
MATEMATIQKI VESNIK

59 (2007), 135–142
UDK 517.977

originalni nauqni rad
research paper

WEYL’S AND BROWDER’S THEOREM
FOR AN ELEMENTARY OPERATOR

F. Lombarkia and A. Bachir

Abstract. Let H be a separable infinite dimensional complex Hilbert space and let B(H)
denote the algebra of bounded operators on H into itself. The generalized derivation δA,B is
defined by δA,B(X) = AX − XB. For pairs C = (A1, A2) and D = (B1, B2) of operators, we
define the elementary operator ΦC,D by ΦC,D(X) = A1XB1 − A2XB2. If A2 = B2 = I, we
get the elementary operator ∆A1,B1 (X) = A1XB1 − X. Let dA,B = δA,B or ∆A,B . We prove
that if A, B∗ are log-hyponormal, then f(dA,B) satisfies (generalized) Weyl’s Theorem for each
analytic function f on a neighborhood of σ(dA,B), we also prove that f(ΦC,D) satisfies Browder’s
Theorem for each analytic function f on a neighborhood of σ(ΦC,D).

1. Introduction

Let B(H) denote the algebra of bounded linear operators acting on infinite
dimensional separable Hilbert space H. If A ∈ B(H) we shall write ker(A) and
ran(A) for the null space and the range of A, respectively. By α(A) and β(A) we
denote the dimension of the kernel of A and the codimension of the range of A,
respectively. Also write σ(A), σa(A), iso σ(A) for the spectrum, approximate point
spectrum and the set of the isolated points of the spectrum of A, respectively. If
A ∈ B(H), we say that A has the single-valued extension property at λ0, SVEP
(for short), if for every open disk Dλ0 centered at λ0 the only analytic function
f : Dλ0 → H which satisfies the equation (λI − A)f(λ) = 0 for all λ ∈ Dλ0 is the
function f ≡ 0.

Let A be a bounded linear operator on a Hilbert space H and 0 < p ≤ 1.
A is called a p-hyponormal operator if (AA∗)p ≤ (A∗A)p. Especially, A is called
a hyponormal operator if p = 1 and semi-hyponormal if p = 1

2 . A is called a
log-hyponormal operator if A is invertible and log(AA∗) ≤ log(A∗A). Since log :
(0,∞) → (−∞,∞) is operator monotone, every invertible p-hyponormal operator
is log-hyponormal. But the converse is not true [7]. However it is interesting
to regard log-hyponormal operators as 0-hyponormal operators [7, 21]. The idea
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of log-hyponormal operator is due to Ando [3] and the first paper in which log-
hyponormality appeared is [13]. See [3, 7, 21] for properties of log-hyponormal
operators. An operator A ∈ B(H) has a unique polar decomposition A = U |A|,
where |A| = (A∗A)

1
2 and U is a partial isometry. If A = U |A|, then the Aluthge

transform of A is defined by Ã = |A| 12 U |A| 12 .

The class of operators A,B∗ such that ker(dA,B) ⊆ ker(dA∗,B∗) is large and
includes in particular the class of log-hyponormal operators [17]. It is well known
that if A,B∗ are log-hyponormal operators, then ker(dA,B) ⊆ ker(dA∗,B∗) and
asc(dA,B) ≤ 1; this implies that dA,B has the single valued extension property and
hence satisfies Browder’s Theorem [11]. Here asc(dA,B) denote the ascent of dA,B .

The plan of this paper is as follows. In section 2 we prove that if C = (A1, A2)
and D = (B1, B2) are pairs of operators and A1, A2, B

∗
1 , B∗

2 are log-hyponormal
such that A1 doubly commutes with A2 and B1 doubly commutes with B2, then
asc(ΦC,D) ≤ 1. In section 3 we shall prove that if A,B∗ ∈ B(H) are log-
hyponormal, then dA,B is isoloid and the range of dA,B−λ is closed for each isolated
point λ in the spectrum of dA,B . In section 4 we shall show that if A,B∗ ∈ B(H)
are log-hyponormal, then the Weyl’s Theorem holds for f(dA,B) for every analytic
function f defined on a neighborhood U of σ(dA,B). Finally we shall prove the
Browder’s Theorem for the elementary operator ΦC,D.

2. The ascent of an elementary operator

Recall that the finite ascent property implies SVEP. In the following we prove
that if C = (A1, A2) and D = (B1, B2) are pairs of operators and A1, A2, B

∗
1 , B∗

2 are
log-hyponormal such that A1 doubly commutes with A2 and B1 doubly commutes
with B2, then asc(ΦC,D) ≤ 1.

Lemma 2.1. Let A,B ∈ B(H) be log-hyponormal operators such that A doubly
commutes with B. Then AB is log-hyponormal.

Proof. If A and B are log-hyponormal, then A and B are invertible and

log |A|2 ≥ log |A∗|2, log |B|2 ≥ log |B∗|2.

Since AB = BA and AB∗ = B∗A it follows that |AB|2 = |A|2|B|2 = |B|2|A|2, and

|(AB)∗|2 = |A∗|2|B∗|2 = |B∗|2|A∗|2.

Hence

log |AB|2 = lim
p→0+

(|AB|2)p − 1
p

= lim
p→0+

(|A|2)p(|B|2)p − 1
p

= lim
p→0+

((|A|2)p − 1
)((|B|2)p − 1

)
+

(|A|2)p +
(|B|2)p − 2

p

= log |A|2 + log |B|2.
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Similarly we have log |(AB)∗|2 = log |A∗|2 + log |B∗|2. Hence AB is invertible and

log |AB|2 − log |(AB)∗|2 = log |A|2 − log |A∗|2 + log |B|2 − log |B∗|2 ≥ 0.

Thus AB is log-hyponormal.

Lemma 2.2. If A and B∗ are log-hyponormal, then asc
(
∆A,B

) ≤ 1.

Proof. It is known that if A and B∗ are log-hyponormal, then ker(dA,B) ⊆
ker(dA∗,B∗) [17] and this by [10] implies that ker(∆A,B) ⊆ ker(∆A∗,B∗) and the
result follows by [10].

Theorem 2.3. Let C = (A1, A2), D = (B1, B2) be pairs of operators in B(H).
If A1, B

∗
1 , A2, B

∗
2 are log-hyponormal operators such that A1 doubly commutes with

A2 and B1 doubly commutes with B2, then asc
(
ΦC,D

) ≤ 1.

Proof. We have
ΦC,D = A2

(
∆(A−1

2 A1),(B1B−1
2 )

)
B2

Since A−1
2 and (B−1

2 )∗ = (B∗
2)−1 are log-hyponormal [3, Lemma 1.1] and A−1

2 A1

and B1B
−1
2 are log-hyponormal by Lemma 2.1, then by applying Lemma 2.2 we

obtain

asc
(

∆(A−1
2 A1),(B1B−1

2 )

)
≤ 1.

Since

kerΦn
C,D = An

2

(
ker∆n

(A−1
2 A1),(B1B−1

2 )

)
Bn

2

= A2

(
ker∆(A−1

2 A1),(B1B−1
2 )

)
B2 = kerΦC,D,

it is asc
(
ΦC,D

) ≤ 1.

Corollary 2.4. Let C = (A1, A2), D = (B1, B2) be pairs of operators in
B(H). If A1, B

∗
1 , A2, B

∗
2 are log-hyponormal operators such that A1 doubly com-

mutes with A2 and B1 doubly commutes with B2, then ΦC,D has the single valued
extension property.

Proof. The proof follows from Theorem 2.3 and [18, Proposition 1.8].

Corollary 2.5. Let C = (A1, A2), D = (B1, B2) be pairs of operators in
B(H) and A1, B

∗
1 , A2, B

∗
2 be log-hyponormal operators such that A1 doubly com-

mutes with A2 and B1 doubly commutes with B2. A necessary and sufficient con-
dition for ran(ΦC,D) to be closed is that ran(ΦC,D) + kerΦC,D is closed.

Proof. Since asc
(
ΦC,D

) ≤ 1, the proof follows from [18, Proposition 4.10.4].

3. The range of an elementary operator

Recall that A ∈ B(H) is said to be isoloid if λ ∈ isoσ(A) implies λ ∈ σp(A).
In this section, we prove that if A and B∗ are log-hyponormal, then dA,B is isoloid
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and ran(dA,B−λ) is closed for each λ ∈ iso σ(dA,B). We denote by LA the operator
of left multiplication by A and by RB the operator of right multiplication by B.

Lemma 3.1. If A = U |A| is the polar decomposition of A and Ã = |A| 12 U |A| 12
its Aluthge transform, then

|A| 12 A = Ã|A| 12 and A
(
U |A| 12 )

=
(
U |A| 12 )

Ã.

Lemma 3.2. Let A,B ∈ B(H). If A,B are invertible, then LARB is invertible.

Proof. Since σ(LARB) =
⋃{σ(zA) : z ∈ σ(B)} by [12, Theorem 3.2] we

deduce that LARB is invertible.
It is well known that dA,B is isoloid when A and B∗ are hyponormal [11,

Theorem 2.7]. The following theorem says that dA,B retains this property in the
case in which A and B∗ are log-hyponormal.

Theorem 3.3. If A and B∗ are log-hyponormal, then dA,B is an isoloid.

Proof. The case dA,B = ∆A,B .
Let λ ∈ iso σ(∆A,B) such that λ 6= −1, then (∆A,B−λ)(X) = AXB−(1+λ)X

and it follows from [12, Theorem 3.2] that σ(∆A,B−λ) =
⋃{σ((−(1+λ)+zA) : z ∈

σ(B)}. Since iso σ(A) = isoσ(Ã) = isoσ( ˜̃A) and iso σ(B) = iso σ(B̃) = iso σ( ˜̃
B) by

[2, Corollary 2.3], we deduce that iso σ(∆A,B) = iso σ(∆
Ã,B̃

) = iso σ(∆˜̃A,˜̃B). The

operators A and B∗ being log-hyponormal, it follows from [21] that Ã (resp. B̃∗)

is semi-hyponormal and from [2] that ˜̃
A (resp. ˜̃

B∗) is invertible and hyponormal,
and the result follows from [11, Theorem 2.7] since σp(∆˜̃A,˜̃B) = σp(∆A,B).

Let λ = −1,

λ ∈ iso σ(∆A,B) ⇒ 0 ∈ iso σ(∆A,B − λ) ⇒ 0 ∈ isoσ(LARB).

This is a contradiction with Lemma 3.2.
The case dA,B = δA,B .
Let λ ∈ iso σ(δA,B). Then 0 ∈ iso σ(δA,B − λ), where σ(δA,B − λ) = σ(A) −

σ(B− λ) [12]. Hence iso σ(δA,B) = iso σ(δ
Ã,B̃

) = iso σ(δ˜̃A,˜̃B). The same arguments

cited above guarantees that σp(∆˜̃A,˜̃B) = σp(∆A,B).

Remark 3.4. Note that in the above theorem we utilize the fact that Ã∗ is
p-hyponormal if and only if

(
Ã

)∗
p-hyponormal.

Theorem 3.5. If A,B∗ are log-hyponormal, then dA,B − λ has closed range
for each λ ∈ isoσ (dA,B).

Proof. Let dA,B = ∆A,B and λ ∈ iso σ(∆A,B) such that λ 6= −1. Let Y ∈
ran(∆

Ã,B̃
− λ) for all λ ∈ iso σ(∆

Ã,B̃
). Then there exists (Xn) in B(H) such that

ÃXnB̃ − (1 + λ)Xn −→ Y.
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Let B̃ = Ũ |B̃| be the polar decomposition of B̃. Then

|Ã| 12 ÃXnB̃Ũ |B̃| 12 − (1 + λ)|Ã| 12 XnŨ |B̃| 12 −→ |Ã| 12 Y Ũ |B̃| 12 .

From Lemma 3.1 we have |Ã| 12 Ã = ˜̃
A|Ã| 12 and B̃(Ũ |B̃| 12 ) = (Ũ |B̃| 12 ) ˜̃

B. Hence

˜̃
A|Ã| 12 XnB̃Ũ |B̃| 12 − (1 + λ)|Ã| 12 XnŨ |B̃| 12 −→ |Ã| 12 Y Ũ |B̃| 12
˜̃
A|Ã| 12 XnŨ |B̃| 12 ˜̃

B − (1 + λ)|Ã| 12 XnŨ |B̃| 12 −→ |Ã| 12 Y Ũ |B̃| 12 .

Since the operators A and B∗ are log-hyponormal, it follows from [21] that Ã

(resp. B̃∗) is semi-hyponormal and from [2] that ˜̃
A (resp. ˜̃

B∗) is invertible and
hyponormal, and so from [11, Theorem 2.7] (∆˜̃A,˜̃B − λ) has closed range for each

λ ∈ iso σ(∆˜̃
A,

˜̃
B

) = isoσ(∆
Ã,B̃

). Hence there exists Z ∈ B(H) such that

˜̃
A|Ã| 12 XnŨ |B̃| 12 ˜̃

B − (1 + λ)|Ã| 12 XnŨ |B̃| 12 −→ ˜̃
AZ

˜̃
B − (1 + λ)Z.

Since |Ã| 12 and Ũ |B̃| 12 are invertible, from Lemma 3.2 L|Ã| 12 R
Ũ |B̃| 12 is invertible.

So there exists X ∈ B(H) such that Z = |Ã| 12 XŨ |B̃| 12 . Hence

˜̃
AZ

˜̃
B − (1 + λ)Z = ˜̃

A|Ã| 12 XŨ |B̃| 12 ˜̃
B − (1 + λ)|Ã| 12 XŨ |B̃| 12 .

From the uniqueness of the limit we obtain

˜̃
A|Ã| 12 XŨ |B̃| 12 ˜̃

B − (1 + λ)|Ã| 12 XŨ |B̃| 12 = |Ã| 12 Y Ũ |B̃| 12
|Ã| 12 ÃXB̃Ũ |B̃| 12 − (1 + λ)|Ã| 12 XŨ |B̃| 12 = |Ã| 12 Y Ũ |B̃| 12 .

Then ÃXB̃− (1+λ)X = Y , and hence Y ∈ ran(∆
Ã,B̃

−λ), and thus ∆
Ã,B̃

−λ has
closed range for λ ∈ isoσ(∆

Ã,B̃
). The same argument implies that (∆A,B − λ)has

closed range for each λ ∈ isoσ(∆A,B) such that λ 6= −1.
The case dA,B = δA,B .
Let λ ∈ isoσ(δA,B). Then 0 ∈ iso σ(δA,B − λ). The same arguments implies

that (δA,B − λ) has closed range for each λ ∈ isoσ(δA,B).

4. Weyl’s and Browder’s Theorem

An operator A ∈ B(H) is called Fredholm if it has closed range, finite dimen-
sional null space, and its range has finite co-dimension. The index of a Fredholm
operator is given by

I(A) := α(A)− β(A).

A bounded operator A is said to be a Weyl operator if it is Fredholm of index
0. Recall that the ascent of an operator A, denoted by asc(A), is the smallest
nonnegative integer n such that ker(An) = ker(An+1). Analogously, the descent of
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an operator A, denoted by des(A), is the the smallest nonnegative integer n such
that ran(An) = ran(An+1). It is well known that if asc(A) and des(A) are both
finite then asc(A) = des(A) [16]. A ∈ B(H) is said to be a Browder operator if
A is Fredholm with asc(A) = des(A) < ∞. Note that if A is Browder then A is
Weyl, (see [15]). The essential spectrum σe(A), the Weyl spectrum σw(A) and the
Browder spectrum σb(A) are defined by (see [14])

σe(A) : = {λ ∈ C : A− λ is not Fredholm }
σw(A) : = {λ ∈ C : A− λ is not Weyl }
σb(A) : = {λ ∈ C : A− λ is not Browder }.

Let σ0(A) denote the set of Riesz points of A and σ00(A) = {λ ∈ iso σ(A) : 0 <
dimker A < ∞}. Then

iso σ(A) \ σe(A) = iso σ(A) \ σw(A) = σ0(A) ⊆ σ00(A).

Note that A ∈ B(H) satisfies Weyl’s Theorem (resp. Browder’s Theorem) if
σw(A) = σ(A) \ σ00(A) (resp. σw(A) = σ(A) \ σ0(A)). A generalization of these
notions are given in [4]; precisely, A ∈ B(H) is said to be generalized Fredholm
or B-Fredholm, if there exists a positive integer n for which the induced operator
An : ran(An) → ran(An) is Fredholm in the usual sense, and generalized Weyl, if
in addition An has index zero. The generalized Weyl’s spectrum σBw(A) of A is
defined to be the set

{λ ∈ C : (A− λ) is not generalized Weyl },
and we say that A satisfies generalized Weyl’s Theorem if σBw(A) = σ(A) \E(A),
where E(A) is the set of all isolated eigenvalues of A. Note that if A satisfies
generalized Weyl’s Theorem then A satisfies generalized Browder’s Theorem, see
[4, Corollary 2.6]. Moreover, in [6] it is shown that if A satisfies generalized Weyl’s
Theorem, then A satisfies Weyl’s Theorem, but the reverse implication in general
fails [4, Example 4.1], and if A satisfies generalized Browder’s Theorem, then A
satisfies Browder’s Theorem.

Let A,B∗ ∈ B(H) be log-hyponormal. Then the SVEP of dA,B implies that
the Browder’s Theorem holds for dA,B . Recall [9, Theorem 2.5] that if an operator
A ∈ B(H) has SVEP, then A satisfies Weyl’s Theorem if and only if ran (A− λ) is
closed for every λ ∈ σ00 (A). Hence in view of Theorem 3.2, dA,B satisfies Weyl’s
Theorem.

Theorem 4.1. Let A,B∗ ∈ B(H) be log-hyponormal. If f is analytic on a
neighbourhood of σ (dA,B), then f (dA,B) satisfies Weyl’s Theorem.

Proof. SVEP being stable under the functional calculus [18], dA,B has SVEP
=⇒ f (dA,B) has SVEP for each f analytic in a neighbourhood of σ (dA,B). This
implies that σb (f (dA,B)) = σw (f (dA,B)) [14]. Since the spectral mapping theorem
holds for σb, we have

σw (f (dA,B)) = σb (f (dA,B)) = f (σb (dA,B)) = f (σw (dA,B)) .
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To complete the proof we have to show that

f (σw (dA,B)) = σ (f (dA,B))�σ00 (f (dA,B)) .

This follows from Theorem 3.1 and a limit argument applied to [20, Proposition 1].

Theorem 4.2. Let C = (A1, A2) , D = (B1, B2) be pairs of operators in B(H)
and A1, B

∗
1 , A2, B

∗
2 be log-hyponormal operators such that A1 doubly commutes with

A2 and B1 doubly commutes with B2. If f is analytic on a neighborhood of σ (ΦC,D),
then f (ΦC,D) satisfies Browder’s Theorem.

Proof. From Corollary 2.2 ΦC,D has the single valued extension property. This
implies that ΦC,D satisfies Browder’s Theorem [10]. SVEP being stable under the
functional calculus [18], ΦC,D has SVEP =⇒ f (ΦC,D) has SVEP for each f analytic
in a neighborhood of σ (ΦC,D). Hence f (ΦC,D) satisfies Browder’s Theorem.

The operator A is said to be Drazin invertible if there is an operator T and a
nonnegative integer n ∈ N such that

AnTA = An, TAT = T and TA = AT.

It is known that A is Drazin invertible if and only if both asc(A) and des(A) are
finite [19].

Theorem 4.3. Let A,B∗ ∈ B(H) be log-hyponormal. If f is analytic on a
neighborhood of σ (dA,B), then f (dA,B) satisfies generalized Weyl’s Theorem.

Proof. Let λ ∈ σ (dA,B) \ σBw (dA,B). Since dA,B has SVEP, it follows
upon arguing as in the proof of [4, Theorem 3.12] and an application of The-
orem 3.1 that λ ∈ isoσ (dA,B) = E (dA,B). Conversely, if λ ∈ E (dA,B), then
dA,B − λ is Fredholm of index 0 by Theorem 3.1 and Theorem 3.2. Hence dA,B

satisfies generalized Weyl’s Theorem. Let f be analytic on a neighborhood of
σ (dA,B), and let σD (dA,B) = {λ ∈ C : (dA,B − λ) is not Drazin invertible } de-
note the Drazin spectrum of dA,B . Then σD (f (dA,B)) = f (σD (dA,B)) [4, Corol-
lary 2.4]. Since dA,B and f (dA,B) have SVEP, σD (dA,B) = σBw (dA,B) and
σD (f (dA,B)) = σBw (f (dA,B)) [4, Theorem 3.12]. Hence

f (σBw (dA,B)) = f (σ (dA,B)�E (dA,B)) = σBw (f (dA,B)) .

The isoloid property of dA,B , Theorem 3.1 implies that

σBw (f (dA,B)) = σ (f (dA,B))�E (f (dA,B))

[5, Lemma 2.9], and the proof is complete.
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