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GRAPH AUTOMORPHISMS OF MULTILATTICES
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Abstract. In the present paper we generalize a result of a theorem of J. Jakubik concerning
graph automorphisms of lattices to the case of multilattices of locally finite length.
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1. INTRODUCTION

Inspired by a problem proposed G. Birkhoff ([1], Problem 6) J. Jakubik investigated
graph automorphisms of modular lattices [4], semimodular lattices [10] and lattices
[5].

The present author studied graph isomorphisms of multilattices [7], [8], [11]. We
will apply some results [4], [5] and our results [7], [8] for dealing with graph auto-
morphisms of multilattices of locally finite length. We obtain a generalization of a
theorem of J. Jakubik [4], [5].

2. PRELIMINARIES

The notion of a multilattice was introduced by Benado [2]. It is defined as follows.
Let P be a partially ordered set. For z,y,€ P we denote by L(z,y) and U(x,y) the
system of all lower bounds and all upper bounds of the set {x,y} in P, respectively.
Let = A y be the system of all maximal elements of L(z,y); similarly we denote by
2 V y the system of all minimal elements of U(z,y). If P is directed then both
x Ay,z V y are nonempty. P is said to be a multilattice if whenever z,y € P and
z € L(z,y) then there is z1 in L(x,y) such that z; > z,2; is a maximal element of
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L(z,y) (this case we will write down as z1 € (tAy), ={u €z Ay: v > z}) and if
the corresponding dual condition concerning U(z,y) also holds.

In what follows M is a directed multilattice of locally finite length. For a,b € M
with a < b, the interval [a,b] is the set {x € M: a < z < b}. If [a,b] = {a, b} and
a # b then [a, ] is said to be a prime interval and we put a < b.

By a graph G(M) we mean an unoriented graph whose vertices are elements of
M: two vertices are joined by an edge (a,b) iff [a,b] is a prime interval. A graph
automorphism of M is a one-to-one maping ¢: M onto M such that whenever
x,y € M and x < y, then either p(z) < ¢(y) or ¢(y) < ¢(z).

The following assertion (A) was proved in [2].

(A) A multilattice M of locally finite length is modular iff it fulfils the following
covering condition (¢’) and the condition (¢”) dual to o’.

(¢') If a,b,u,v € M are such that [u,a], [u, b] are prime intervals and v € a V b,

then [a, v], [b, v] are prime intervals.

3. CELLS IN PARTIALLY ORDERED SETS

Let M be a multilattice. Assume that z1,z2,...,Zm,Y1,Y2,---,Yn, U, v are distinct
elements of M such that

(i) u<a1 <Ta < ... Ty, <V, U=<Y1 < ... <Yy < V;
(ii) either v € &1 V y1 Or U € Ty A Yn.

Then the set {u,v,Z1,%2,...,Tm,Y1,Y2,...,ynt = C is called a cell in M. The
cell C'in M is said to be proper if either m > 1 or n > 1. A cell C' in M such that
m = n = 1 will be called an elementary square. We will say that an elementary square
C = {u,v,z1,y1} in M is broken by a graph automorphism ¢ if either p(u) < ¢(z1),
p(u) < @(y1), p(v) < @(x1), ©(v) < @(y1) or dually.

A cell C is called regular under a graph automorphism ¢ if either each prime
interval [a, b] € C'is preserved by the graph automorphism ¢ (i.e. ¢(a) < ¢(b)) or each
prime interval [a,b] € C is reversed by the graph automorphism ¢ (i.e. o(b) < p(a)).

The present author proved the following results.

3.1. Theorem (Cf.[7].). Let M, M’ be directed modular multilattices of locally
finite length. Then the following conditions are equivalent:

(a1) There exists a graph isomorphism ¢ of M onto M’ such that no elementary

1 respectively.

square of M or M’ is broken by ¢ or ¢~
(ae) There are multilattices A, B and direct representations f: M — A x B,

g: M’ — A x B? such that ¢ = g~ ' f (B? is the dual to B).
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3.2. Theorem (Cf.[8].). Let M, M’ be directed multilattices of locally finite
length and let ¢: M — M’ be a bijection. Then the condition (as) is equivalent to
the following condition.

(81) ¢ is a graph isomorphism of the multilattice M onto M’ such that no ele-

1

mentary square of M or M’ is broken under ¢ or o', respectively, and all

1

proper cells of M, M’ are regular under ¢ or ¢~ ', respectively.

For a multilattice M we denote by

A(M )—the set of all graph automorphisms of M;

As(M)—the set of all ¢ € A(M) such that no elementary square of M is broken
by ¢ and by ¢~ 1;

Ac(M)—the set of all ¢ € As(M) such that each proper cell in M is regular under
@ or 9071.

Futher, let C,(Cy and Cy) be the class of multilattices M such that whenever
pe AM) (or ¢ € Ag(M),p € Ac(M)) then ¢ is a lattice automorphism on M.

The following two lemmas were proved in [3] for a lattice L. The proofs of these
lemmas remain valid if the assumption that L is a modular lattice is replaced by the

assumption that L is a multilattice of locally finite length.

3.3. Lemma (Cf.[4].). Let ¢ be an isomorphism of the multilattice M onto the
direct product A x B. Further suppose that v is an isomorphism of B onto B?.

For each x € M we put p(z) = y where ¥(z) = (a,b) y = " (a,~, (b)).

Then ¢ is a graph automorphism of M.

3.4. Lemma (Cf. [4].). Let the assumption of 3.3 be satisfied. Further suppose
that B has more than one element. Then ¢ fails to be a multilattice automorphism
on M.

3.5. Lemma. Let the assumption of 3.3 be valid. Then no elementary square

1

of M is broken by the graph automorphism ¢ and by ¢~ '; consequently v € As(M).

Proof. Let {a,b,u,v} be an elementary square in M such that a < v,b <
v,u < a,u < b. If P(a) = (a1, az2), ¥(b) = (b1, b2), Y(u) = (u1,us2), ¥Y(v) = (vi,v2)
then the relation 1(a) < t(v) is valid if and only if either

(i) a1 < vy and ag = va,
or
(ii) a1 =v; and ag < va.

From this and a < v it follows that ¢(a) < ¢(v) if and only if the case (i) is
valid and ¢(v) < ¢(a) if and only if the case (ii) is valid. Suppose that ¢(u) < ¢(a),
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o(u) < (), p(v) < pla), p(v) < @(b). From the relations p(u) < ¢(a), p(u) < @(b)
we have as = ug = ba. The relations p(v) < ¢(a), p(v) < ¢(b) imply a1 = vy = by.

Thus ¥ (a) = 1(b), which is a contradiction.

If we consider ¢(a) < ¢(u), ¢(b) < p(u), p(a) < (v), p(b) < ¢(v) then we obtain
(a) = ¢(b) by a similar argument.

In the same way we arrive at a contradiction if we suppose that an elementary
square of M is broken by the graph automorphism ¢ 1. (]

3.6. Lemma. Let the assumptions of 3.3 be satisfied. Then each proper cell

-1

of M is regular under the graph automorphism @ and under ¢~ *; consequently

v € A(M).

Proof. Assume that C = {w,v,21,...,Zm,¥Y1,.-.,Yn} is a proper cell in M
such that m > 1 and v € 21 Vy1 (if u € (2 A yn) we can apply the dual method).
If x € M and ¢(x) = (a,b) then we denote a = x(A4), b = z(B).

Since u < x1 we have either
(i) u(A4) < z1(A) and u(B) = z1(B),
or

(ii) u(A) = z1(A) and u(B) < z1(B).

Similar relations hold for u and y;; let us denote them by (i;) and (ii;). Consider
the case when (i) is valid.

If (iiy) holds, then 21 = =" (z1(4), u(B)), y1 = ¥~ (u(A), y1(B)) and (z1(A),
u(B)) V (u(4), y1(B)) = {(xl(A), y1(B))}. From this it follows that ¢ (v) =
(1(A),y1(B)) < (z1(A), uw(B)) = ¥(z1) and thus v < x1, which is a contradic-
tion.

Hence (i) must hold and we have ¢ (z1) V¢ (y1) = (x1(A),uw(B)) V (y1(A), u(B)).
From this it follows that v(B) = u(B).

For each z; and y; we have u < @; < v, u < y; < v whence z;(B) = u(B) = y;(B)
and therefore we get o(u) < p(x1) < ... < o(zm) < (), p(u) < e(y1) < ... <
P(yn) < p(v).

Thus C is regular.

The proof for the case (ii) is analogous. O
By the same method as 1.3, 3.1 in [4] (with the only distinction that instead of [3]

we now apply 3.2) we have

3.7. Lemma. If a multilattice M belongs to C7 then no direct factor of M
having more than one element is self-dual.
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3.8. Lemma. If no direct factor of M having more than one element is self-dual
then M belongs to Cf.
These lemmas yield the following assertion.

3.9. Theorem. Let M be a directed multilattice of locally finite length. Then
the following conditions are equivalent:

(i) M belongs to C1;
(ii) no direct factor of M having more than one element is self-dual.

Analogously as above (by applying 3.1) we obtain

3.10. Theorem. Let M be a directed modular multilattice of locally finite
length. Then the following conditions are equivalent:

(i) M belongs to Co;
(ii) no direct factor of M having more than one element is self-dual.
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