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ON THE INVERTIBILITY OF AAT™ — ATA IN A HILBERT SPACE
Safa Menkad and Said Guedjiba

Abstract. Let H be a Hilbert space and B(H) the algebra of all bounded linear operators
on H. In this paper, we study the class of operators A € B(H) with closed range such that
AAT — AT A is invertible, where AT is the Moore-Penrose inverse of A. Also, we present new
relations between (AA* + A*A)~! and (A + A*)~1. The present paper is an extension of results

from [J. Benitez and V. Rakocevié¢, Appl. Math. Comput. 217 (2010) 3493-3503] to infinite-
dimensional Hilbert space.

1. Introduction

Let H be a Hilbert space and B(H) be the set of all bounded linear operators on
H. Throughout this paper, the range, the null space and the adjoint of A € B(H)
are denoted by N(A), R(A) and A*, respectively. An operator A € B(H) is said
to be positive if (Az,x) > 0. An operator P € B(H) is said to be idempotent
if P2 = P. An orthogonal projection is a self-adjoint idempotent. Clearly, any
orthogonal projection is positive. For A € B(H), if there exists an operator AT €
B(H) satisfying the following four operator equations:

AATA=A, ATAAT = AT, AAY = (AAT)*, ATA=(ATA)",

then AT is called the Moore-Penrose inverse (for short, MP inverse) of A. It is well
known that A has the MP inverse if and only if R(A) is closed, the MP inverse
of A is unique [5]. It is easy to see that R(A1) = R(A*), AAT is the orthogonal
projection of H onto R(A) and that AT A is the orthogonal projection of H onto
R(A*). A € B(H) is said to be an EP operator, if R(A) is closed and AAT = AT A
(see [1,7]). If A is an EP operator, then AAT — AT A is not invertible.

In this paper we study the class of operators A € B(H) with closed range, such
that AAT — At A is invertible. Since AA™ and AT A are orthogonal projections,
the question of invertibility of AAT — AT A is strongly related to the invertibility
of the difference P — @, where P, ) are orthogonal projections on a Hilbert space.
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Buckholtz [3,4] has proved that the operator P — @ is invertible if and only if H is
the direct sum H = R(P)® R(Q) of the ranges of P and Q. In this case there exists
a linear idempotent M with range R(P), kernel R(Q) and (P—Q)~! = M +M*—1
(see [11,12,13] for further references).

Recently, J. Benitez and V. Rakocevié (see [2]) obtained interesting results
concerning the nonsingularity of AAT — AT A, where A is a square matrix. Notice
that in [2] the finite-dimensional methods are mostly based on the CS decomposition
and on the rank of a complex matrix. In the present paper we extend results
obtained in [2] to infinite-dimensional Hilbert space.

2. Preliminary results

In this section, we present some Lemmas, needed in the sequel.
LEMMA 2.1. [9] Let A and B be in B(H). Then the following statements hold:
R(A) is closed if and only if R(A) = R(AA*),
R(A) is closed if and only if R(A*) is closed,
R(A) = R(AA")%,
R(A) + R(B) = R((AA* + BB*)3).
LEMMA 2.1. [6,8] Let A € B(H) be a positive operator. Then the following
statements hold:
(i) R(A) C R(A?) and R(A) = m, where K denotes the closure of K,
(i) R(A) is closed if and only if R(A) = R(A?),
(iii) R(A) = H if and only if A is invertible.

LEMMA 2.1. [10] If P € B(H) is an idempotent and |P|| < 1, then P is an
orthogonal projection.

3. Main results

In this section we find several equivalent conditions that ensure the invertibility
of AAT — At A, where A € B(H) has the closed range.

THEOREM 3.1. If A € B(H) have closed range, then the following statements
are equivalent:

(i) AAT — AT A is invertible,
(i) R(A)® R(A*) =H,
(iii) There exists a bounded linear idempotent P with range N(A*) and kernel
N(A),
(iv) AAT + At A is invertible and | A(AT)? Al < 1,
(v) AA* 4+ A*A is invertible and R(A) N R(A*) = {0},
(vi) AA* — A*A is invertible and R(A) N R(A*) = {0}.
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Proof. Since AAT and A* A are orthogonal projections onto R(A) and R(A*)
respectively, then the equivalence of (i), (ii) and (iv) follows from [4].

(ii)«(iii). Assume first that R(A) @ R(A*) = H. Then, there exists a bounded
linear idempotent M in B(H) such that R(M) = R(A) and N(M) = R(A*).

Let us define P = I — M*. Then P is an idempotent with range N(M*)
and Kernel R(M*). By using relations N(B*) = R(B)* and R(B*) = N(B)*,
which are valid for closed range operators B € B(H), we get R(P) = N(A*) and
N(P) = N(A).

Conversely, if P is an idempotent with range N(A*) and kernel N(A), then
I — P* is idempotent with range R(A) and kernel R(A*). According to the space
decomposition H = R(I — P*) ® N(I — P*), we obtain (ii).

(i) (v). Using Lemma 2.1, we obtain R((AA* + A*A)2) = R(A) + R(A*).
Since (AA* +A*A)% is a positive operator, it follows from Lemma 2.2, that R(A)+
R(A*) = H if and only if (AA* + A*A)? is invertible, so AA* + A*A is invertible.
Hence, (ii)<(v).

(v)=-(vi). Assume that (v) holds. By the equivalence (v)<(iii), there exists an
idempotent P such that R(P) = N(A*) and N(P) = N(A). This implies A*P =0
and A(] — P) = 0. Hence, AP = A and P*A = 0.

Then we easily obtain (AA* + A*A)(I —2P) = (AA* — A*A). Since I — 2P is
invertible (because (I —2P)? = I), we get that AA* — A*A is invertible.

(vi)=(v). Suppose that (vi) holds. From the invertibility of AA* —A*A, we
deduce H = R(AA* — A*A) = R(A) + R(A*). According to Lemmas 2.1 and 2.2,
(AA* + A*A)7 is invertible. Hence AA* + A*A is invertible. m

REMARK 3.2. If P is the idempotent given by Theorem 3.1, then from the
proof of (ii)<(iii), we deduce

ATAP =ATA, AATP =0, AAT(I—-P*)=1-P*, ATAP*=P*
Using these results, we obtain
(AAT —ATA) (I -P—-P)=I1I-P" +P* =1
Taking the adjoint, we get
(I —P—P"(AAT —ATA) =1

Hence, (AAT — ATA)"'=1- P — P~
From Theorem 3.1, we see that if AAT — AT A is invertible, then AA* + A*A
is invertible. In the following example we show that the converse is not true.

EXAMPLE 3.3. Consider the real Hilbert space {5 and let A€ B({2) be the left
shift, ie. A(z1,22,...) = (w2, 23,...), then A*(x1,29,...) = (0,21, 22,...) and
AT = A*. In this case AAT = I and AT A(z1,72,...) = (0,22,23,...). Then,
AA* + A* A is invertible and AAT — AT A is not injective. Hence AAT — AT A is
not invertible.
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THEOREM 3.4. Let A € B(H) have closed range, then the following statements
are equivalent:

(i) AAT — AT A is invertible,
(if) A+A* is invertible and there exists an idempotent P € B(H) such that AP = A

and P*A =0,
(iii) A—A* is invertible and there exists an idempotent P € B(H) such that AP = A
and P*A =0,

(iv) A+ A* is invertible, A(A+ A*)"1A = A and A*(A+ A*)"1A =0,
(v) A— A* is invertible, A(A— A*)"1A= A and A*(A— A*)"1A=0.
Proof. (i)=-(ii). Since AAT —A*A is invertible, by the proof of Theorem

3.1,(v)e(vi), there exist an idempotent P € B(H), such that AP = A and P*A =
0. Then it is easy to check that

(A+ A" )(I— P —P*)(A+ A*) = A"A — AA*.

We conclude that R(A*A — AA*) C R(A+ A*) and N(A+ A*) C N(A*A— AA*).
Since, by Theorem 3.1, A*A — AA* is invertible. Hence, A + A* is invertible.

(ii) =(1). If A+ A* is invertible, we easily obtain R(A) + R(A*) = H. On
the other hand, if P € B(H) is an idempotent, such that AP = A and P*A = 0,
then R(A*) C R(P*) and R(A) C N(P*). Since R(P*) N N(P*) = {0}, we obtain
R(A) N R(A*) = {0}. Consequently, R(A) ® R(A*) = H. Thus, by Theorem 3.1,
AAT —AT A is invertible.

(il)<(iii). Suppose that P € B(H) is idempotent such that AP = A and
P*A =0. then (A+A*)(2P—1I) = A— A*. Since 2P — [ is invertible, then A+ A*
is invertible if and only if A — A* is invertible. Hence,(ii) < (iii).

(ii)=(iv). From AP = A and P*A = 0, we have (A+ A*)P = A. Since A+ A*
is invertible, then P = (A + A*)~'A. This implies A(A + A*)"1A = AP = A and
A A+ A TA=A"P=0

(iv)=-(ii). Let us define P = (A + A*)7!A. From A(A+ A*)"'A = A and
A*(A+ A*)7LA =0, we easily obtain P2 = PJAP = A and A*P =0

The proof of (iii)<(v) works in the same way as in (i) < (iv). m

REMARK 3.5. The existence of the idempotent P, such that AP = A and

P*A = 0is necessary for the invertibility of AAT — A A; for example, let A € B(H)
be self-adjoint invertible, then A + A* is invertible, but AAT — ATA = 0.

COROLLARY 3.6. Let A € B(H) have closed range. If AAT—AT A is invertible,
then the idempotent P given by Theorem 3.4 is unique and R(P) = N(A*) and
N(P)= N(A).

Proof. Let P be the idempotent given in Theorem 3.4. From the proof of
Theorem 3.4, (ii)=(iv), we get P = (A + A*)~1A. This proves the uniqueness of
the idempotent P and the equality N(P) = N(A).
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Now, we prove that R(P) = N(A*). From A*P = (P*A)* = 0, we get the
inclusion R(P) C N(A*). To prove the reverse inclusion we first, observe that

(A+ AT — AAT) = A(T — AAT) + [(I — AAT)A]* = A(T — AAT).
Hence, we get
I—AAY = (A+ A")TA(I — AAT) = P(I — AA™).

From [ —AA*T = P(I— AA"), we obtain R(I—AA") C R(P). Since R(I—AA™) =
N(AA') = N(A*), Then N(A*) C R(P). Consequently, R(P) = N(A*). m
COROLLARY 3.7. Let A € B(H) have closed range. If AAT™ —A1 A is invert-
ible. Then
(i) (AAT —ATA)1 = (A+ A*)"1(A*A— AA")(A+ A",
(i) (AA* — AT A) "1 = (A — A") "L (AA* — A*A)(A — AL,

Proof. Let P be the idempotent given by Theorem 2.1.
(i) From the proof of Theorem 3.4, (i)=-(ii), we get

(A+AYI—-P—-P*)(A4+ A")=A"A— AA".
Using the equality I — P — P* = (AAT — AT A)~! and the invertibility of A + A*
(guaranteed by Theorem 3.4), we deduce the equality (i).
(ii) From AP = A and P*A = 0, we get

(A—AYI—-P—-P")(A—-A") = AA* — A*A.
The rest of the proof of (ii) is similar to the proof of (i). m

THEOREM 3.8. Let A € B(H) have closed range, then the following statements
are equivalent:

(i) AAT — AT A is invertible,
(ii) AA* + A*A is invertible and A* A(AA* + A*A)"tA*A = A* A,
(ili) AA* — A*A is invertible and A*A(A*A — AA*)71A*A = A*A.

Proof. (i)=-(ii). Assume that (i) holds. Using Theorems 3.1 and 3.4, we
get AA* + A*A is invertible and there exists an idempotent P € B(H), such
that AP = A and P*A = 0. Then (AA* + A*A)P = A*A, which implies P =
(AA* + A*A)"1A*A. Hence A*A(AA* + A*A)"1A*A = A*A.

(ii)=>(i). Assume that (i) holds. Let P = (AA* + A*A)"1A*A. From hy-
potheses, it is easy to get P? = P and N(P) = N(A*A). Since N(A*A) = N(A)
(see Lemma 2.1), then N(P) = N(A).

On the other hand, we have:

A*A(AA* + A"A)PAA" = A*A— A"A(AA* + A*A)PA*A = 0.
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Hence, AA*P = 0. So R(P) C N(A*). Since R(P)+ N(P) = H, we get N(A) +
N(A*) = H. This implies N(A)tNN(A*)* = {0}. Therefore R(A)NR(A*) = {0}.
Using Theorem 3.1 (v), we obtain AAT — A* A is invertible.

(i) (iii). This is similar as (i)=-(ii) and (ii)=(i). =

From the above proof and Theorem 3.4, we obtain the following corollary.

COROLLARY 3.9. Let A € B(H) with closed range, such that AAT — AT A is
invertible. If P is the idempotent given by Theorem 3.1, then
(i) P = (AA* + A*A)1A*A = (A*A — AAY)TA*A = (A+ A) 1A = (A -
A*)flA,
(i) A(AA* + A*A)TA*A = A(A"A — AA*) 1A A = A,
(iii) A*(AA* + A*A)71A*A = A*(A*A — AA*)1A*A = 0.
As we have seen in Theorem 3.1, AAT —A™ A is invertible if and only if R(A)®

R(A*) = H. But what happens if H is the orthogonal direct sum R(A)®+ R(A*) =
H of the ranges of A and A*?

In the next result we study the class of operators A with closed range such
that R(A)L = R(A*).

THEOREM 3.10. Let A € B(H) have closed range, then the following state-
ments are equivalent:

(i) R(A) @ R(A*)=H,
(i) AAT+ATA=1T
(iii) (AAT —ATA?Z =1,
(iv) A+ A* is invertible and there exists a unique orthogonal projection P such that
AP = A and PA =0,

(v) A—A* is invertible and there exists a unique orthogonal projection P such that
AP = A and PA = 0.

Proof. (1)< (ii). It is well know that R(A) @' R(A*) = H if and only if
R(A)*+ = R(A*). Since AAT and AT A are orthogonal projections onto R(A) and
R(A*) respectively, then R(A)* = R(A*) if and only if A¥A=1— AAT. So that
AAT + AT A = I. Hence, (i)&(ii).

(i) (iil). Let us first define the orthogonal projections P, = AAT and P, =
A+A. IfP1+P2 :I, then P1P2 :Pl(I—Pl) = 0 and P2P1 :PQ(I—PQ) = 0.
Hence (P1 - P2)2 =P +P =1

COHVGI‘SGly, if (P1 — P2)2 = I, then P1 + P2 - P1P2 — P2P1 =1. Multiply—
ing the previous equality by P; from the left side, we get PiP,P; = 0. So that
(PoPy)*(P2Py) = 0. This is equivalent to Py P, = PoP; = 0. Thus P, + P, = 1.

(iii)=(iv). Assume that (iii) holds. Then AAT — AT A is invertible and (AAT —
ATA)™! = AAT — AT A. By theorem 3.4, A + A* is invertible and there exists
a unique idempotent P € B(H) such that AP = A and P*A = 0. It follows
from Remark 3.2, that I — P — P* = AAT — ATA. Multiplying the previous
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equality by P* from the left side, we get P*P = P*ATA = (ATAP)* = AT A.
Hence, |P|| = (|P*P||)z = 1. According to Lemma 2.3, we conclude that P is an
orthogonal projection (P = P*), which satisfies AP = A and PA = 0.

(iv)=-(i). Suppose that (iv) holds. From the invertibility of A+ A*, we deduce
that R(A) + R(A*) = H.

Now, we prove that R(A) L R(A*). From AP = A and PA = 0, we get A2 = 0.
So R(A) C N(A). Since N(A) = R(A*)1, we conclude that R(A) L R(A*).

(iv)<(v). This equivalence can be proved in a similar way as (ii)<>(iii), The-
orem 3.4. ®

COROLLARY 3.11. Let A € B(H) have closed range. If any item in Theorem
3.10, is satisfied, then

(i) AT =(A+A)7TAA+ A7),

(i) A* = (A— A*)"LAA — A1,
(ifi) A* + (A*)* = (A+ A%)~1,

(iv) AT = (AF)* = (A - A",

(v) At = L[(A+ A1+ (A— A7,

Proof. (i). By the proof of Theorem 3.10, (iv) =(i), we get A> = 0. Then
(A+ A" AT A = A.
Since A 4+ A* is invertible, then it is easy to check that

AT = (AT A)H(A+ A = ATA(A + A") !

By using AT A = (A + A*)~1A, we obtain (i).
The proof of (ii) is similar to that of (i).

The proof of the remaining statements follows immediately from (i) and (ii) of
this corollary. m
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