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An Eigenvalue Problem for Elliptic Systems
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ABSTRACT. By means of non-smooth critical point theory we prove existence
of weak solutions for a general nonlinear elliptic eigenvalue problem under
natural growth conditions.
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1. Introduction

Let Q be a bounded and open subset of R™ and N > 1. Existence and multi-
plicity results for quasilinear eigenvalue problems of the type :

n n N
1o} daij duy, O .
_”221 agj (aij(z,u) Gox) + %”Z;l g::l o (2, u) G T = )\—gli (x,u) inQ

k=1,...,N (u,A\)€M xR

on the submanifold of H}(Q, RY)

M = {u € HY(Q,RY): /QG(gc,u)dx: 1},

have been firstly studied in 1983 by M. Struwe [15] and recently by G. Arioli [1]
via techniques of non-smooth critical point theory.
The goal of this paper is to study the following more general eigenvalue problem

(1) —div(VeL(z,u, Vu)) + Vo L(z,u, Vu) = A\V,G(z,u) (u,\) € M xR,
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on the submanifold of W, *(Q, RN)

(2) M:{ueWOl’p(Q,RN): /G(x,u)dx:l}.
Q
We shall consider functionals f : W, * (€2, RY) — R defined by
®) ) = [ L. V) ds.
Q

with 1 < p < n. In general, f is not even locally Lipschitzian unless L does not
depend on w or n = 1, so that classical critical point theory fails.

To overcome this difficulty, we shall use the non-smooth critical point theory
developed in [8, 9, 10, 11, 12] and also the subdifferential for continuous functions
recently introduced in [6].

We shall prove that problem (1) admits a nontrivial weak solution in M x R by
restricting f to M and looking for constrained critical points.

We assume that M # (), that L : Q x RV x R™ — R is measurable in x for
all (5,&) € RNV x R™W | of class C! in (s,¢) for a.e. # € Q and L(x,s,-) is strictly
convex. Moreover, we shall assume that:

[L1] There exist v > 0 such that for each ¢ > 0 there is a. € L*(Q) and b. € R
with
(4) VIEP < Liw,5,€) < ac(w) + els” + bel¢”

for a.e. x €  and for all (s,£) € RY x R™™Y where p* denotes the critical
Sobolev’s exponent.

[La] There exists b € R such that for each € > 0 there exists a. € L' (£2) with

() VoL@, 5,€)] < ac(x) +els[”” + blEJP
for a.e. z € Q and for all (s,£) € RN x R™N . Moreover there is a; € L ()
with

(6) [VeL(z,s,6)| < ar(a) +bls|>" + blef

for a.e. z € Q and for all (s,&) € RN x R™V .
[Ls] For a.e. x € Q and for all (s,&) € RNV x R™Y
(7) VsL(x,8,§)-s>0.

[L4] If N > 1, there exists a bounded Lipschitz function ¢ : R — R such that
(8) VsL(z,s,§) - exp,(r,s) + VeL(z,8,£) - Vexp,(r,s,§) <0
for a.e. x € Q, for all ¢ € R™Y, o € {~1,1}" and r,s € RY where
(exp, (7, 5));, 1= on explon(P(rn) — ¥(sn))]

and

[V exp, (1, 5,)]j,; := —explon (¥ (rn) — ¥(sn))]¢' (s1)€]
foreach h=1,...,Nandi=1,...,n.
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[G1] G(z,s) is measurable in z and of class C! in s with G(z,0) = 0 a.e. in Q. If

g(z, s) denotes VG(x, s), for every € > 0 there exists a. € Lo 75 (Q) such
that

(9) l9(x,8)| < ac(x) +els|”
for a.e. z € Q and all s € RV,
[G2] For a.e. x € Q and for each s # 0 we have g(z,s) - s > 0.
Under the preceding assumptions, the following is our main result.
Theorem 1. The eigenvalue problem
(10) —div(VeL(z,u, Vu)) + Vs L(z,u, Vu) = Ag(z,u)  (u,\) € M xR,
has at least one nontrivial weak solution (u,\) € M x R.

In the vectorial case (N > 1), to my knowledge, problem (1) has only been
considered in [15] and in [1] in the particular case

(11) L(z,s,§) = ZZ xsfﬁf,
i,j=1 h,k=1
for coefficients aff : @ x RN — R™ of the type aff(z,s) = 6" ayj(z, s).
In [15, Theorem 3.2] the statement is essentially of perturbative nature, since it
says that if for each k& € N there exists a g > 0 with
(12) \Vsayj(z,8)| < o, for ae. z €Q, forall s € R,
then the problem has at least k distinct weak solutions:

(g, \e) € HY(QRY) xR, (=1,...,k.

In other words, the less the coefficients a;;(x,s) vary in s, the more solutions we
get.

In [1] a new technical condition is introduced to be compared with (8). It is
assumed that there exist K > 0 and an increasing bounded Lipschitz function
from [0, +o00[ to [0, +oo] with (0) = 0, ¢’ non-increasing, ¢(s) — K as s — +00
and such that

I v 3l

1,j=1k=1

< 2e” MY (Is]) Y aijla, 8)6i

i,j=1

aa” 517 S gté-j

for a.e. x € Q, for all £ € R™ and for all r,s € RV .

The proof itself of [2, Lemma 6.1] shows that this condition implies assumption
(8) in the case of integrands L like (11). On the other hand, if N > 2, the two
conditions look quite similar. However, our condition (8) seems to be preferable,
because when N =1 and L is given by (11), it reduces to the inequality

n (9 y ) n
> Sl )66 | < 20() Y auy(a 8)6is,

i,j=1 1,5=1
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which is not so restrictive in view of the ellipticity of «;;, while (13) is in this
case much stronger. For a general Lagrangian L, in the case N = 1, condition (8)
reduces to

|DsL(z, 5,8)| < ¥'(s)VeL(x, s,8) - €
for a.e. z € Q and all (s,£) € R xR™. This assumption has already been considered
in literature in jumping problems (see e.g. [7]).

In Remarks 2 and 3 we will show examples of L not of the form (11) and satisfying
(8). Finally, we point out that (13) and (8) are not easily comparable to (12).

2. Recollections from non-smooth critical point theory

In this section, we want to recall the relationship between weak solutions to (1)
and constrained critical points of f to M. Let ag € L*(Q), by € R, a1 € L}, .(Q)
and by € L (Q) be such that for a.e. z €  and for all (s,&) € RY x R™Y

loc

(14) |L(z, 5,€)| < ao(x) + bo|s|7=7 + bol€[P,
(15) IVoL(@,s,6)| < ai(x) + b (z)]s|777 + by (2)[€]7,
(16) IVeL(z,5,€)] < ai(z) + by (x)|s| 77 + by (2)[€]P .

Conditions (15) and (16) imply that for every u € Wy (Q, RY) we have
VeL(z,u,Vu) € L, (Q,R™), Vi L(z,u,Vu) € L}, .(Q,RY).
Therefore for every u € Wy (Q,RY) we have
—div (Ve L(z,u, Vu)) + VsL(2,u, Vu) € D' (Q,RY).

We shall now recall two definitions from [6], where a new notion of subdifferential
for continuous functionals on normed spaces has been recently introduced by M.
Degiovanni and I. Campa.

Definition 1. Let X be a real normed space and C' C X. For each u € C, we
denote with T (u) the set of all v € X such that for each € > 0, there exist 6 > 0
and

v: (B(u,d)NC) x]0,d] — B(v,¢)
continuous with
E+tv(E t) e C,
when £ € B(u,d) N C and t €]0,8[. T (u) is said the cone tangent to C' at w.
Definition 2. For each u € X, set
Of(u) :={a e X" : (a, =1) € Nepis (u, f(u))},
where
Nepis (u) :={r e X*: (v,v) <0 for all ve& Tepiy (u)}.
Of (u) is said to be the subdifferential of f at w.
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Via 0f (u) we shall connect critical points for functionals of calculus of variations
(3) constrained to M, with weak solutions to the related eigenvalue problem. Define
the submanifold of W,* (€2, RN)

M= {u e WIP(QRY) : ®(u) = 1},

where @ : Wy P(Q,RY) — W17 (Q,RY) is of class C', M # 0, 0 ¢ M and
moreover V®(u) # 0 for each u € M.

We now recall the fundamental definition of weak slope (see, [8, 9, 10, 11, 12]).
Definition 3. Let (X, d) be a metric space, f : X — R a continuous function and
u € X. We denote by |df|(u) the supremum of o € [0, 4+oc0[ such that there exist
0 > 0 and a continuous map

H : Bs(u) x [0,8] — X
such that for all (v,t) € Bs(u) x [0, 9]
d(H(v,t),v) <t,  f(H(v,1)) < f(v) = at.
We say that the extended real number |df|(u) is the weak slope of f at u.

It is easy to prove that the map {u — |df|(u)} is lower semicontinuous.

Definition 4. Let (X, d) be a metric space, f : X — R a continuous function and
u € X. We say that u is a critical point of f if |df|(u) =0.

Definition 5. Let (X, d) be a metric space, ¢ € R and f : X — R a continuous
function. A sequence (up) C X is said to be a Palais—Smale sequence at level ¢
((PS).-sequence, in short) for f, if f(ur) — ¢ and |df|(up) — 0. We say that
f satisfies the Palais-Smale condition ((PS). in short) at level ¢ if every (PS).—
sequence admits a convergent subsequence.

We now come to the case when X = Wy *(Q,RN) and f : Wy ?(Q,RY) — R
given by (3). From (14) it follows that f is well defined and continuous.

Since M is metric space endowed with the metric of WO1 P(Q,RY), the weak slope
|df|,, | (v) and the (PS).~condition for f|,, may of course be defined.

Theorem 2. For every u € WyP(Q,RY) there exists X € R such that
‘df|M| (u) > sup {Vf(u)(v) —AVO(u)(v): v e CEO(Q,]RN), loll1p < 1} .

In particular, for each (PS).~sequence (uy) for f),, there exists (A\n) C R such that
li}rln sup {V f(un)(v) = AWV ®(up)(v) : v € C(QLRY), |Jvfl1, < 1} =0.

Proof. By conditions (15) and (16), for every u € M and v € C° (2, RY) there
exists
fuw)w) = / VeL(z,u,Vu) - Vode + | VsL(z,u,Vu)-vdz
Q Q
and the function {u — f’(u)(v)} is continuous from M into R. Now, let us extend

fia to the functional f*: WyP(Q,RN) — RU {+oo} given by

vy ) flw) ifueM
(a7) ! (u)_{+oo if uwe M.
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We may assume that |df|,, |(u) < +o0o. Consequently |df*|(u) = |df|,, |(u), so that
by [6, Theorem 4.13] there exists w € 9f*(u) with |df*|(u) > ||w|/-1,. Moreover,
by [6, Corollary 5.4] we have

Of*(u) COf(u) + RVE(u).
Finally, by [6, Theorem 6.1], we get df(u) = {n} where

(n,v) = / VeL(z,u, Vu) - Vodz —I—/ VsL(xz,u,Vu) -vde =V f(u)(v)
Q Q
for each v € C2°(Q, RY) and the proof is complete. O

By the preceding result, each critical point u € VVO1 P(Q,RN) of Jia 18 a weak
solution to the eigenvalue problem :

Vi(u) = A\Vo(u) (u,)) € M x R.

3. The Palais—Smale condition
Recall first a very useful conseguence of Brezis-Browder’s Theorem [5].

Proposition 1. Let T € L. (Q,RN)n W17 (QRN), v € Wy P(Q,RY) and n €

loc

LY Q) with T-v>n. Then T -v € LY(Q) and
<T7v>:/T~vdx
Q

Proof. Argue as in [13, Lemma 3]. O

As a consequence of assumption [L1] and convexity of L(x, s, -), for each € > 0 there
exists a. € L'() such that

(18) VeL(z,5,€) - € > v[E]P — ac(x) — s

for a.e. € Q and for all (s,&) € RY x R*V.

We now come to one of the main results of this paper, i.e., the local compactness
property for (PS).—sequences.

Theorem 3. Let (uz) be a bounded sequence in Wy'* (€, RN) and set

(19) (wp,v) = | VeL(z,up, Vuy) - Vodz+ | VsL(x,up, Vuy) - vdz,
Q Q

for allv € C2(Q,RN). If (wy) is strongly convergent to some w in W19 (Q,RN),
then (up) admits a strongly convergent subsequence in Wol’p(Q, RM).

Proof. Since (uy) is bounded in Wol’p(Q,RN), we find a u in Wol’p(Q,]RN) such
that, up to subsequences,

Vup, — Vu in LP(Q,RY),  uy — u in LP(Q,RY),  wp(z) — u(x) ae x €.
By [4, Theorem 2.1], up to a subsequence, we have
Vup(z) — Vu(z) ae z €.
Therefore, by (6) we get
VeL(x,up, Vup) = VeL(x,u, Vu) in Lp,(Q,]R"N).
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We now want to prove that we have
(20) (w,u) = / VeL(z,u, Vu) - Vudz +/ VsL(z,u,Vu) - udx.
Q Q

Let 9 be as in [L4] and test equation (19) with the following functions

vn = (o exp{on((u’) — (up))}, ... on exp{on (V™) — (uy))}),

where p € C°(Q), p > 0and 0; = £1 for all i = 1,..., N. By direct computation
we obtain for a.e. z €

Djvpi = (0:Djp + (' (wi) Djui — ¥ (uni) Djuni)) exploi ((ui) — b(uni)))

foreachi=1,...,N and j = 1,...,n. Therefore, with the notation

lexp{a (¢ (u) — P (un)) 19" (un) V], = exp{oi (¥ (wi) — P (uni)) 3¢ (uni) Djuni

foreachi=1,...,Nand j=1,...,n, we get
A VeL(z,un, Vup) - [0V + ¢ (u) Vuep] exp{o(y(u) — P(un))} da
— (wn, poexp{o(P(u) — P(un))})
+ [ {2 V) - explototn) — vlun) b do
— VeL(z,up, Vuy) - exp{o(y(u) — 1/}(uh))}1//(uh)Vuh}gp drx =0.
Observe that if v = (14, ...,0Np) we have
lim (w, po expio(v(u) = P(un))}) = (w, v).

Since uj, — u in Wy (€, RY), we have
1111111/ VeL(z,up,Vup) - [oVe + ¢ (u) Vug] exp{o (¢ (u) — ¢(up))} dz
Q

= / VeL(z,u, Vu) - Vodz +/ VeL(z,u, Vu) - ' (u)Vup dz.
Q Q

Note now that by assumption (8) for each h € N we have
VoL@, up,Vuy) - o exp{o(¥(u) — ¥(un))}
— VeL(z,up, Vup) - exp{o(¥(u) — 1(un))}' (un) Vup < 0.

Therefore, Fatou’s Lemma implies that

lim sup { /Q VL(z,up, Vup) - o exp{o(y(u) — ¥(un))pdx

h
— /Q VeL(z, up, Vuy) - exp{o(¥(u) — (up)) }’ (un) Vunep dm}

< / VsL(x,u,Vu) - -vde — / VeL(z,u,Vu) - ' (u)Vup dz.
Q Q
Combining the previous inequalities we get

/ VeL(z,u, Vu) - Vodx —|—/ VsL(z,u, Vu) - vdz > (w,v)
Q Q
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for each v = (o1, ...,0n89), With ¢ € C(§2), ¢ > 0. Since we may exchange v
with —v, we obtain

(21) / VeL(z,u, Vu) - Vodz +/ VeL(z,u,Vu) - vdx = (w,v).
Q Q

for each v = (01¢p,...,0np) with ¢ € CX(Q) and ¢ > 0. Since each v €
C=(Q,RY) is a linear combination of such functions, taking into account Propo-
sition 1, we obtain relation (20). The final step is to prove that (up) goes to u in
WO1 P(Q,RYN). To this aim, let us first get the following inequality

(22) limsup [ VeL(z,up, Vug) - Vup dz < / VeL(z,u, Vu) - Vudz .
h Q Q
Because of (7) Fatou’s Lemma yields

(23) / VsL(z,u,Vu) - udx < lir%inf/ Vs L(x,up, Vup) - up dz .
Q v Ja

Combining this fact with (20) and taking into account that
(wn,un) = (w,u) as h — +oo,

we deduce

lim sup/ VeL(z,upn,Vug) - Vup, do
h Q

= lim sup {/ VL(z,up, Vug) - up de + (wp, uhﬂ
h Q

< {— /Q VeL(z,u,Vu) - udx + (w,u}]
= AVEL(x7u,Vu)~Vudx.
In particular, again by Fatou’s Lemma, we have
/QV£L(x,u, Vu) - Vudr < limhinf/Qng(m,uh,Vuh) - Vuyp, dx
< limhsup/ﬂng(Luh?Vuh) - Vuy dx
< /QV§L(JU,'LL, Vu) - Vudz,

that is

li}rln/ VeL(z,upn, Vup) - Vuy de = / VeL(z,u, Vu) - Vudz,
Q Q

which gives convergence in L!(€2). Therefore, by (18) we conclude that :

lim/ |Vuh\pdx:/ |Vul? dz,
hJa Q

which gives convergence of (uy) to u in Wy *(,RN). O
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Corollary 1. Let (uy) be a bounded sequence in WyP(Q,RN), (\y) a sequence in
R and set for all v € C(,RY)

(Apwp,v) = / VeL(z,up, Vuy) - Vodz —|—/ VsL(z,up, Vuy) -vde .
Q Q
If (wy,) converges to some w # 0 in W1 (Q,RN) then (up, An) admits a strongly
convergent subsequence in Wy (€, RN) x R.
Proof. By density, we can find n € C°(Q,RY) such that
li}1Ln (wp,n) = (w,n) > 0.

Since of course the sequence

{/ VeL(z,upn, Vuy) - Vi de +/ VL(z,up, Vuy,) ~77dx}

Q Q

is bounded, (\;) is also bounded and the assertion follows by Theorem 3. (]
In the next result we prove that f satisfies (PS).—condition.

Lemma 1. Let ¢ € R. Then, for each (PS).—sequence (up) for f,, there exists

u € M and N € R such that, up to subsequences, up — u in Wol’p(Q,RN) and
An — A in R, In particular, we have

/ VeL(z,u, Vu) - Vodx —|—/ VsL(x,u,Vu) - vdr = )\/ g(z,u) -vdx

Q Q Q

for each v € C° (2, RYN).

Proof. Let (up) be a (PS).sequence for f|, . Since by (4) (up) is bounded in
Wol’p(Q, R™), up to a subsequence (u,) weakly goes to au € M . Moreover, since by

[G1], g is completely continuous as mapping from Wol’p(Q, RN) to W12 (Q, RY),
up to a further subsequence, we have

g(x7uh) — g(:}j,’u,) n W_l’p/(Q).
Now, by Theorem 2, there exists a sequence (A) C R with

sup { / VeL(z,upn, Vup,) - Vodz +/ VsL(z,up, Vuy) - vde
Q Q

- )\h/ g(x,up) -vdr: ve CP(Q,RY), lollip < 1} —0
Q
as h — +o00. Hence, by applying Corollary 1 to
wp, = g(z,un) + A, Ap =0 in WHP(QRY),
up to subsequences (up, A,) converges to (u, A) in Wy (Q, RY) x R. O
We may now prove the main result of this paper.

Proof of Theorem 1. By assumption [Gs] and G(z,0) = 0 we easily see that
0 ¢ M and g(x,u) # 0 for each u € M. Since f is bounded from below, there exists
a (PS).—sequence (up) for fi,, at the level

c= inf f(u).

ueM
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Indeed, let (up,) a sequence of minimizers for f in M . Of course we have f(uy) — c.
Moreover, if |df|(up) # 0, we would find a o > 0 such that |df|(up) > 0. Then by
[8, Theorem 1.1.11] there exists a continuous deformation

n:Mx[0,0] - M
for some ¢ > 0 such that for all ¢ € [0,d] and h € N
fn(un,t)) < flun) —ot.
This easily yields the contradiction f(n(up,t)) < ¢ for sufficiently large values of

h € N. Thus (up) is a (PS).sequence for f), . Lemma 1 now provides a weak
solution (u,A) € M x R to (1). Of course u 0. O

4. Final remarks

We refer the reader to [2] for some concrete examples where the condition (8) is
fulfilled for an integrand L like (11).

Remark 1. Assume that there exists R > 0 such that
|s|] > R = V,L(z,5,§) =0
for a.e. x € Q and for all (s,¢) € RY x R™ and

R

Mz

xs§|< VeL(z,8,6) - &

for a.e. x € Q and for all (5,5 € RY x R™™Y . Then (8) holds for a 1 defined by
= 0<s<R

24 — J 4R 1 - % =

(24) ¥(s) { o

Indeed, (8) is implied by the following condition:

There exist K > 0 and an increasing bounded Lipschitz function ¢ : [0, +oo[—
[0, 400 with ¥(0) = 0, ¥’ non-increasing, 1(t) — K as t — 400 and such that

N
(25) > IDs L, 5,6)| < e/ (|s|)VeL(,5,8) - &

k=1
for a.e. z € Q, for all £ € R™ and for all r,s € RV,
It is easy to verify that the ¢ defined in (24) satisfies (25).
We now exhibit an example of L satisfying (8) and not of quadratic type.
Remark 2. Let L: Q x RY x R™ — R be defined by

L(z,s,&) = %(1/ + arctan |s|?)|¢|P, v>eVN(V3+m),

for a.e. x € Q and for all (s,£) € RY x R"N . By following [2, Example 9.2] it
is possible to show that there exist K > 0 and an increasing bounded Lipschitz
function ¢ : [0, +oco[— [0, +oo[ with ¢(0) = 0, ¢’ non-increasing, 1(s) — K as
s — 400 given by

(s) VNetK #s if s €[0,371/4]
S) =
v @ + f3s—1/4 1_,_% dr ifse [371/47 +oof
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such that L satisfies (25). Therefore (8) is fulfilled.

Remark 3. Since condition (8) does not look very nice and it is not clear how
to describe the class of systems that satisfy this assumption, it seems natural to
look for some classes of quasilinear systems with a more particular structure but
requiring a simpler hypothesis. To this aim, consider the eigenvalue problem

—div (A1 (w1)|Vur [P72Vuy) + %A’l (u1)|Vur P = Agi(x,u) in Q
(26) : S :
—div (An (un)|Vun P2 Vuy) + %AQV(UN)|V1LN|” = Agn(x,u) in Q.
In a variational setting, the weak solutions u = (ug,---,uy) of (26) are the

critical points of f|ar where f: W, P(Q,RN) — R is given by

1N
u) = — Ar(up)|Vug|?P do .
f(u) pz_:/ﬂ (1) [ Vg

and M is as in (2). Consider the following assumptions (k =1,...,N):
[A41] Ar € CHR) with a;, < Ay < @y for some a;, @y > 0;

[A2] Aj(s)s >0 for each s € R;

[A3] there exists a bounded Lipschitz function ¢ : R — R such that

(27) Ak(s)e—p(w(w—w(s)) < Ag(t) < Ak(s)ep(w(t)—¢(8))

for each s,t € R with s <.

Under the previous assumptions, by exploiting the proof of Theorem 3 it is
possible to see that for system (26) assumption (8) may be replaced by (27). Indeed,
(27) immediately implies that

Vk=1,...,N, VseR: |Al(s)| < pAy(s)¥/(s).

Of course (27) looks much simpler and more understandable. In some sense,
this condition says that for each s € R and k fixed, Aj(t) must remain within the
“exponential cone” determined by

{t = Ak(s)e—p(w(t)—w(s))} and {t — Ak(s)ep(w(t)—w(s))}
for each t > s.

Remark 4. Condition (8) in only needed when N > 1, since in the case N =1
Theorem 3 may be substituted by [14, Theorem 3.4] where no condition like (8) is
requested in order to get the compactness property of (P.S).—sequences.

Secondly, we remark that in the case N = 1 condition (7) can be assumed only
for large values of |s|, that is, there exists R > 0 such that

(28) |s| > R = D,L(x,s,§)-s>0

for a.e. € Q and for all (s,&) € RY x R™V (see again [14, Theorem 3.4]) .
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