= 2 = d(e, u′x); otherwise,

d(e, ux) = 1 6= 2 = d(f, ux) or d(e, vx) = 1 6= 2 = d(f, vx), according to whether ux

or vx is an edge of T . So cD(e) 6= cD(f). If u′ 6= v′, then we may assume that f is

incident with u′. Let g be an edge of T distinct from uu′ that is incident with u′. Then

d(e, g) = 2 6= 1 = d(f, g). Therefore, cD(e) 6= cD(f). Therefore, D is a connected

resolving decomposition of G and so cd(G) 6 |D| = n + k − 1 = n + f(G) − 1. �

Note that if G = K1,n−1, where n > 5, then f(G) = 0 and cd(G) = n−1. Thus the

upper bound in Theorem 3.5 is attainable for stars. On the other hand, the inequality

in Theorem 3.5 can be strict. For example, the graph G of Figure 4 has order n = 8
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and f(G) = 2. Since D = {G1, G2, G3}, where E(G1) = {e1, e2, e3, e5, e7, e8, e9},

E(G2) = {e4}, and E(G3) = {e6}, is a connected resolving decomposition of G, it

then follows by Theorem 3.1 that cd(G) = 3. Therefore, cd(G) < n + f(G) − 1 for

the graph of Figure 4.

e4 e3

e2e1
e5

e9 e8

e7e6

Figure 4. A graph G with cd(G) < n+ f(G)− 1

4. Connected decomposition numbers of trees

Although the decomposition dimensions of trees that are not paths have been

studied in [2], [4], there is no general formula for the decomposition dimension of a

tree that is not a path. However, we are able to establish a formula for the connected

decomposition number of a tree that is not a path. First, we need some additional

definitions.

A vertex of degree at least 3 in a connected graph G is called a major vertex of

G. An end-vertex u of G is said to be a terminal vertex of a major vertex v of G if

d(u, v) < d(u, w) for every other major vertex w of G. The terminal degree ter(v)

of a major vertex v is the number of terminal vertices of v. A major vertex v of G

is an exterior major vertex of G if it has positive terminal degree. Let σ(G) denote

the sum of the terminal degrees of the major vertices of G and let ex(G) denote the

number of exterior major vertices of G. If G is a tree that is not path, then σ(G)

is the number of end-vertices of G. For example, the tree T of Figure 5 has four

major vertices, namely, v1, v2, v3, v4. The terminal vertices of v1 are u1 and u2, the

terminal vertices of v3 are u3, u4, and u5, and the terminal vertices of v4 are u6 and

u7. The major vertex v2 has no terminal vertex and so v2 is not an exterior major

vertex of T . Therefore, σ(T ) = 7 and ex(T ) = 3.

v2

v1

v4 v3

u2

u1

u7

u6 u5

u4

u3

Figure 5. A tree with its exterior major vertices
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In this section, we present a formula for the connected decomposition number of

a tree T that is not a path in term of σ(T ) and ex(T ). In order to do this, we

first present a useful lemma. For an ordered set W = {e1, e2, . . . , ek} of edges in a

connected graph G and an edge e of G, the k-vector

cW (e) = (d(e, e1), d(e, e2), . . . , d(e, ek))

is referred to as the code of e with respect to W . For a cut-vertex v in a connected

graph G and a component H of G − v, the subgraph H and the vertex v together

with all edges joining v and V (H) in G is called a branch of G at v. For a bridge e

in a connected graph G and a component F of G − e, the subgraph F together the

bridge e is called a branch of G at e. For two edges e = u1u2 and f = v1v2 in G, an

e − f path in G is a path with its initial edge e and terminal edge f .

Lemma 4.1. Let T be a tree that is not a path, having order n > 4 and p

exterior major vertices v1, v2, . . . , vp. For 1 6 i 6 p, let ui1, ui2, . . . , uiki
be the

terminal vertices of vi, let Pij be the vi − uij path (1 6 j 6 ki), and let xij be a

vertex in Pij that is adjacent to vi. Let

W = {vixij : 1 6 i 6 p and 2 6 j 6 ki}.

Then cW (e) 6= cW (f) for each pair e, f of distinct edges of T that are not edges of

Pij for 1 6 i 6 p and 2 6 j 6 ki.

���������
. Let e and f be two edges of T that are not edges of Pij for 1 6 i 6 p

and 2 6 j 6 ki. We consider two cases.�������
1. e lies on some path Pi1 for some i with 1 6 i 6 p. There are two

subcases.! " #%$&�����
1.1. There is an edge w ∈ W such that f lies on the e − w path or e

lies on the f − w path. Then either d(f, w) < d(e, w) or d(e, w) < d(f, w). In either

case, cW (e) 6= cW (f).! " #%$&�����
1.2. Every path between f and an edge of W does not contain e and

every path between e and an edge of W does not contain f . Necessarily, then f lies

on some path P`1 in T for some 1 6 ` 6 p. Observe that i 6= `, for otherwise, f lies

on e −w path, where w = vixi2 ∈ W . Since vi and v` are exterior major vertices, it

follows that deg vi > 3 and deg v` > 3. Thus there exist a branch B1 at vi that does

not contain xi1 and a branch B2 at v` that does not contain x`1. Necessarily, each

of B1 and B2 must contain an edge of W . Let w1 and w2 be two edges in W such

that wi belongs to Bi for i = 1, 2. If d(e, w2) 6= d(f, w2), then cW (e) 6= cW (f). Thus

we may assume that d(e, w2) = d(f, w2). However, then d(e, w1) < d(f, w1), again

implying that cW (e) 6= cW (f).
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2. e lies on no path Pi1 for all i with 1 6 i 6 p. Then there are at

least two branches at e, say B∗
1 and B∗

2 , each of which contains some exterior major

vertex of terminal degree at least 2. Thus each branch B∗
i (i = 1, 2) contains an

edge in W . Let w∗
i ∈ W such that w∗

i belongs to B∗
i for i = 1, 2. First, assume that

f ∈ E(B∗
1 ). Then the f −w∗

2 path of T contains e. So d(e, w∗
2) < d(f, w∗

2), implying

that cW (e) 6= cW (f). Next, assume that f /∈ E(B∗
1 ). Then the f − w∗

1 path of T

contains e. Thus d(e, w∗
1) < d(f, w∗

1) and so cW (e) 6= cW (f). �

We are now prepared to establish a formula for the connected decomposition num-

ber of a tree that is not a path.

Theorem 4.2. If T is a tree that is not a path, then

cd(T ) = σ(T ) − ex(T ) + 1.

���������
. Suppose that T contains p exterior major vertices v1, v2, . . . , vp. For

each i with 1 6 i 6 p, let ui1, ui2, . . . , uiki
be the terminal vertices of vi. For each

pair i, j of integers with 1 6 i 6 p and 1 6 j 6 ki, let Pij be the vi − uij path in T

and let xij be a vertex in Pij that is adjacent to vi.

First, we claim that if D is a connected resolving decomposition of T , then, for

each fixed exterior major vertex vi (1 6 i 6 p), there is at least one edge, say eij ,

from each path Pij (1 6 j 6 ki) such that the ki edges eij (1 6 j 6 ki) of T belong

to distinct elements in D. To verify this claim, assume, to the contrary, that this

is not the case. Since each element in D is connected, we assume, without loss of

generality, that Pi1 and Pi2 are contained in the same element of D. However, then,

d(vixi1, e) = d(vixi2, e) for all e ∈ E(G − (Pi1 ∪ Pi2)), and so cD(vixi1) = cD(vixi2),

which is a contradiction. Therefore, for each fixed i with 1 6 i 6 p, the ki edges

eij ∈ E(Pij) (1 6 j 6 ki) belong to distinct elements in D, as claimed.

First, we show that cd(T ) > σ(T ) − ex(T ) + 1. Let D = {G1, G2, . . . , G`} be a

minimum connected resolving decomposition of T . Let V = {v1, v2, . . . , vp} be the

set of the exterior major vertices of T . First, assume that p = 1. Since the k1

edges e1j ∈ E(P1j) (1 6 j 6 k1) belong to distinct elements in D, it follows that

cd(G) > k1 = σ(T ) − ex(T ) + 1. Thus we may assume that p > 2. We proceed by

the following steps:!(')�&*
1. Since p > 2, there exists an exterior major vertex vi with 1 6 i 6 p

such that deg vi = ki + 1. Start with such an exterior major vertex, say v1 with

deg v1 = k1 + 1. Since the k1 edges e1j ∈ E(P1j) (1 6 j 6 k1) belong to distinct

elements in D, we may assume, without loss of generality, that e1j ∈ E(Gj) for

1 6 j 6 k1. Thus

cd(G) = |D| > k1 = (k1 − 1) + 1.
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2. Consider an exterior major vertex v ∈ V −{v1} such that the v1−v path

in T contains no other exterior major vertices in V − {v1, v}. We may assume that

v = v2. Then the k2 edges e2j ∈ E(P2j) (1 6 j 6 k2) belong to distinct elements in

D. We claim that at most one of the edges e2j (1 6 j 6 k2) belongs to the elements

G1, G2, . . . , Gk1
of D. Assume, to the contrary, that two edges in {e2j : 1 6 j 6 k2}

belong to G1, G2, . . . , Gk1
, say e21 and e22 belong to G1, G2, . . . , Gk1

. Since e21 and

e22 belong to distinct elements in D, it follows that e21 and e22 belong to two distinct

elements ofG1, G2, . . . , Gk1
, say e21 ∈ E(G1) and e22 ∈ E(G2). However, then, either

G1 or G2 must be disconnected, which is a contradiction. Hence, as claimed, at most

one of the edges e2j (1 6 j 6 k2) belongs to the elements G1, G2, . . . , Gk1
in D. Then

assume, without loss of generality, that e2j ∈ E(Gj+k1
) for 1 6 j 6 k2 − 1. Thus

G1, G2, . . . , Gk1
, Gk1+1, . . . , Gk1+k2−1 must be distinct elements of D, implying that

cd(G) = |D| > k1 + k2 − 1 = (k1 − 1) + (k2 − 1) + 1.

If p = 2, then k1 + k2 − 1 = σ(T )− ex(T ) + 1 and the proof is complete. Otherwise,

we continue to the next step.!(')�&*
3. Consider an exterior major vertex v ∈ V −{v1, v2} such that the v1 − v

path in T contains no other exterior major vertices in V −{v1, v2}. We may assume

that v = v3. Then the k3 edges e3j ∈ E(P3j) (1 6 j 6 k3) belong to distinct elements

in D. Again, we claim that at most one of the edges e3j ∈ E(P3j) (1 6 j 6 k3)

belongs to some element Gi of D, where 1 6 i 6 k1 + k2 − 1. Assume, to the

contrary, that two edges in {e3j : 1 6 j 6 k2} belong to Gs and Gt, respectively,

where 1 6 s < t 6 k1 + k2 − 1, say e31 ∈ E(Gs) and e32 ∈ E(Gt). If 1 6

s < t 6 k1 or k1 + 1 6 s < t 6 k1 + k2 − 1, then at least one of Gs and Gt

must be disconnected, which is impossible. On the other hand, if 1 6 s 6 k1 and

k1 + 1 6 t 6 k1 + k2 − 1, then, since Gs and Gt are connected, there must be

a cycle in T , which is again impossible. Thus, we may assume, without loss of

generality, that e3j ∈ E(Gk1+k2−1+j) for 1 6 j 6 k3 − 1. Hence all subgraphs Gi

(1 6 i 6 k1 + k2 + k3 − 2) are distinct elements of D and so

cd(G) = |D| > k1 + k2 + k3 − 2 = (k1 − 1) + (k2 − 1) + (k3 − 1) + 1.

We continue this procedure to the remaining exterior major vertices in V −

{v1, v2, v3} and repeat the argument similar to the one in the previous step until

we exhaust all vertices in V . Then we obtain

cd(G) = |D| >

( p∑

i=1

(ki − 1)

)
+ 1 = σ(G) − ex(G) + 1.
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Next we show that cd(T ) 6 σ(T ) − ex(T ) + 1. Let k = σ(T ) − ex(T ) + 1. Let

fij = vixij for 1 6 i 6 p and 1 6 j 6 ki. Let U = {v1, u11, u21, . . . , up1} and let T0

be the subtree of T of smallest size such that T0 contains U . Let

D = {T0, P12, P13, . . . , P1k1
, P22, P23, . . . , P2k2

, . . . , Pp2, Pp3, . . . , Ppkp
}.

Certainly, D is a connected k-decomposition of T . We show that D is a resolving

decomposition of T . It suffices to show that the edges of T belonging to same element

of D have distinct D-codes. Let e, f ∈ E(T ). We consider two cases.�������
1. e, f ∈ E(T0). Then d(e, Pij) = d(e, fij) and d(f, Pij) = d(f, fij) for all

pairs i, j with 1 6 i 6 p and 2 6 j 6 ki. Let

W = {fij : 1 6 i 6 p and 2 6 j 6 ki}.

By Lemma 4.1, cW (e) 6= cW (f). Observe that the first coordinate in each of cD(e)

and cD(f) is 0, the remaining k − 1 coordinates of cD(e) are exactly those of cW (e),

and the remaining k − 1 coordinates of cD(f) are exactly those of cW (f). Since

cW (e) 6= cW (f), it follows that cD(e) 6= cD(f).�������
2. e, f ∈ E(Pij), where 1 6 i 6 p and 2 6 j 6 ki. Then d(e, T0) = d(e, fi1)

and d(f, T0) = d(f, fi1). Since e and f are two distinct edges in the path Pij , it follows

that d(e, fi1) 6= d(f, fi1) and so d(e, T0) 6= d(f, T0). Therefore, cD(e) 6= cD(f).

Therefore, D is a connected resolving k-decomposition of T and so cd(T ) 6 k =

σ(T ) − ex(T ) + 1, as desired. �

5. Graphs with prescribed decomposition dimension

and connected decomposition number

We have seen that if G is a connected graph of size at least 2 with dimd(G) = a

and cd(G) = b, then 2 6 a 6 b. Furthermore, paths of order at least 3 are the only

connected graphs G of size at least 2 with dimd(G) = cd(G) = 2. Thus there is no

connected graph G with dimd(G) = 2 and cd(G) > 2. On the other hand, every

pair a, b of integers with 3 6 a 6 b is realizable as the decomposition dimension and

connected decomposition number, respectively, of some graph. In order to show this,

we first present a useful lemma.

Lemma 5.1. Let G be a connected graph that is not a star. If G contains a vertex

that is adjacent to k > 1 end-vertices, then dimd(G) > k + 1 and cd(G) > k + 1.

���������
. By Observation 1.1, dimd(G) > k. Next we show that dimd(G) 6= k.

Assume, to the contrary, that dimd(G) = k. Let D = {G1, G2, . . . , Gk} be a resolving
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decomposition of G. Let v be a vertex of G that is adjacent to k end-vertices

v1, v2, . . . , vk. Let ei = vvi, where 1 6 i 6 k. By Observation 1.1, the k edges ei

(1 6 i 6 k) belong to distinct elements of D. Without loss of generality, assume

that ei ∈ E(Gi) for 1 6 i 6 k. Since G is not a star, there exists a vertex w

distinct from vi (1 6 i 6 k) such that w is adjacent to v and w is not an end-

vertex of G. We may assume the edge e = vw belongs to G1. However, then,

cD(e) = cD(e1) = (0, 1, 1, . . . , 1), which is a contradiction. Thus dimd(G) > k + 1.

The fact that cd(G) > k + 1 follows by (1). �

Theorem 5.2. For every pair a, b of integers with 3 6 a 6 b, there exists a

connected graph G such that dimd(G) = a and cd(G) = b.

���������
. For a = b > 3, let G = K1,a. Since dimd(K1,a) = cd(K1,a) = a, the

result holds for a = b. Thus we may assume that a < b. We consider two cases,

according to whether a = 3 or a > 4.
�������

1. a = 3. For each i with 1 6 i 6 b−1, let Ti be the tree obtained from the

path Pi : vi1, vi2, . . . , vii of order i by adding two new vertices ui and u∗
i and joining

ui and u∗
i to vii. Then the graph G is obtained from the graphs Ti (1 6 i 6 b−1) by

adding edges vi1vi+1,1 for 1 6 i 6 b− 2. The graph G is shown in Figure 6 for b = 5.

Since G is a tree with σ(G) = 2(b− 1) and ex(G) = b− 1, it follows by Theorem 4.2

that cd(G) = b. It remains to show that dimd(G) = 3. Let D = {G1, G2, G3},

where E(G1) = {u1v11}, E(G2) = {uivii : 2 6 i 6 d − 1}, and E(G3) = E(G) −

(E(G1) ∪ E(G2)). We show that D is a resolving decomposition of G. Observe that

cD(uivii) = (2i−1, 0, 1) for 2 6 i 6 b−1, cD(u∗
1v11) = (1, 3, 0), cD(v11v21) = (1, 2, 0),

cD(vi1vi+1,1) = (i, i, 0) for 2 6 i 6 b− 2, cD(vijvi,j+1) = (i + j − 1, i− j, 0) for j 6 i

and 2 6 i 6 b − 1 and 1 6 j 6 b − 2, and cD(u∗
i vii) = (2i − 1, 1, 0) for 2 6 i 6 b − 1.

Since all D-codes of vertices G are distinct, D is a resolving decomposition of G and

so dimd(G) 6 |D| = 3. By Theorem A, dimd(G) = 3.

v11 v21 v31 v41

v22 v32

v33

v42

v43

v44

u1 u∗
1

u2 u∗
2

u3 u∗
3

u4 u∗
4

Figure 6. A graph G in Case 1 for b = 5
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2. a > 4. Let G be the graph obtained from the path Pb−a+4 : u1, u2, . . .,

ub−a+4 of order b−a+4 by (1) adding a−2 new vertices v1, v2, . . . , va−2 and joining

each vertex vi (1 6 i 6 a − 2) to u2 (2) adding a new vertex va−1 and joining va−1

to ub−a+3, and (2) adding 2(b − a) new vertices w3, w
∗
3 , w4, w

∗
4 , . . . , wb−a+2, w

∗
b−a+2

and joining wj and w∗
j to uj for 3 6 j 6 b − a + 2. Since G is a tree with σ(G) =

(a− 1) + 2(b− a + 1) = 2b− a + 1 and ex(G) = b− a + 2, it follows by Theorem 4.2

that cd(G) = b. Next we show that dimd(G) = a. Since u2 is adjacent to a − 1

end-vertices and T is not a star, it then follows by Lemma 5.1 that dimd(G) > a. On

the other hand, let D = {G1, G2, . . . , Ga}, where E(G1) = E(Pb−a+4) ∪ {uiwi : 3 6

i 6 b−a+2}, E(G2) = {u2v1}∪{uiw
∗
i : 3 6 i 6 b−a+2}, E(G3) = {ub−a+3va−1},

and E(Gi) = {u2vi−2} for 4 6 i 6 a. It can be verified that D is a resolving

decomposition of G, and so dimd(G) 6 |D| = a. Therefore, dimd(G) = a, as desired.

�
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