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Abstract. Orthomodular implication algebras (with or without compatibility condition)
are a natural generalization of Abbott’s implication algebras, an implication reduct of the
classical propositional logic. In the paper deductive systems (= congruence kernels) of such
algebras are described by means of their restrictions to principal filters having the structure
of orthomodular lattices.
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1. INTRODUCTION

The classical two-valued propositional logic has its algebraic counterpart in the
Boolean algebra. If one considers the logical connective implication of the classical
logic only then the clone generated by this connective is not the clone of all Boolean
functions. The algebraic counterpart of this case is the so-called implication algebra
introduced and treated by Abbott [1]. Similarly, an algebraic counterpart of the
fragment of intuitionistic logic containing only the intuitionistic implication and the
constant 1 (which serves as a true value) was introduced by Henkin and treated by
Diego under the name Hilbert algebra.

In some considerations concerning quantum mechanics another type of logic turned
out to be suitable. Algebraic counterparts of these logics are either orthomodular
lattices or the so-called ortomodular algebras or certain generalizations of Boolean
rings. These logics are related to the Hilbert space logic of quantum mechanics.
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This motivated the study of their implication reducts. The notion of an orthologic
was introduced by J. C. Abbott [2] by weakening the axioms and rules of inference
of the classical propositional calculus. The resulting Lindenbaum-Tarski algebra
generalized the notion of the implication algebra.

An orthologic consists of a set P of propositions closed under a binary operation
— satisfying the axioms
Ol: Fp— (¢ —p)
02: - ((p—4q) —q) — ((¢g—p)—p)
and the rules of inference
R1: If p and p — ¢ then ¢
R2: Ifp—qgthen (p—(¢g—7r)—(p—71)
R3: Ifp—qgthen (p—r)—(p—(¢g—71))
R4: If p — g and ¢ — p then (r — p) — (r — q).

It has been shown by Abbott that the operation — satisfies the axioms
L(p—=qg—p=p
2.(p—q)—q=(q—p) —p
3.p—=(g—=p) —r)=p—r

Based on these properties, he introduced orthoimplication algebras as algebras
(A, ) of type (2) satisfying the identities
Oll: (zey)ex==x
OI2: (zey)ey=(yex)ex
OI3: ze((yex)ez)==xecz.

Recall that algebras satisfying the axioms OI1, OI2 and the left-distributivity
3: ze(yez)=(zey)e(rez)
are known as implication algebras [1]. The results of Abbott show that the
Lindenbaum-Tarski algebra associated with an orthologic is an orthoimplication
algebra.

The following lemma is a direct consequence of the axioms of the orthoimplication
algebra [2]:

Lemma 1. If & = (A, e) is an orthoimplication algebra, then A has a constant
1 satisfying
(i) zex =1

(ii

(i) ze1=1

(v) ze(yex)=1

)
)
(iv) zey=yex impliesx =y
) @
(vi) xey=1impliesx e (yez)=xzez
)

(vii) z ey =1 implies (yez) e (zez)=1.
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Hence, every orthoimplication algebra satisfies the identity zez = yey(= 1) and
the element 1 is an algebraic constant in the variety & of orthoimplication algebras.
Every orthoimplication algebra (A, e) is a poset with respect to a natural relation <
defined by

(1) r<yiffrey=1.

Moreover, orthoimplication algebras are very closely related to orthomodular lat-
tices.

Recall that an ortholattice is an algebra (4, A, V,0,1,) of type (2,2,0,0,1) where
(A, A, V,0,1) is a bounded lattice satisfying the identities
OMl: zVzt=1l,zAzt =0
OM2: (zH)t ==
OM3: z < y implies y~ < zt.

An element z1 is called an orthocomplement of z. Ortholattices satisfying the
orthomodular law
OM4: x < y implies z V (z- Ay) =y
are called orthomodular lattices (OML). These are closely related to the logic of
quantum mechanics, for details we refer to standard books [3], [10].

The exact connection between orthoimplication algebras and orthomodular lattices
is as follows:

Proposition 1. Let of = (A,e) be an orthoimplication algebra. Then (A, <) is
a join semilattice and for each p € A the interval [p, 1] is an orthomodular lattice,
where for z,y € [p, 1] we have

zVy=(zey)ey
zAy=((rep)V(yep))ep

and the orthocomplement xP = x e p.
Moreover, each interval satisfies the compatibility condition

(CC) p < x <y implies y* = y? V .

Conversely, let (A,V) be a join semilattice where for each p € A the section [p, 1]
is an OML satisfying (CC). Then the operation e on A defined by

zey=(zVy)’

where (x V y)Y is an orthocomplement of x V y in the orthomodular lattice [y, 1]
determines an orthoimplication algebra.
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There is a natural question if there is a similar construction if we do not require
a compatibility condition. The affirmative answer to this question leads us to the
following notion:
an algebra &/ = (A, e) of type (2) is called an orthomodular implication algebra
(OMIA) if it satisfies the axioms
OMI1: (zey)ex ==z
OMI2: (zey)ey=(yex)eox
OMI3: ((zoy)ey)ez)e(wez) =1
OMI4: (((xey)ey)ez)ex)ex)ez)ex)ex = (((xrey)ey)ez)ez.

It is easy to show that every orthomodular implication algebra becomes a poset
with respect to the ordering defined by (1).

Moreover, similarly to Proposition 1, the following description holds:
Proposition 2. If o/ = (A, e) is an OMIA and one defines

rVy=(zey)ey

for all x,y € A, then (A, V) is a join semilattice and for each p € A the interval [p, 1]
is an orthomodular lattice where for z,y € [p, 1] we have

zANy=((xep)V(yep))ep

P =z ep.

Conversely, if (A, V) is a join semilattice where for each p € A the interval [p, 1] is
an OML, then the operation e on A defined by

zey=(zVy)’

determines an orthomodular implication algebra.

To keep unified terminology, let us call orthoimplication algebras orthomodular
implication algebras with (CC), briefly OMIA’s with (CC).
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2. CONGRUENCES ON OMIA’s

The aim of this paper is to describe congruences on OMIA’s. We already know that
OMIA’s, both with or without (CC), are join semilattices whose sections (= principal
filters) are orthomodular lattices. It is also well known that in OML’s, congruences
are completely determined by their congruence kernels, i.e. classes of the form [1]s.
These are in a 1-1 corespondence with the so-called p-filters. More precisely, a lattice
filter D in an OML .Z is a congruence kernel iff

ztV (iAz) €D

for all x € L and ¢ € D. For details see the standard books [3], [10].
Hence to describe congruence kernels on OMIA’s, we may ask how the congruences
behave on sections. One can expect the following:

Lemma 2. Let o = (A,e,1) be an OMIA with (CC), let § € Con«/ and
D = [1]¢. Then for each p € A, D, = DN [p, 1] is a p-filter on an OML [p, 1].

Proof. Ifa,be Dy, wehave (a,1),(b,1) €0 and aAb= ((aep)V (bep))ep=

((aep)e(bep))e(bep))ep=y((pep)ep)ep=1,ie aAbe D,
Further, if z € [p,1] and i € D,, then (zAi)Vat = (a1 Vvit)tval = (((zep)V(ie

p))ep)V(zep) =g ((zep)Vp)ep)V(zep) = ((xep)ep)V(zrep) = zV(rep) = zVa' = 1.
Altogether, D, is a p-filter on [p,1]. O

There is a more important question, namely whether also the converse statement

holds:

Theorem 1. Let of = (A, e,1) be an OMIA with (CC). Let D C A be a subset
where for each p € A the set D, = DN [p, 1] is a p-filter on a section [p,1]. Then the
relation Op on A defined by

(z,y) €bp <= (xVy,y) €bp, & (xVy,z)€bp,,

where 0p, or Op, is the congruence on [y,1] or [z,1] induced by the p-filter D, or
D,., respectively, is a congruence on </ and [1]g, = D.
Proof. The relation 6p is evidently reflexive and symmetric. From the theory
of OML’s we know that
(z,y) € Op, iff (x Ay)V ((zep) A(yep)) € D,
iff (xAy)V ((xVy)ep) € D,.

427



We will show that
(%) p<q=0p,=0p,N|q, 1]

Indeed, let z,y € [g,1]. By (CC) we have (zVy)eqg= ((x Vy)ep)Vgq, thus

(z,y) € bp, iff (xAy)V ((xzVy)eq) €D,
iff (xAy)V((xVy)ep)Vge D,
iff (xAy)V ((xVy)ep) e D,
iff xAy)V ((xVy)ep) €D,
iff (z,y) € 0p,.

Let us prove transitivity of p. Assume that (z V y,y) € 0p,, (z Vy,x) € 0p,,
(yVzz2) €bp,, (yVzy) €bp,.

Let us show that 6p, N6p, =0p,,,-

Indeed, since z,y < x V y, by (x) we deduce

eDm\/y = 9Dm m [x \/ y7 1]27
9p,,, = 0p, N[z Vy, 1]2, hence also
fp,.,, =0p, Nbp, N[z Vy,1]*.

But 0p, Nbp, C [z,1]>N [y, 1]* = [z V y, 1]?, thus

GDI n 9Dy = opzvy.
Since xVy € [y, 1] and (yVz,y) € Op,, we have also (xVyVz,xVy) € Op,. Similarly,
xVzex 1 and (zVy,z) €fp, yield (xVyVz,zVz)€blp,.

Moreover, z Vy V z,x Vy € [z Vy V z,1], hence also

(x\/y\/z,x\/y)€9Dyﬂ[:z\/y,1]2:t9p =0p, Nbp,,

ovy
thus (zVyVz,zVy) €fp,. Thisand (xVyV 2,2V z) € 0p, due to transitivity
of Op, imply (x Vy,xVz2) € 0p,, and in view of (x V y,z) € 0p, we finally get
(xVz,z)€bp,.

Analogously, (z V y,y) € p, gives (xVyV z,yV z) € p,, which due to z VvV y V
z,yVz €lyVz,l]yields also (zVyVz,yVz) € 0p,. Further, (yV z,2) € 0p,, thus
(xVyVz,xVz)ebp, and hence (yV z,zV z) €lp..

Finally, (z V z,z) € 0p, and thus 6p is transitive.
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Now let us prove compatibility of p. Assume (z,y) € 0p, i.e. (xzVy,y) € Op,
and (z Vy,z) € 0p,. Since zV x € [z,1],2Vy € [y, 1], we obtain

(zvVaVy,zVa)€lp, and (2VaVy,zVy)clbp,.

Further, 0p,,. = 0p, N[z V 2,1]? yields (xVyV z,2Vz2) €0p,,. =0p, NOp, and
(xVyVz,axVz)elp,.

Similarly one can prove (z VyV z,y V z) € Op, which together with the previous
property gives (x V z,yV z) € 0p_. Now

(xoez,yez)=((xVz)*(yVz)?)€lp, and (rez)Vyez,yez)clp.,.
Since (re2)V (yez) > yez >z, we have also

(zoz)V(yez),yez)elp,..

Analogously one can prove ((ze2)V(yez),xez) € 0p_,. and hence (rez,yez) € Op.

Let us prove (zex,zey) € Op. We already know that (zV z,yVz) = ((rez)ez,
(yez)ez) € Op. We have to prove ((2Vz)*, (2Vy)Y) € 0p. From (z,y) € 0p we deduce
(xVy,z) € Op, and (xVyVz,xzVz) € Op,, thus also ((zVyVz)?, (£Vz)*) € Op,. Now
(2Va)*V(2VaVvy)® = (2Va)T, hence trivially ((2Vz)*V(2VaVy)®, (2VE)®) € Op ). -

We know that 6p, ... =0p,N[(xVyVz)* 1%, (xV2)*, (xVyVz)* € [(xVyVz),1]
and ((z VyV2)*, (zV2)*) €lp,, thus ((z V)", (xVyV2)") €0p,,, .-

Altogether, we have proved ((z VyV 2)%, (y V 2)*) € Op.

Analogously one can prove ((z Vy)¥,(x VyV 2)¥) € 0p.

Since (x VyV 2)*V¥ = (zVyV2)YVz by (CC), we obtain
(xVyVvz)=(aVyVz)!Vy=y, (xVyVz)Vo=(xVyVz)"
Similarly,
(xVyVv2) =@VyVz)*Ve=e, (@VyV2)*Vy=(zVyVz2)*Y,

thus ((zVyVz)*, (xVyVz)¥) € Op, which, with respect to ((zVy)Y, (xVyVz)Y) € Op
and ((zVx)®, (xVyVz)*) € 0p, gives ((zVy)Y,(zVz)*) € Op, and we are done. [

Theorem 1 allows us to show that for an OMIA with (CC) 7, the lattice Con .o/
is relatively pseudocomplemented (and hence distributive):
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Corollary 1. Let o = (A, ) be an OMIA with (CC), let I, J be the congruence
kernels of /. Then

(I,J)y:={x e AlxVieJforeachiel}

is the relative pseudocomplement of I with respect to J in the lattice Ck</ of
congruence kernels of </ .

Proof. It is immediate that I N (I,J) C J and that for each K € Cks/, if
INK CJ,then K C (I, J).

It is enough to show that (I, J) € Ck(«/). By the previous theorem it is sufficient
to prove that for each p € A, (I, J), = (I,J) N [p, 1] is a p-filter on an OML [p, 1].

We already know that both I, = I'N[p,1] and J, = J N [p, 1] are p-filters on [p, 1].
From the theory of OML’s we also know that for each p € A, (Ip, Jp) = {z € [p,1] |
x Vi€ J, for each i € I,,} is the relative pseudocomplement of I, with respect to J,
on [p, 1], hence a p-filter. We will show that (I, J,) = (I, J),.

Evidently, (I,,,J,) C (I,J)p, ie. zVy € J, for each y € I,. Now for each
iel,zViel, hencealsoxVi=xaV (xVi)eJ, CJ,ze(l,J),, completing the
proof. O

The situation for OMIA’s without (CC) is more complicated.

Theorem 2. Let o/ = (A,e,1) be an OMIA without (CC), let § € Con/, D €
[1]o. Then for each p € A, D, = D N [p,1] is a p-filter on an OML [p, 1] and the
following implications hold:

(x) for each x,p,q € A:
rz2qzp=(qepeDy=((xeq)A(zep)V((xeq)ep) Az)€E Dp)
(xx) for each x,y,p,q € A:

rzy>2qz2p= (((xeq)V(yegqgeq)V((xVy)eq) €D,
& (((xep)V(yep)ep)V((zVy)ep) € Dy)

Proof. Itis almost evident that D, is a p-filter on [p, 1]. To prove (x), assume
gep € D, =][l]p, ie. (1,qep) € 6. From this we deduce

(p,q) = (p,pVqg)=(lep,(qep)ep) €l
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and

(zog)N(zop)V((zeq)ep)Aa)=¢ (xzep)V ((xep)ep)Na)=(xep)Va=1,

hence also ((z e g) A (zep) V (((xeq)ep) Ax) € D,.
Let us prove (xx). Since D), is a p-filter on [p, 1], it generates a congruence p, on
[p, 1] by
(z,y) €0p, & ((xep)V(yep))ep)V((xVy)ep)c Dy

Thus (**) is equivalent to
r>2y=2qz2p=((z,y) €bp, iff (x,y) €bp,).
But this easily follows from the facts

Op, =0 Np,1] and Op, = 6N g, 1].

We are able to show that also the converse holds:

Theorem 3. Let o7 = (A,e) be an OMIA without (CC) and let D C A be a
subset where for each p € A the set D, = D N [p, 1] is a p-filter on an OML [p, 1].
Let the following conditions be satisfied:

(%) Vz,qe A:

z2qgz2p= (G’ eDp= (29NzP)V ((x!)’ Azx) € Dp)
(xx) Va,y,p,q € A:
r>zy>qzp=((xy) €0p, & (v,y) €0p,),

where 0p, or fp, are the congruences on [p,1] or [q,1] induced by the p-filters D,
or Dy, respectively. Then the relation p on A defined by

(z,y) €bp <= (xVy,x) €bp, & (xVy,y) €bp,

is a congruence on &/ with D = [1]g,,.

Proof. The condition (+*) immediately yields that for p < ¢ we have p, =
0p, N [g,1]?. The relation 6p is evidently reflexive and symmetric.
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Further, 0p,.,, = 0p, N[z Vy,1]?
pry = 6‘Dy N [,T Vy, 1]2,

hence 0p,,, = 0p, NOp,.
To prove transitivity of 8p, assume (z,y), (y, z) € 0p, i.e.

(xVy,y)€bp,,(xVy,x)€bp,,(yVzy) €lp,, (yVzz) €bp,.

From z Vy € [y,1] and (y V 2,y) € Op, we deduce (zVyV z,yV ) € 0p,, similarly
xVzex 1 and (zVy,z) €fp, yield (xVyVz,zVz)€blp,.

Since zVyVz,xVy € [xVy,1], we have also (zVyVz,zVy) € p, N[zVy,1]* =
9p,,, = 0p, NOp,, hence also (xVyV z,2Vy) € Op, and due to transitivity of fp,,
(xVy,xVz)ebp,.

This and (z Vy,x) € Op, give (x V z,x) € Op,.

Analogously we can show that (z V z, 2) € 0p,_ verifying that 0p is transitive.

Assume further that (z,y) € p and let us prove that (rez,yez) € fp. Using the
same arguments as in the proof of transitivity of 6p we obtain (zVyVz,zVz) € 6p,,
(xVyVzyVz)€bp,, thus

(xVyVzaxVvz)elp, N[xVz1?=0p,,. =0p, Nop.,
(xVyVzyVvz)elp NlyVvz1?=6p,,. =6p, Nop,,

hence (xVyVz,zVz)€lp,, (xVyVzyVz)€lp, and (xVz,yVz)€lp,.
Further, due to the compatibility of orthocomplementation in [z, 1] we derive ((zV
2, (yV 2)°) = (£ e 2,ye2) € O, and
((zo2)V(yez)yez) € bp,.
Since (ze2)V (yez) = yez >z, also
(zo2)V(yoz)yez)€bp,..
Analogously we prove ((ze2)V (yez),yez) € fp,,., and finally
(xoz,yez)ebp.
Let us prove that (zez,zey) € Op, ie. ((zVz)*, (2 Vy)Y) € Op.
First, (z,y) € 0p implies (x V z,yV z) = ((x e z) ez, (ye z)ez) € 0p. Further,
(xVy,x) €0p, yields (xVyVz,zVz)€lbp, and (xVyV2)?, (zV2)*) €lp,.
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We have (zVz)* = (zVa)*V(zVaVy)*, (tVyVz)* > z, thus ((zVz)*, (xVyVz)*) €
Op, gives also ((zVz)?, (rVyVz)®) = ((2Vo)*V(xVyVz)®, (xVyV2)®) € 0Dy, .-

Further, ((zVz)*V (2 VzVy)*, (2Vz)*) = ((2V2)*, (2 V2)*) € 0p,,,)" , Proving
that ((zVz)*, (x VyV2z)*) €bp.

Analogously we can prove ((z Vy V 2)Y,(z Vy)Y) € 0p. Hence to prove ((z V
x)®, (2 Vy)¥) € Op, due to transitivity of 0p it is enough to show

((xVyVvz2)* (xVyV=z)Y)ebp.
Due to (x,y) € 0p, it suffices to show
(xVyV2)*Vy=g, (xVyV2).
Let us denote a = x V y V z and prove
a*VxVy=g,a’VaVy.
This is equivalent with

(@ VaVy,a"Va’VaVy)€Op,.,, .
(@ VaVy,a®VvVa’VaVy) € lp

a¥vazVvy"®

Since a¥ Va Vy,a®*VaxVy,a*Va¥VaVy>ax,y, we have by (k)
a®VxVy,a®VvVa'VaVy)Elp . S (@®*VeVy,d®Va'VeVy) €lp
aTVaVy

zVy )

and the same when interchanging the elements x, y.
Hence it suffices to show

a””\/:b\/yngIVy LAV AVETH

The condition () for D, says that if > ¢ > p, then ¢* € D, (ie. (p,q) € 0p,)
implies (27,2P) € Op,. Let us apply this condition to the configuration

a

rVy
T )

Evidently, (z,2 Vy) € 0p,,(y,x Vy) € 0p,, thus by (x)

(a®,a"v¥) € Op,,

(a¥,a*VY) € Op,,
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and

(a’z VaVy, axVy) € 9D'J;7
(a¥VaVvy,a®™Y)ebp,.

Since a® V z V y,a” ¥ > x V y, by (**) also

(a®VaVy,a™?) e bp

zVy )

(a¥VxVy,a™?) ebp

zVy )

which due to transitivity of 0p,,, gives (a® VxVy,a¥ vV Vy) € bp,,,, as desired.

This completes the proof of fp € Con 7. (]

Example. The following example shows that the condition (*) in the previous
theorem is not superfluous. Let o7 = (A4, e,1) be an OMIA with the Hasse diagram
in Fig. 1.

All sections here are OML’s; only two of them, [0,1] and [¢, 1] are not Boolean
algebras. Let the involutions on Boolean sections be defined as usual on Boolean

algebras, and for the section [0,1] we have 2° = a, a° = x, y° = b, B° =y, 0 = d,

d=v, 0’ =e, e =w, u’ =¢,  =u.

For the section [c, 1] put
rzec=a‘=w,wec=w'=x,yec=y =v,vec=10"=y.
Then the operation e on A is defined by
rey=(zVy),
and (A,e,1) is an OMIA (without (CC)).
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Consider the equivalence 6 on A as visualized in Fig.1. One can easily verify that
for D = [1]g = {1, u}, the filters D, = D N [p, 1] satisfy the condition (*x*), but not
the condition (*): we have y > ¢ > 0,c” = ce 0 =u € Dy but

W ALY V() Ay)=(wAb)V (0" Ay) =0V (dAy) =0 ¢ Dy.
Thus 6 ¢ Con(&).
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