New York Journal of Mathematics

New York J. Math. 30 (2024) 369-397.

Twisted analogue of the Kummer-Leopoldt constant

J. Assim, Z. Boughadi and A. Driwach

ABSTRACT. Let F be a number field and let p be an odd prime. Denote by S the set of p-adic and infinite places of F. We study a generalization to K-theory of the Kummer-Leopoldt constant for the S-units introduced in [7, Section 4]. We express in particular its value as the exponent of some Galois module. As an application, we give a new characterization of (p,i)-regular quadratic number fields.

CONTENTS

1.	Introduction	369
2.	On certain Galois extensions	372
3.	The twisted Kummer-Leopoldt's constant	383
4.	On the triviality of the twisted Kummer-Leopoldt constant	390
References		395

1. Introduction

Let p be an odd prime and let F be a number field. The Kummer-Leopoldt constant [7, Definiton 1] $\kappa(F)$ is the smallest integer c satisfying the following property: if n is sufficiently large and u is a unit of F that is a p^{n+c} -th power locally at all primes dividing p, then u is a global p^n -th power. This constant exists when the couple (F,p) satisfies Leopoldt's conjecture. Given this definition, Kummer's lemma states that if p is a regular prime number and F is the p-th cyclotomic field then $\kappa(F)$ is zero. Kummer's lemma has been generalized by several authors to p^n -th cyclotomic fields, $n \ge 1$ [33], [32], or to totally real number fields [27]. In [33, 32, 27], the authors give an upper bound for the Kummer-Leopoldt constant in terms of special values of the associated p-adic L-function.

More generally, for an arbitrary number field F, the quantity $p^{\kappa(F)}$ is the exponent of the Galois group $\text{Gal}(F^{\text{BP}}/\widetilde{F}L_F)$ [7, Théorème 1], where F^{BP} is the

Received May 25, 2023.

²⁰¹⁰ Mathematics Subject Classification. 11R23, 11R70, 11R34.

Key words and phrases. Kummer-Leopoldt constant, Iwasawa module, Galois extenions, Ktheory.

Bertrandias-Payan field of F [9, 25], \widetilde{F} is the composite of all \mathbb{Z}_p -extensions of F and L_F is the maximal abelian unramified p-extension of F.

The Bertrandias-Payan field F^{BP} is contained in \widehat{F} , the maximal abelian prop-extension of F which is unramified outside the p-adic primes. In particular, the Kummer-Leopoldt constant $\kappa(F)$ is trivial if $\widehat{F}=\widetilde{F}$. Number fields with $\widehat{F}=\widetilde{F}$ and satisfying Leopoldt's conjecture are called p-rational fields [20]. Obviously, $\kappa(F)$ is trivial if the field F is p-rational. This can be considered as a generalization of Kummer's lemma since the field $\mathbb{Q}(\mu_p)$ is p-rational precisely when p is regular, μ_p being the group of p-th roots of unity.

Let S be the set of p-adic and infinite places of F and let U be the group of S-units of F. In [7, Section 4], the authors define also a Kummer-Leopoldt constant for the S-units as the smallest integer c having the following property:

$$\forall n \gg 0, \forall u \in U, (u \in F_v^{p^{c+n}}, \forall v \mid p) \Longrightarrow u \in U^{p^n},$$

where for $v \mid p, F_v$ is the completion of F at v.

Denote by \widehat{U} and $\widehat{F_v}$, respectively, the pro-p-completion of U and F_v . Let $G_S(F)$ be the Galois group over F of the maximal algebraic extension which is unramified outside S. Then

$$\widehat{U} \cong H^1(G_S(F), \mathbb{Z}_p(1))$$
 and $\widehat{F_v} \cong H^1(F_v, \mathbb{Z}_p(1))$.

For an integer i, we have a natural localization map

$$\alpha^{(i)} = \bigoplus_{v \mid p} \alpha_v^{(i)} : H^1(G_S(F), \mathbb{Z}_p(i)) \longrightarrow \bigoplus_{v \mid p} H^1(F_v, \mathbb{Z}_p(i))$$

$$x \longmapsto (\alpha_v^{(i)}(x))_v$$

where, for each prime v above p, $\alpha_v^{(i)}: H^1(G_S(F), \mathbb{Z}_p(i)) \longrightarrow H^1(F_v, \mathbb{Z}_p(i))$ is the restriction homomorphism. For simplicity, if $x \in H^1(G_S(F), \mathbb{Z}_p(i))$, we keep the notation $x := \alpha_v^{(i)}(x) \in H^1(F_v, \mathbb{Z}_p(i))$. Then, we ask the following natural question: Is there a positive integer c_i such that for all $n \gg 0$, $x \in H^1(G_S(F), \mathbb{Z}_p(i))$

$$(x \in H^1(F_v, \mathbb{Z}_p(i))^{p^{c_i + n}}, \, \forall v \mid p) \Longrightarrow x \in H^1(G_S(F), \mathbb{Z}_p(i))^{p^n}?$$

In this article, we show that such an integer exists when the field F satisfies a twisted Leopoldt's conjecture (Conjecture 2.1), and we define the twisted analogue of the Kummer-Leopoldt constant $\kappa_i(F)$ to be the smallest value of c_i satisfying this property. The study of the twisted Kummer-Leopoldt constant leads us to define some Galois extensions, in particular we construct a twisted analogue of the Bertrandias-Payan field and an étale analogue of the Hilbert class field (see §2). Using these definitions we express the twisted Kummer-Leopoldt constant as the exponent of a certain Galois group inside the twisted Bertrandias-Payan module (Theorem 3.8).

By the Quillen-Lichtenbaum conjecture, which is now a theorem thanks to the work of Voevodsky and Rost on the Bloch-Kato conjecture, the p-adic cohomology group $H^1(G_S(F), \mathbb{Z}_p(i))$ is isomorphic to the pro-p-completion of the

K-theory group $K_{2i-1}F$ [17, Theorem 5.6.8]. Hence for $i \ge 2$, the constant $\kappa_i(F)$ can be considered as a generalization to *K*-theory of the Kummer-Lepoldt constant.

In the last section of this paper, we study the vanishing of the twisted Kummer-Leopolodt constant. We show, in particular, that $\kappa_{1-i}(F) = 0$ if F is a (p,i)-regular number field in the sense of [2]. Furthermore, we give a new characterization of (p,i)-regular number fields in terms of the triviality of $\kappa_{1-i}(F)$. More precisely, we prove the following theorem:

Theorem. Let $i \neq 0, 1$ be an integer and let F be a number field satisfying the twisted Leopoldt's conjecture. Then F is (p, i)-regular if and only if the following three conditions hold:

- 1. $\kappa_{1-i}(F) = 0$;
- 2. The natural injective map

$$H^0(G_S(F),\mathbb{Q}_p/\mathbb{Z}_p(1-i)) \longrightarrow \underset{v|p}{\bigoplus} H^0(F_v,\mathbb{Q}_p/\mathbb{Z}_p(1-i))$$

is an isomorphism;

3. $H^{(i)} \subset \widetilde{F}^{(i)}$, where the fields $\widetilde{F}^{(i)}$ and $H^{(i)}$ are defined in Definitions 2.5 and 2.9, respectively.

As an application we get a characterization of (p, i)-regular quadratic number fields in the spirit of [12, §4.1], (see Propositions 4.6 and 4.7 below).

Notation: For a number field F, and an odd prime number p, we adopt the following notation throughout this paper:

```
O_F
                   the ring of integers of F;
                   the group of p-th roots of the unity;
\mu_p
\hat{E}
                   the composite of F and the p-th cyclotomic field
                   i.e., E = F(\mu_p);
S
                   the set of p-adic and infinite places;
U
                   the group of S-units in F;
Û
                   the pro-p-completion of U;
F_{\nu}
                   the completion of F at a prime v of F;
                   the group of local units of F at a prime v of F;
\widehat{F}_v
                   the pro-p-completion of F_v;
                   the cyclotomic \mathbb{Z}_p-extension of F;
Γ
                   the Galois group Gal(F_{\infty}/F);
                   the unique subfield of F_{\infty} such that [F_n:F]=p^n;
F_n
                   the Galois group Gal(F_{\infty}/F_n);
\Gamma_n
\Lambda = \mathbb{Z}_p[[\Gamma]]
                   the Iwasawa algebra associated to \Gamma;
                   the cyclotomic \mathbb{Z}_p-extension of E;
E_{\infty}
G_{\infty}
                   the Galois group Gal(E_{\infty}/F);
                   the maximal algebraic extension of F which is unramified
F_S
                   outside S;
Ê
                   the maximal abelian pro-p-extension of F which is
```

	unramified outside <i>S</i> ;
E_{∞}^{ab}	the maximal abelian pro-p-extension of E_{∞} which is
	unramified outside <i>S</i> ;
$L_{\infty}^{'}$	the maximal abelian unramified pro- p -extension of E_{∞}
	which splits completely at p -adic primes of E_{∞} ;
$X_{\infty}^{'}$	the Galois group $Gal(L_{\infty}^{'}/E_{\infty});$
$G_S(K)$	the Galois group $Gal(F_S/K)$, for an arbitrary field K
	inside F_S/F ;
M(i)	the <i>i</i> -th Tate twist of a $G_S(F)$ -module M $(i \in \mathbb{Z})$;
$M[p^n]$	the kernel of the multiplication by p^n ;
M/p^n	the co-kernel of the multiplication by p^n ;
$H^n(G_S(F),M)$	the n -th continuous cohomology group of $G_S(F)$ with
	coefficients in M ;
$\coprod^n (G_S(F), M)$	the localization kernel $\ker(H^n(G_S(F), M) \to \bigoplus_{v \in S} H^n(F_v, M));$
M^{\vee}	= $\operatorname{Hom}(M, \mathbb{Q}_p/\mathbb{Z}_p)$, the Pontryagin dual of M ;

For a group G and a commutative ring R, let I_G be the augmentation ideal of the group ring R[G]; it is the ideal generated by $\{\sigma-1, \sigma \in G\}$. Unless otherwise stated, $R = \mathbb{Z}_p$.

2. On certain Galois extensions

Let F be a number field and let p be an odd prime number. We denote by F_S the maximal algebraic extension of F which is unramified outside the set S of p-adic and infinite places of F. For a subfield K of F_S containing F, we denote by $G_S(K)$ the Galois group $\operatorname{Gal}(F_S/K)$. The p-ramified Iwasawa module \mathcal{X}_K is the Galois group over K of the maximal abelian pro-p-extension which is unramified outside S. In terms of homology groups, we have $\mathcal{X}_K \simeq H_1(G_S(K), \mathbb{Z}_p)$. Indeed, using the cohomology-homology duality, we have:

$$\begin{array}{lcl} H_1(G_S(K),\mathbb{Z}_p) & \simeq & H^1(G_S(K),\mathbb{Q}_p/\mathbb{Z}_p)^\vee \\ & \simeq & \operatorname{Hom}(G_S(K),\mathbb{Q}_p/\mathbb{Z}_p)^\vee \\ & \simeq & \mathcal{X}_K. \end{array}$$

For an integer i, denote by $\mathcal{X}_K^{(i)}$ the first homology group $H_1(G_S(K), \mathbb{Z}_p(-i))$ which can then be considered as a twisted analogue of the p-ramified Iwasawa module \mathcal{X}_K . The module $\mathcal{X}_K^{(i)}$ has been studied by several authors in the case where K is a multiple \mathbb{Z}_p -extension of F. For example, [14, 11] for i=0 and [4] for $i\neq 0$. Returning to the case K=F, the \mathbb{Z}_p -rank of the p-ramified Iwasawa module \mathcal{X}_F is conjecturally equal to r_2+1 , where r_2 is the number of complex places of F (Leopoldt's conjecture). There are many equivalent formulations of this conjecture. In terms of cohomology, it is equivalent to the triviality of the second cohomology group $H^2(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p)$ (e.g., [24, Proposition 12]). More generally, we have the following conjecture (Greenberg [10], Schneider [28], ...)

Conjecture 2.1 ($C^{(i)}$). Let F be a number field. Then for every integer $i \neq 1$, the second cohomology group $H^2(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(i))$ is trivial.

Conjecture $C^{(0)}$ is the Leopoldt's conjecture, it holds for all F that are abelian over $\mathbb Q$ or over an imaginary quadratic number field. If $i \geq 2$, Conjecture $C^{(i)}$ holds for any number field F, as a consequence of the finiteness of the K-theory groups $K_{2i-2}O_F$ [30]. By a well known result on Brauer groups [13] or [28, §4, Lemma 2], there is no Conjecture $C^{(1)}$.

In the next proposition we give two equivalent formulations of the Conjecture $C^{(i)}$ that we will use in the sequel. These formulations are well known, we add here a proof for the reader's convenience.

Proposition 2.2. Let F be a number field and let $i \neq 1$ be an integer. The following assertions are equivalent:

- 1) Conjecture $C^{(i)}$ holds for F;
- 2) the p-adic cohomology group $H^2(G_S(F), \mathbb{Z}_p(i))$ is finite;
- 3) the Galois module $X'_{\infty}(i-1)_{G_{\infty}}$ is finite.

Proof. For $k \ge 1$, the exact sequence

$$0 \longrightarrow \mathbb{Z}_p(i) \stackrel{p^k}{\longrightarrow} \mathbb{Z}_p(i) \longrightarrow \mathbb{Z}/p^k(i) \longrightarrow 0$$

induces in cohomology the exact sequence

$$H^n(G_S(F), \mathbb{Z}_p(i))/p^k \longrightarrow H^n(G_S(F), \mathbb{Z}/p^k(i)) \longrightarrow H^{n+1}(G_S(F), \mathbb{Z}_p(i))[p^k]$$

Passing to the direct limit on k, we obtain the exact sequence [23, (4.3.4.1)]

$$0 \longrightarrow H^{n}(G_{S}(F), \mathbb{Z}_{p}(i)) \otimes \mathbb{Q}_{p}/\mathbb{Z}_{p} \longrightarrow H^{n}(G_{S}(F), \mathbb{Q}_{p}/\mathbb{Z}_{p}(i)) - \underbrace{\qquad \qquad }$$

$$tor_{\mathbb{Z}_{p}}H^{n+1}(G_{S}(F), \mathbb{Z}_{p}(i)) \longrightarrow 0.$$

$$(1)$$

In fact, by [31, Proposition 2.3], $H^n(G_S(F), \mathbb{Z}_p(i)) \otimes \mathbb{Q}_p/\mathbb{Z}_p$ is the maximal divisible subgroup of $H^n(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(i))$.

Since the cohomological dimension $cd(G_S(F)) \le 2$, we have an isomorphism

$$H^2(G_S(F), \mathbb{Z}_p(i)) \otimes \mathbb{Q}_p / \mathbb{Z}_p \simeq H^2(G_S(F), \mathbb{Q}_p / \mathbb{Z}_p(i))$$
 (2)

Since the \mathbb{Z}_p -module $H^2(G_S(F), \mathbb{Z}_p(i))$ is finitely generated (see [23, Proposition 4.2.3]), the equivalence between 1) and 2) follows from the isomorphism (2).

Observe that if $i \neq 1$, $\text{III}^2(G_S(F), \mathbb{Z}_p(i)) \simeq X'_{\infty}(i-1)_{G_{\infty}}$ [28, Section 6, Lemma 1] and by the local duality theorem, we have

$$H^2(F_v, \mathbb{Z}_p(i)) \cong H^0(F_v, \mathbb{Q}_p/\mathbb{Z}_p(1-i))^{\vee}.$$

In particular, the group $\bigoplus_{v \in S} H^2(F_v, \mathbb{Z}_p(i))$ is finite. Then, the equivalence 2) \iff

3) follows from the exact sequence

$$0 \to \coprod^2(G_S(F), \mathbb{Z}_p(i)) \to H^2(G_S(F), \mathbb{Z}_p(i)) \to \bigoplus_{v \in S} H^2(F_v, \mathbb{Z}_p(i)).$$

Remark 2.3. For an integer i, we denote by $\mathcal{T}_F^{(i)}$ the \mathbb{Z}_p -torsion sub-module of $\mathcal{X}_F^{(i)}$. When the field F satisfies Conjecture $C^{(i)}$ ($i \neq 1$), the cohomology group $H^2(G_S(F), \mathbb{Z}_p(i))$ is finite. Hence the exact sequence (1) (for n = 1) induces by duality the following well known cohomological description of $\mathcal{T}_F^{(i)}$ [26, Lemme 4.1]

$$\mathcal{T}_F^{(i)} \simeq H^2(G_S(F), \mathbb{Z}_p(i))^{\vee}.$$

As in the case where i=0, Conjecture $C^{(i)}$ is related to the \mathbb{Z}_p -rank of the module $\mathcal{X}_F^{(i)}$. In [28, §4, Satz 6], the co-ranks of the groups $H^1(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(i))$ were computed. By duality,

$$\operatorname{rank}_{\mathbb{Z}_p} H_1(G_S(F), Z_p(-i)) = \operatorname{corank}_{\mathbb{Z}_p} H^1(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(i)).$$

It follows that if $i \neq 0, 1$, the field F satisfies $C^{(i)}$ if and only if

$$\operatorname{rank}_{\mathbb{Z}_p} \mathcal{X}_F^{(i)} = \begin{cases} r_2 + r_1 & \text{if } i \text{ is odd;} \\ r_2 & \text{if } i \text{ is even,} \end{cases}$$
 (3)

here, as usual, r_1 (resp. r_2) is the number of real (resp. complex) places. In the sequel we will frequently use the following well known lemma:

Lemma 2.4 (Tate's lemma). Let F be a number field and let i be a non-zero integer. Then the Galois cohomology groups $H^k(G, \mathbb{Q}_p/\mathbb{Z}_p(i))$ vanish for all $k \geq 1$, where G is either $G_{\infty} = \operatorname{Gal}(E_{\infty}/F)$ or $G_{\infty,v} = \operatorname{Gal}(E_{\infty,v}/F_v)$, v being a finite prime of F.

As a consequence of Tate's lemma, we get that

$$H^1(\Gamma, H^0(G_S(F_\infty), \mathbb{Q}_p/\mathbb{Z}_p(i))) = 0,$$

where Γ is the Galois group $\operatorname{Gal}(F_{\infty}/F)$. Indeed, let Δ be the Galois group $\operatorname{Gal}(E_{\infty}/F_{\infty})$. We have

$$H^{0}(G_{S}(F_{\infty}), \mathbb{Q}_{p}/\mathbb{Z}_{p}(i)) = H^{0}(\Delta, H^{0}(G_{S}(E_{\infty}), \mathbb{Q}_{p}/\mathbb{Z}_{p}(i)))$$
$$= H^{0}(\Delta, \mathbb{Q}_{p}/\mathbb{Z}_{p}(i)). \tag{4}$$

Since $cd(\Gamma) \leq 1,$ the Hochschild-Serre spectral sequence associated to the group extension

$$0 \rightarrow \Delta \rightarrow G_{\infty} \rightarrow \Gamma \rightarrow 0$$

yields the following exact sequence

$$0 \Rightarrow H^1(\Gamma, H^0(\Delta, \mathbb{Q}_p/\mathbb{Z}_p(i))) \Rightarrow H^1(G_\infty, \mathbb{Q}_p/\mathbb{Z}_p(i)) \Rightarrow H^1(\Delta, \mathbb{Q}_p/\mathbb{Z}_p(i))^\Gamma \Rightarrow 0.$$

By Tate's Lemma, we get

$$H^1(\Gamma, H^0(\Delta, \mathbb{Q}_p/\mathbb{Z}_p(i))) = 0.$$

From the equality (4), it follows that

$$H^1(\Gamma, H^0(G_S(F_\infty), \mathbb{Q}_p/\mathbb{Z}_p(i))) = 0$$

as required.

Recall that the \mathbb{Z}_p -module $\mathcal{X}_F^{(0)}$ is isomorphic to $\mathcal{X}_F = \operatorname{Gal}(\widehat{F}/F)$, where \widehat{F} is the maximal abelian pro-p-extension of F which is unramified outside S. When the integer i is non-zero, the \mathbb{Z}_p -module $\mathcal{X}_F^{(i)}$ can also be realized as a Galois group. Indeed, using Tate's lemma we get that $H^1(G_\infty, \mathbb{Q}_p/\mathbb{Z}_p(i)) = H^2(G_\infty, \mathbb{Q}_p/\mathbb{Z}_p(i)) = 0$, since $i \neq 0$. Therefore, the restriction map

$$H^1(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(i)) \longrightarrow H^1(G_S(E_\infty), \mathbb{Q}_p/\mathbb{Z}_p(i))^{G_\infty}$$
 (5)

is an isomorphism. Notice that the Galois group $G_S(E_\infty)$ acts trivially on $\mathbb{Q}_p/\mathbb{Z}_p(i)$, so we have

$$\begin{array}{lcl} H^1(G_S(E_\infty),\mathbb{Q}_p/\mathbb{Z}_p(i))^{G_\infty} & = & H^1(G_S(E_\infty),\mathbb{Q}_p/\mathbb{Z}_p)(i)^{G_\infty} \\ & \simeq & \operatorname{Hom}(G_S(E_\infty),\mathbb{Q}_p/\mathbb{Z}_p)(i)^{G_\infty}. \end{array}$$

Then, by duality, the isomorphism (5) induces the following isomorphism:

$$\mathcal{X}_{E}^{(i)} \simeq \mathcal{X}_{\infty}(-i)_{G_{\infty}},\tag{6}$$

where $\mathcal{X}_{\infty} = H_1(G_S(E_{\infty}), \mathbb{Z}_p)$ is the Galois group over E_{∞} of E_{∞}^{ab} , the maximal abelian pro-p-extension which is unramified outside S.

Definition 2.5. Let $i \neq 0$ be an integer. We define the field $\widehat{F}^{(i)}$ to be the subfield of E^{ab}_{∞} fixed by $I_{G_{\infty}}(\mathcal{X}_{\infty}(-i))$; hence

$$\operatorname{Gal}(\widehat{F}^{(i)}/E_{\infty}) = \mathcal{X}_{\infty}(-i)_{G_{\infty}} \simeq \mathcal{X}_{F}^{(i)}.$$

When i=0, we define $\widehat{F}^{(0)}$ as the composite of the fields E_{∞} and \widehat{F} i.e, $\widehat{F}^{(0)}=E_{\infty}\widehat{F}$. For every integer i, we denote by $\widetilde{F}^{(i)}$ the subfield of $\widehat{F}^{(i)}$ fixed by the \mathbb{Z}_p -torsion sub-module $\mathcal{T}_F^{(i)}$ of $\mathcal{X}_F^{(i)}$; hence

$$\mathcal{T}_F^{(i)} \simeq \operatorname{Gal}(\widehat{F}^{(i)}/\widetilde{F}^{(i)}).$$

Remark 2.6. In the case i = 0, we don't have the isomorphism (6) but we do have the following exact sequence:

$$0 \longrightarrow (\mathcal{X}_{\infty})_{G_{\infty}} \longrightarrow \mathcal{X}_F \longrightarrow \Gamma \longrightarrow 0.$$

It follows that the field $\hat{F}^{(0)}$ is the maximal subfield of E^{ab}_{∞} , which is abelian over F.

Let X_{∞}' be the Galois group $\operatorname{Gal}(L_{\infty}'/E_{\infty})$, where L_{∞}' is the maximal abelian unramified pro-p-extension of E_{∞} which splits at p-adic primes of E_{∞} . We have a natural surjective map

$$\mathcal{X}_{\infty}(-i)_{G_{\infty}} \longrightarrow X'_{\infty}(-i)_{G_{\infty}}.$$

For $i \neq 0$, it is well known that $X'_{\infty}(-i)_{G_{\infty}}$ is isomorphic to the localization kernel

$$\mathrm{III}^2(G_S(F),\mathbb{Z}_p(1-i)):=\ker(H^2(G_S(F),\mathbb{Z}_p(1-i))\longrightarrow \underset{v|p}{\bigoplus}H^2(F_v,\mathbb{Z}_p(1-i))),$$

[28, Section 6, Lemma 1]. For $i \ge 2$, the group $\mathrm{III}^2(G_S(F), \mathbb{Z}_p(i))$ is called the étale wild kernel and does not depend on S containing the p-adic places.

In the following proposition, we give an exact sequence which expresses the link between the \mathbb{Z}_p -torsion module $\mathcal{T}_F^{(i)}$ and the Pontryagin dual of $X_\infty'(i-1)_{G_\infty}$. Let $W^{(1-i)}$ be the co-kernel of the injective localization morphism

$$H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i)) \to \bigoplus_{v|p} H^0(F_v, \mathbb{Q}_p/\mathbb{Z}_p(1-i)),$$

so that
$$W^{(1-i)}\cong \left(\bigoplus_{v\mid p} H^0(F_v,\mathbb{Q}_p/\mathbb{Z}_p(1-i))\right)/H^0(G_S(F),\mathbb{Q}_p/\mathbb{Z}_p(1-i)).$$

Proposition 2.7. Let F be a number field and let $i \neq 1$ be an integer such that F satisfies Conjecture $C^{(i)}$. Then we have the following exact sequence:

$$0 \to W^{(1-i)} \to \mathcal{T}_F^{(i)} \to \operatorname{Hom}(X_{\infty}'(i-1)_{G_{\infty}}, \mathbb{Q}_p/\mathbb{Z}_p) \to 0. \tag{7}$$

Proof. We start by recalling the first part of the Poitou-Tate exact sequence:

$$0 \succ H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i)) \longrightarrow \bigoplus_{v \mid p} H^0(F_v, \mathbb{Q}_p/\mathbb{Z}_p(1-i)) - \bigoplus_{v \mid p} H^2(G_S(F), \mathbb{Z}_p(i))^\vee \longrightarrow \coprod^1 (G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i)) \succ 0.$$

Clearly, for $i \neq 1$, we have

$$\mathrm{III}^1(G_S(F),\mathbb{Q}_p/\mathbb{Z}_p(1-i))\cong \mathrm{Hom}(X_\infty'(i-1)_{G_\infty},\mathbb{Q}_p/\mathbb{Z}_p).$$

Furthermore, if the field F satisfies Conjecture $C^{(i)}$, Remark 2.3 gives an isomorphism

$$\mathcal{T}_F^{(i)} \simeq H^2(G_S(F), \mathbb{Z}_p(i))^{\vee}$$

Summarizing, we can rewrite the Poitou-Tate exact sequence as follows:

$$0 \Rightarrow W^{(1-i)} \Rightarrow \mathcal{T}_F^{(i)} \Rightarrow \operatorname{Hom}(X_\infty'(i-1)_{G_\infty}, \mathbb{Q}_p/\mathbb{Z}_p) \Rightarrow 0.$$

Note that the group $X'_{\infty}(-i)_{G_{\infty}}$ is a quotient of the Galois group X'_{∞} , thus it could be realized as a Galois group of an abelian and totally decomposed extension of E_{∞} (this extension is denoted by \mathcal{L}_{∞} in [3, Section 2, page 653]).

Definition 2.8. The field $L^{(i)}$ is the subfield of L'_{∞} fixed by $I_{G_{\infty}}(X'_{\infty}(-i))$, hence

$$\operatorname{Gal}(L^{(i)}/E_{\infty}) = X_{\infty}'(-i)_{G_{\infty}}.$$

In [3, Proposition 1], it is noticed that the extension $L^{(i)}$ is not in general abelian over F so we can not use the descent process to realize the group $X'_{\infty}(-i)_{G_{\infty}}$ as a Galois group over F. Using the same methods of Jaulent and Soriano [15, Section 3, page 3], one constructs a field $H^{(i)}$ (this field is denoted by \widetilde{F} in [3, Section 2, page 653]) which is a Galois extension over F and the group $X'_{\infty}(-i)_{G_{\infty}}$ is isomorphic to the Galois group $\operatorname{Gal}(H^{(i)}/E_{n_0})$, where $E_{n_0} = H^{(i)} \cap E_{\infty}$ [3, Proposition 2]. Mention that in [3, page 653] the author assumes that $\mu_p \subseteq F$ but the generalization is easy. Let us recall the precise definition of the field $H^{(i)}$.

Definition 2.9. The field $H^{(i)}$ is the composite of the fields F_{γ} , where F_{γ} is the subfield of $L^{(i)}$ fixed by a lifting of a topological generator γ of Γ .

Remark 2.10. Since the Galois groups $\operatorname{Gal}(L^{(i)}/E_{\infty})$ and $\operatorname{Gal}(H^{(i)}/E_{n_0})$ are isomorphic, and $E_{n_0} = H^{(i)} \cap E_{\infty}$, we have $L^{(i)} = E_{\infty}H^{(i)}$.

Let K/F be a cyclic p-extension of F. Following [9], we say that K is an infinitely embeddable extension of F if it is embeddable in a cyclic p-extension of F of arbitrary large degree. By class field theory, a p-extension K/F is infinitely embeddable if and only if for any place v of F, the local extension K_v/F_v is embeddable in a \mathbb{Z}_p -extension of F_v . We denote by F^{BP} the composite of all infinitely embeddable extensions of F. Obviously the field F^{BP} contains the composite \widetilde{F} of all \mathbb{Z}_p -extensions of F. We set $T_F:=\mathrm{Gal}(F^{\mathrm{BP}}/\widetilde{F})$ to be the Bertrandias-Payan module of F i.e., the \mathbb{Z}_p -torsion sub-module of $\mathrm{Gal}(F^{\mathrm{BP}}/F)$. Let \widehat{F} be the maximal abelian pro-p-extension of F which is unramified outside S. In view of [25, Theorem 4.2], we can see that F^{BP} is the subfield of \widehat{F} fixed by the image of $W^{(1)}=\bigoplus_{v\mid p}\mu_p(F_v)/\mu_p(F)$ in \mathcal{T}_F , the \mathbb{Z}_p -torsion sub-module of $\mathcal{X}_F:=\mathrm{Gal}(\widehat{F}/F)$.

In a natural way, we define a twisted analogue of the Bertrandias-Payan field as follows:

Definition 2.11. Let $i \neq 1$ be an integer such that F satisfies Conjecture $C^{(i)}$. The twisted Bertrandias-Payan field $F^{BP,(i)}$ is defined as the subfield of $\widehat{F}^{(i)}$ fixed by the image of $W^{(1-i)}$ in $\mathcal{T}_F^{(i)}$ in the exact sequence (7).

Let $T_F^{(i)}$ be the \mathbb{Z}_p -torsion of $Gal(F^{BP,(i)}/E_\infty)$. Assume that F satisfies Conjecture $C^{(i)}$. By the definition of $F^{BP,(i)}$ and the exact sequence (7), we have the following isomorphism:

$$T_F^{(i)} \simeq \operatorname{Hom}(X_{\infty}'(i-1)_{G_{\infty}}, \mathbb{Q}_p/\mathbb{Z}_p).$$

In particular, if i = 0 we obtain the following isomorphism:

$$T_F \simeq \operatorname{Hom}(X'_{\infty}(-1)_{G_{\infty}}, \mathbb{Q}_p/\mathbb{Z}_p),$$

(c.f. [25, Theorem 4.2]). Hence $T_F^{(i)}$ is a twisted analogue of the Bertrandias-Payan module. In this context, we have the twist analogue of the exact sequence in [25, Theorem 4.2].

Corollary 2.12. Let F be a number field and let $i \neq 1$ be an integer such that F satisfies Conjecture $C^{(i)}$. Then, we have the following exact sequence:

$$0 \to W^{(1-i)} \to \mathcal{T}_F^{(i)} \to \mathcal{T}_F^{(i)} \to 0. \tag{8}$$

Proposition 2.13. For every integer $i \neq 0, 1$ such that F satisfies Conjecture $C^{(i)}$, the twisted Bertrandias-Payan field $F^{BP,(i)}$ contains the field $L^{(i)}$.

Proof. Since $i \neq 0$, we have $\coprod^2(G_S(F), \mathbb{Z}_p(1-i)) \simeq X'_{\infty}(-i)_{G_{\infty}}$. Thus, the Poitou-Tate exact sequence [19, page 682]

$$H^{1}(G_{S}(F), \mathbb{Z}_{p}(1-i)) \xrightarrow{\alpha^{(1-i)}} \bigoplus_{v|p} H^{1}(F_{v}, \mathbb{Z}_{p}(1-i)) \longrightarrow \mathcal{X}_{F}^{(i)} \longrightarrow$$

$$\coprod^{2} (G_{S}(F), \mathbb{Z}_{p}(1-i)) \longrightarrow 0$$

induces a surjective homomorphism:

$$\mathcal{X}_F^{(i)} \longrightarrow X'_{\infty}(-i)_{G_{\infty}}.$$

Its kernel $Y^{(i)} := \operatorname{Gal}(\widehat{F}^{(i)}/L^{(i)})$ is isomorphic to the co-kernel of the localization map

$$H^1(G_S(F), \mathbb{Z}_p(1-i)) \longrightarrow \bigoplus_{v|p} H^1(F_v, \mathbb{Z}_p(1-i)).$$

This map is injective since Conjecture $C^{(i)}$ holds. Thus we have an exact sequence:

$$0 \longrightarrow H^1(G_S(F), \mathbb{Z}_p(1-i)) \longrightarrow \bigoplus_{v \mid p} H^1(F_v, \mathbb{Z}_p(1-i)) \longrightarrow Y^{(i)} \longrightarrow 0.$$

Taking the restriction to the \mathbb{Z}_p -torsion sub-modules, we obtain the following exact sequence:

$$\operatorname{tor}_{\mathbb{Z}_p} H^1(G_S(F), \mathbb{Z}_p(1-i)) \hookrightarrow \bigoplus_{v|p} \operatorname{tor}_{\mathbb{Z}_p} H^1(F_v, \mathbb{Z}_p(1-i)) \to \operatorname{tor}_{\mathbb{Z}_p} Y^{(i)}. \tag{9}$$

Moreover, we have the following well known isomorphisms

$$H^0(G_S(F),\mathbb{Q}_p/\mathbb{Z}_p(1-i)) \simeq \mathrm{tor}_{\mathbb{Z}_p}H^1(G_S(F),\mathbb{Z}_p(1-i))$$

and

$$H^0(F_v,\mathbb{Q}_p/\mathbb{Z}_p(1-i)) \simeq \mathrm{tor}_{\mathbb{Z}_p} H^1(F_v,\mathbb{Z}_p(1-i))$$

[31, Proposition 2.3]. The exact sequence (9) becomes

$$0 \longrightarrow H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i)) \longrightarrow \bigoplus_{v|p} H^0(F_v, \mathbb{Q}_p/\mathbb{Z}_p(1-i)) \longrightarrow \operatorname{tor}_{\mathbb{Z}_p} Y^{(i)}.$$

Then we obtain that the image of $W^{(1-i)}$ in $\mathcal{X}_F^{(i)}$ is contained in the \mathbb{Z}_p -torsion of the kernel $Y^{(i)} := \operatorname{Gal}(\widehat{F}^{(i)}/L^{(i)})$. This means that the field $L^{(i)}$ is contained in $F^{\operatorname{BP},(i)}$.

The following figure is an illustration of the situation in which we work:

Now, let K/F be a Galois p-extension of number fields, with Galois group G. If the extension K/F is unramified outside S, there exists a natural restriction map

$$f_i: H^2(G_S(F), \mathbb{Z}_p(i)) \longrightarrow H^2(G_S(K), \mathbb{Z}_p(i))^G.$$

We denote by $\hat{H}^{\cdot}(G, \cdot)$ the modified Tate cohomology groups (see [29]). If $i \neq 0, 1$, the kernel and co-kernel of the map f_i are given by

$$\ker(f_i) \cong H^1(G,H^1(G_S(K),\mathbb{Z}_p(i))) \cong \hat{H}^{-1}(G,H^2(G_S(K),\mathbb{Z}_p(i)))$$

and

$$\operatorname{coker}(f_i) \cong H^2(G,H^1(G_S(K),\mathbb{Z}_p(i))) \cong \hat{H}^0(G,H^2(G_S(K),\mathbb{Z}_p(i)))$$

[1, Proposition 3.1, page 41], [18, Theorem 1.2] and [16, Proposition 2.9] (the proof for $i \neq 0, 1$ is the same as for $i \geq 2$). If K satisfies Conjecture $C^{(i)}$, the group $H^2(G_S(K), \mathbb{Z}_p(i))$ is finite and the above descriptions of the kernel and co-kernel of the map f_i show that, if G is cyclic, $\ker(f_i)$ and $\operatorname{coker}(f_i)$ have the same order.

Similarly for a prime v of F dividing p and a prime w of K above v, we have a restriction map [1, Chapter 3]

$$f_{i,v}: H^2(F_v, \mathbb{Z}_p(i)) \longrightarrow H^2(K_w, \mathbb{Z}_p(i))^{G_w}$$

where $G_w = \text{Gal}(K_w/F_v)$ is the decomposition group of w in the extension K/F. Then exactly as in the global case, we have [1, Proposition 3.1, page 41]

$$\ker(f_{i,v}) \cong H^1(G_w, H^1(K_w, \mathbb{Z}_p(i))) \cong \hat{H}^{-1}(G_w, H^2(K_w, \mathbb{Z}_p(i)))$$

and

$$\operatorname{coker}(f_{i,v}) \cong H^2(G_w, H^1(K_w, \mathbb{Z}_p(i))) \cong \hat{H}^0(G_w, H^2(K_w, \mathbb{Z}_p(i))).$$

Consider the commutative diagram

$$\begin{split} H^2(G_S(K),\mathbb{Z}_p(i))^G & \longrightarrow [\bigoplus_{v \in S, w \mid v} H^2(K_w,\mathbb{Z}_p(i))]^G \cong \bigoplus_{v \in S} H^2(K_w,\mathbb{Z}_p(i))^{G_w} \\ & \qquad \qquad \bigoplus_{v \in S} f_{i,v} \not \uparrow \\ H^2(G_S(F),\mathbb{Z}_p(i)) & \longrightarrow \bigoplus_{v \in S} H^2(F_v,\mathbb{Z}_p(i)) \end{split}$$

where for each $v \in S$, the isomorphism $[\bigoplus_{w|v} H^2(K_w, \mathbb{Z}_p(i))]^G \cong H^2(K_w, \mathbb{Z}_p(i))^{G_w}$ is a consequence of Shapiro's lemma, w being a prime of K above v. It follows that there exists a restriction map

$$j_i(K/F)$$
: $\coprod^2(G_S(F), \mathbb{Z}_p(i)) \longrightarrow \coprod^2(G_S(K), \mathbb{Z}_p(i))^G$.

We are interested in the dual map

$$j_i^*(K/F): (\mathsf{T}_K^{(i)})_G \longrightarrow \mathsf{T}_F^{(i)}$$

when *K* is contained in the cyclotomic \mathbb{Z}_p -extension F_{∞} of *F*.

We need some additional notation. For all positive integer n, we denote by F_n the unique sub-extension of F_∞ such that $G_n := \operatorname{Gal}(F_n/F) \simeq \mathbb{Z}/p^n\mathbb{Z}$ and by $\operatorname{T}_n^{(i)} := \operatorname{T}_{F_n}^{(i)}$ the twisted Bertrandias-Payan module of F_n . We define the twisted Bertrandias-Payan module of F_∞ as the projective limit of $\operatorname{T}_n^{(i)}$ i.e., $\operatorname{T}_\infty^{(i)} := \varprojlim \operatorname{T}_n^{(i)}$, where the projective limit is taken via the natural maps $j_{i,n}^* := j_i^*(F_n/F) : (\operatorname{T}_n^{(i)})_{G_n} \to \operatorname{T}_m^{(i)}(n \geq m)$. Let Γ be the Galois group $\operatorname{Gal}(F_\infty/F)$. Then we have a well-defined homomorphism

$$j_{i,\infty}^* : (T_{\infty}^{(i)})_{\Gamma} \longrightarrow T_F^{(i)}.$$

In the next lemma we show that $j_{i,\infty}^*$ is injective, or equivalently that the restriction map

$$j_{i,\infty}\,:\, {\rm III}^2(G_S(F),\mathbb{Z}_p(i)) \longrightarrow (\varinjlim {\rm III}^2(G_S(F_n),\mathbb{Z}_p(i)))^\Gamma$$

induced by the maps $j_i(F_n/F)$ is surjective provided that Conjecture $\mathbb{C}^{(i)}$ holds. More precisely,

Lemma 2.14. Suppose that for every $n \ge 0$, the field F_n satisfies Conjecture $C^{(i)}$, $i \ne 0, 1$. Then, we have a commutative diagram with exact lines

$$\ker(j_{i,\infty}) \xrightarrow{} \coprod^2 (G_S(F), \mathbb{Z}_p(i)) \overset{j_{i,\infty}}{\Rightarrow} (\varinjlim \coprod^2 (G_S(F_n), \mathbb{Z}_p(i)))^{\Gamma}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H^1(\Gamma, \varinjlim H^1(G_S(F_n), \mathbb{Z}_p(i))) \xrightarrow{} H^2(G_S(F), \mathbb{Z}_p(i)) \overset{f_{i,\infty}}{\Rightarrow} (\varinjlim H^2(G_S(F_n), \mathbb{Z}_p(i)))^{\Gamma}$$

where $f_{i,\infty}$ is induced by the restriction maps

$$f_{i,n}: H^2(G_S(F), \mathbb{Z}_p(i)) \longrightarrow H^2(G_S(F_n), \mathbb{Z}_p(i))^{G_n}.$$

Proof. Let v be a p-adic prime of F and let $n \ge 0$. For commodity of notation, we denote also by v a prime of F_n above v and by $G_{n,v} = \operatorname{Gal}(F_{n,v}/F_v)$ its decomposition group in the extension F_n/F . Let us first show that the restriction homomorphism

$$f_i(F_{n,v}/F_v): H^2(F_v, \mathbb{Z}_p(i)) \longrightarrow H^2(F_{n,v}, \mathbb{Z}_p(i))^{G_{n,v}}$$

is injective. The local duality theorem gives an isomorphim

$$H^{2}(F_{n,v}, \mathbb{Z}_{p}(i)) \cong H^{0}(F_{n,v}, \mathbb{Q}_{p}/\mathbb{Z}_{p}(1-i))^{\vee} \cong H^{0}(F_{n,v}, \mathbb{Q}_{p}/\mathbb{Z}_{p}(i-1)).$$

Using Tate's lemma and the Hochschild-Serre spectral sequence associated to the extension groups

$$Gal(E_{\infty,v}/F_{n,v}) \hookrightarrow G_{\infty,v} \twoheadrightarrow G_{n,v}$$

we see that the first cohomology group $H^1(G_{n,v}, H^0(F_{n,v}, \mathbb{Q}_p/\mathbb{Z}_p(i-1))) = 0$. Since $G_{n,v}$ is a cyclic group, it follows that

$$\hat{H}^{-1}(G_{n,v}, H^0(F_{n,v}, \mathbb{Q}_p/\mathbb{Z}_p(i-1))) = 0.$$

Summarizing, we obtain

$$\begin{split} \ker(\bigoplus_{v \in S} f_i(F_{n,v}/F_v)) &:= \bigoplus_{v \in S} \hat{H}^{-1}(G_{n,v}, H^2(F_{n,v}, \mathbb{Z}_p(i))) \\ &\simeq \bigoplus_{v \in S} \hat{H}^{-1}(G_{n,v}, H^0(F_{n,v}, \mathbb{Q}_p/\mathbb{Z}_p(i-1))) \\ &= 0 \end{split}$$

Now, the exact sequence

$$0 \succ \coprod^2(G_S(F_n), \mathbb{Z}_p(i)) \longrightarrow H^2(G_S(F_n), \mathbb{Z}_p(i))$$

$$\bigoplus_{v \in S} H^2(F_{n,v}, \mathbb{Z}_p(i)) \longrightarrow H^0(G_S(F_n), \mathbb{Q}_p/\mathbb{Z}_p(1-i))^{\vee} \succ 0$$

leads to the following commutative diagram:

$$\coprod^{2} (G_{S}(F_{n}), \mathbb{Z}_{p}(i))^{G_{n}} \hookrightarrow H^{2}(G_{S}(F_{n}), \mathbb{Z}_{p}(i))^{G_{n}} \rightarrow \bigoplus_{v \in S} H^{2}(F_{n,v}, \mathbb{Z}_{p}(i))^{G_{n}} \qquad (10)$$

$$\downarrow^{j_{i,n}} \qquad \qquad \uparrow^{j_{i,n}} \qquad \bigoplus_{v \in S} f_{i}(F_{n,v}/F_{v}) \uparrow \qquad \qquad \bigoplus_{v \in S} H^{2}(F_{v}, \mathbb{Z}_{p}(i)),$$

$$\coprod^{2} (G_{S}(F), \mathbb{Z}_{p}(i)) \hookrightarrow H^{2}(G_{S}(F), \mathbb{Z}_{p}(i)) \longrightarrow \bigoplus_{v \in S} H^{2}(F_{v}, \mathbb{Z}_{p}(i)),$$

where

$$\bigoplus_{v \in S} H^2(F_v, \mathbb{Z}_p(i)) := \ker(\bigoplus_{v \in S} H^2(F_v, \mathbb{Z}_p(i)) \longrightarrow H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i))^{\vee}).$$

The map $\bigoplus_{v \in S} f_i(F_{n,v}/F_v)$ is injective as the restriction of the map $\bigoplus_{v \in S} f_i(F_{n,v}/F_v)$ to $\bigoplus_{v \in S} H^2(F_v, \mathbb{Z}_p(i))$. Since the fields $F_n, n \geq 0$, satisfy Conjecture $\mathbf{C}^{(i)}$, the group

$$\varliminf \operatorname{coker}(f_{i,n}) = \varliminf H^2(G_n, H^1(G_S(F_n), \mathbb{Z}_p(i)))$$

is trivial (the proof is exactly the same as [18, Proposition 3.2]). Taking the inductive limit in (10), we then obtain the following commutative diagram with exact lines and columns

which shows that the map $\coprod^2(G_S(F), \mathbb{Z}_p(i)) \longrightarrow \varinjlim^2(G_S(F_n), \mathbb{Z}_p(i))^{G_n}$ is surjective. Therefore, we get the commutative diagram of the lemma.

Theorem 2.15. Let F be a number field and let $i \neq 0, 1$ be an integer such that Conjecture $C^{(i)}$ holds for all the fields F_n , $n \geq 0$. Then the homomorphism

$$j_{i,\infty}^*: (T_{\infty}^{(i)})_{\Gamma} \longrightarrow T_F^{(i)}$$

is injective. If we assume further that F is totally real and i is even, we get an isomorphism

$$(T_{\infty}^{(i)})_{\Gamma} \simeq T_{E}^{(i)}$$
.

Proof. The first claim follows from the Pontryagin dual of the top exact sequence in the commutative diagram of Lemma 2.14 and the isomorphisms

$$T_F^{(i)} \simeq \coprod^2 (G_S(F), \mathbb{Z}_p(i))^{\vee},$$

$$T_{\infty}^{(i)} \simeq \varprojlim (\mathrm{III}^2(G_S(F_n), \mathbb{Z}_p(i))^{\vee}) \simeq \mathrm{Hom}(\varinjlim \mathrm{III}^2(G_S(F_n), \mathbb{Z}_p(i)), \mathbb{Q}_p/\mathbb{Z}_p).$$

Suppose now that F is totally real and i is even. Observe that, for every $n \ge 1$, F_n is also totally real. Using the exact sequence (1), we obtain

$$\operatorname{rank}_{\mathbb{Z}_p} H^1(G_S(F_n), \mathbb{Z}_p(i)) = \operatorname{co-rank} H^1(G_S(F_n), \mathbb{Q}_p/\mathbb{Z}_p(i))$$
$$= \operatorname{rank}_{\mathbb{Z}_p} H_1(G_S(F_n), \mathbb{Z}_p(-i)).$$

Thus, the formula (3) shows that for $n \ge 1$, the group $H^1(G_S(F_n), \mathbb{Z}_p(i))$ is a \mathbb{Z}_p -torsion module. Note that for all $n \ge 1$, $H^0(G_S(F_n), \mathbb{Z}_p(i)) \otimes \mathbb{Q}_p/\mathbb{Z}_p$ is trivial. From the exact sequence (1), it follows that the connecting homomorphism is an isomorphism

$$H^0(G_S(F_n), \mathbb{Q}_p/\mathbb{Z}_p(i)) \simeq H^1(G_S(F_n), \mathbb{Z}_p(i)).$$

Hence we have a commutative diagram

$$H^{0}(G_{S}(F_{n}), \mathbb{Q}_{p}/\mathbb{Z}_{p}(i)) \xrightarrow{\sim} H^{1}(G_{S}(F_{n}), \mathbb{Z}_{p}(i))$$

$$\uparrow \qquad \qquad \uparrow$$

$$H^{0}(G_{S}(F), \mathbb{Q}_{p}/\mathbb{Z}_{p}(i)) \xrightarrow{\sim} H^{1}(G_{S}(F), \mathbb{Z}_{p}(i))$$

where the vertical maps are the restriction maps. Taking the inductive limit, we get

$$\varinjlim H^1(G_S(F_n),\mathbb{Z}_p(i)) \simeq \varinjlim H^0(G_S(F_n),\mathbb{Q}_p/\mathbb{Z}_p(i))$$
$$\simeq H^0(G_S(F_\infty),\mathbb{Q}_p/\mathbb{Z}_p(i)).$$

Therefore,

$$H^1(\Gamma, \varinjlim H^1(G_S(F_n), \mathbb{Z}_p(i))) \simeq H^1(\Gamma, H^0(G_S(F_\infty), \mathbb{Q}_p/\mathbb{Z}_p(i))).$$

As explained after Lemma 2.4, $H^1(\Gamma, H^0(G_S(F_\infty), \mathbb{Q}_p/\mathbb{Z}_p(i)))$ is trivial. Thus, the cohomology group $H^1(\Gamma, \varinjlim H^1(G_S(F_n), \mathbb{Z}_p(i)))$ is trivial. Using this fact and Lemma 2.14, we obtain that

$$j_{i,\infty}: \coprod^2(G_S(F),\mathbb{Z}_p(i)) \longrightarrow (\lim_{\longrightarrow} \coprod^2(G_S(F_n),\mathbb{Z}_p(i)))^{\Gamma}$$

is an isomorphism. Taking the Pontryagin dual we get the desired isomorphism. $\hfill\Box$

3. The twisted Kummer-Leopoldt's constant

Let F be a number field and let S be the set of p-adic and infinite places of F. We set by A_F the p-primary part of the (p)-class group of F. We denote by U the group of S-units of F and by \widehat{U} the pro-p-completion of U.

A description of the Galois group \mathcal{X}_F is given by the class field exact sequence relative to the decomposition

$$\widehat{U} \xrightarrow{\alpha} \bigoplus_{v|p} \widehat{F}_v \xrightarrow{\varphi} \mathcal{X}_F \longrightarrow A_F \longrightarrow 0, \tag{11}$$

where α is the natural pro-p-diagonal map and φ is the product of the local reciprocity homomorphisms which send each \hat{F}_v to the decomposition group in \mathcal{X}_F .

In Section 2, we noticed some equivalences formulations of Leopoldt's conjecture in terms of the \mathbb{Z}_p -rank of the p-ramified Iwasawa module and cohomology groups. Another formulation of this conjecture is the injectivity of the natural pro-p-diagonal map α or, equivalently, is the validity of the following property: For all integer $s \geq 1$, there exists an integer $t \geq 1$ such that:

$$\forall u \in U, (u \in F_v^{p^t}, \forall v \mid p) \Longrightarrow u \in U^{p^s},$$

[7, Section 4]. Using the isomorphism

$$\widehat{U} \cong H^1(G_S(F), \mathbb{Z}_p(1)),$$

the map α is nothing but the localization homomorphism:

$$\alpha^{(1)} = \bigoplus_{v \mid p} \alpha_v^{(1)} : H^1(G_S(F), \mathbb{Z}_p(1)) \longrightarrow \bigoplus_{v \mid p} H^1(F_v, \mathbb{Z}_p(1))$$
$$x \longmapsto (\alpha_v^{(1)}(x))_v$$

For an integer i, we consider the twisted analogue of the map α

$$\alpha^{(i)} = \bigoplus_{v|p} \alpha_v^{(i)} : H^1(G_S(F), \mathbb{Z}_p(i)) \longrightarrow \bigoplus_{v|p} H^1(F_v, \mathbb{Z}_p(i))$$
$$x \longmapsto (\alpha_v^{(i)}(x))_v$$

and if $x \in H^1(G_S(F), \mathbb{Z}_p(i))$, we keep (for simplicity) the notation $x := \alpha_v^{(i)}(x) \in H^1(F_v, \mathbb{Z}_p(i))$. Then, we consider the following property:

$$(\mathfrak{Q}_i)$$
 For all integer $s \ge 1$, there exists an integer $t \ge 1$ such that:
 $x \in H^1(G_S(F), \mathbb{Z}_p(i)) (x \in H^1(F_v, \mathbb{Z}_p(i))^{p^t}, \forall v \mid p) \Rightarrow x \in H^1(G_S(F), \mathbb{Z}_p(i))^{p^s}$

Remark 3.1. *Notice that for all* $t' \ge t$, *we have*

$$H^1(F_v, \mathbb{Z}_p(i))^{p^{t'}} \subseteq H^1(F_v, \mathbb{Z}_p(i))^{p^t}.$$

Therefore, we can suppose that $t \geq s$ in the property (\mathfrak{Q}_i) .

For every integer i, the Poitou-Tate exact sequence with coefficients in the modules $\mathbb{Z}/p^n\mathbb{Z}(i)$ induces, by passing to the projective limit, the following exact sequence [19, page 682]

$$H^{1}(G_{S}(F), \mathbb{Z}_{p}(i)) \stackrel{\alpha^{(i)}}{\to} \bigoplus_{v \mid p} H^{1}(F_{v}, \mathbb{Z}_{p}(i)) \to \mathcal{X}_{F}^{(1-i)} \Rightarrow \coprod^{2} (G_{S}(F), \mathbb{Z}_{p}(i))$$
(12)

When i = 1, $\text{III}^2(G_S(F), \mathbb{Z}_p(i)) \simeq A_F$ and the exact sequence (12) is nothing but the class field theory exact sequence (11). For $i \neq 1$,

$$\coprod^{2} (G_{S}(F), \mathbb{Z}_{p}(i)) \simeq X'_{\infty}(i-1)_{G_{\infty}}$$

[28, Section 6, Lemma 1] and we have a twisted analogue of (11):

$$H^{1}(G_{S}(F),\mathbb{Z}_{p}(i)) \xrightarrow{\alpha^{(i)}} \bigoplus_{v \mid p} H^{1}(F_{v},\mathbb{Z}_{p}(i)) \longrightarrow \mathcal{X}_{F}^{(1-i)} \longrightarrow X_{\infty}^{'}(i-1)_{G_{\infty}} \longrightarrow 0.$$

In the next lemma, for $i \neq 0$, we show an equivalence between the validity of Conjecture $C^{(1-i)}$ and the injectivity of the localization map:

$$\alpha^{(i)}: H^1(G_S(F), \mathbb{Z}_p(i)) \longrightarrow \bigoplus_{v|p} H^1(F_v, \mathbb{Z}_p(i)).$$

Lemma 3.2. *Let* $i \neq 0$ *be an integer. The following assertions are equivalent:*

- i) The map $\alpha^{(i)}$ is injective.
- ii) Conjecture $C^{(1-i)}$ holds for (F, p).

Proof. Remark that for every p-adic prime v of F, the absolute Galois group of F_v acts non trivially on $\mathbb{Z}_p(i)$ when $i \neq 0$. Hence the cohomology group $H^0(F_v, \mathbb{Z}_p(i))$ is trivial for every p-adic prime v. Therefore, the Poitou-Tate exact sequence induces the following exact sequence

$$0 \longrightarrow H^2(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i))^\vee \longrightarrow H^1(G_S(F), \mathbb{Z}_p(i)) \xrightarrow{\alpha^{(i)}} \bigoplus_{v \mid p} H^1(F_v, \mathbb{Z}_p(i)).$$

This shows that

$$\ker(\alpha^{(i)}) \cong H^2(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i))^{\vee}.$$

Remark 3.3. Although there is no Conjecture $C^{(1)}$, the map $\alpha^{(0)}$ is always injective. Indeed, by the global Poitou-Tate duality, we have

$$\ker(\alpha^{(0)}) := \coprod^1 (G_S(F), \mathbb{Z}_p) \simeq \coprod^2 (G_S(F), \mathbb{Q}_p/Z_p(1))^{\vee}.$$

Furthermore,

$$\begin{split} \mathrm{III}^2(G_S(F),\mathbb{Q}_p/\mathbb{Z}_p(1)) &= \underline{\lim} \, \mathrm{III}^2(G_S(F),\mu_{p^m}) \\ &= \underline{\lim} \, \mathrm{III}^1(G_S(F),\mathbb{Z}/p^m\mathbb{Z})^\vee \\ &= \underline{\lim} \, Cl_S(F)/p^m \\ &= Cl_S(F) \otimes \mathbb{Q}_p/\mathbb{Z}_p \\ &= 0. \end{split}$$

In the next theorem we give other equivalences of the twisted Leopoldt's conjecture. The proof is an adaptation of that of [7, Proposition 1].

Theorem 3.4. Let F be a number field. For all integer $i \neq 0$, the following properties are equivalent:

- (i) Conjecture $C^{(1-i)}$ holds for (F, p).
- (ii) The property (\mathfrak{Q}_i) is true.
- (iii) There exists a positive integer c_i such that for all $n \ge 1$,

$$x \in H^1(G_S(F), \mathbb{Z}_p(i))(x \in H^1(F_v, \mathbb{Z}_p(i))^{p^{c_i+n}}, \forall v \mid p) \Rightarrow x \in H^1(G_S(F), \mathbb{Z}_p(i))^{p^n}$$

(iv) There exists a positive integer c_i such that for all $n \gg 0$,

$$x\!\in\! H^1(G_S(F),\mathbb{Z}_p(i))(x\!\in\! H^1(F_v,\mathbb{Z}_p(i))^{p^{c_i+n}},\forall v\mid p)\Rightarrow x\!\in\! H^1(G_S(F),\mathbb{Z}_p(i))^{p^n}$$

Proof. For a positive integer t, the homomorphism $\alpha^{(i)}$ induces the following one

$$\alpha_t^{(i)}: H^1(G_S(F), \mathbb{Z}_p(i))/p^t \longrightarrow \underset{v|p}{\bigoplus} H^1(F_v, \mathbb{Z}_p(i))/p^t.$$

For integers $t \ge s \ge 1$, we consider the following commutative diagram

$$0 \longrightarrow \ker(\alpha_t^{(i)}) \longrightarrow H^1(G_S(F), \mathbb{Z}_p(i))/p^t \xrightarrow{\alpha_t^{(i)}} \bigoplus_{v \mid p} H^1(F_v, \mathbb{Z}_p(i))/p^t$$

$$\downarrow a_{s,t} \qquad \qquad \downarrow b_{s,t} \qquad \qquad \downarrow^{c_{s,t}}$$

$$0 \longrightarrow \ker(\alpha_s^{(i)}) \longrightarrow H^1(G_S(F), \mathbb{Z}_p(i))/p^s \xrightarrow{\alpha_s^{(i)}} \bigoplus_{v \mid p} H^1(F_v, \mathbb{Z}_p(i))/p^s$$

where the vertical maps are the natural ones. Since $\ker \alpha^{(i)} = \varprojlim \ker \alpha_t^{(i)}$, the homomorphism $\alpha^{(i)}$ is injective if and only if the homomorphism $a_{s,t}$ is trivial for $t \gg s$. According to Lemma 3.2, it follows that the validity of Conjecture $C^{(1-i)}$ is equivalent to the triviality of the homomorphism $a_{s,t}$ for $t \gg s$. Hence we get the equivalence $(i) \iff (ii)$.

Now we prove the implication $(ii) \Longrightarrow (iii)$. We suppose that the property (\mathfrak{Q}_i) holds and we proceed by induction over n. First let r be an integer such that $H^1(F_v, \mathbb{Z}_p(i))^{p^r}$ has no \mathbb{Z}_p -torsion for all prime v above p. By (\mathfrak{Q}_i) for s = r + 1, there is an integer $c_i \ge r$ (see Remark 3.1) such that for all $x \in H^1(G_S(F), \mathbb{Z}_p(i))$:

$$(x \in H^1(F_v, \mathbb{Z}_p(i))^{p^{c_i+1}}, \, \forall v \mid p) \Longrightarrow x \in H^1(G_S(F), \mathbb{Z}_p(i))^{p^{r+1}}. \tag{13}$$

The case n=1 is deduced from (13). Let n>1 and let $x\in H^1(G_S(F),\mathbb{Z}_p(i))$ such that x belongs to $H^1(F_v,\mathbb{Z}_p(i))^{p^{c_i+n}}$ for all v above p. According to (13), there is a $y\in H^1(G_S(F),\mathbb{Z}_p(i))$ such that $x=y^{p^{r+1}}$. Since $(y^{p^r})^p=x\in (H^1(F_v,\mathbb{Z}_p(i))^{p^{c_i+n-1}})^p$, we obtain that $y^{p^r}\in H^1(F_v,\mathbb{Z}_p(i))^{p^{c_i+n-1}}$, by the choice of r. Hence $y^{p^r}\in H^1(G_S(F),\mathbb{Z}_p(i))^{p^{n-1}}$, this implies that

$$x=(y^{p^r})^p\in H^1(G_S(F),\mathbb{Z}_p(i))^{p^n}.$$

The implications (iii) \Longrightarrow (ii), (iii) \Longrightarrow (iv) and (iv) \Longrightarrow (i) are obvious. \Box

- **Remark 3.5.** i) From the proof of Theorem 3.4, we see that the truth of (\mathfrak{Q}_i) is equivalent to the injectivity of the map $\alpha^{(i)}$ also in the case where i=0. As a consequence of Remark 3.3, the property (\mathfrak{Q}_0) is always true.
 - **ii)** The existence of the constant c_i is trivial in the case of totally real number field F and even integer i, since

$$H^1(G_S(F), \mathbb{Z}_p(i)) = \operatorname{tor}_{\mathbb{Z}_p} H^1(G_S(F), \mathbb{Z}_p(i));$$

in particular, Conjecture $C^{(1-i)}$ holds for (F, p).

Definition 3.6. We define the twisted Kummer-Leopoldt constant $\kappa_i = \kappa_i(F)$ of the field F to be the minimal integer c_i satisfying the property (iv) of Theorem 3.4.

The aim now is to determine the exact value of the twisted Kummer-Leopoldt constant. We shall express it as the exponent of a certain Galois module.

Lemma 3.7. Let $i \neq 0, 1$ be an integer such that F satisfies Conjecture $C^{(i)}$. The surjective homomorphism $\psi : \mathcal{X}_F^{(1-i)} \longrightarrow X_\infty'(i-1)_{G_\infty}$ factors through a homomorphism

$$\Psi: T_F^{(1-i)} \longrightarrow X'_{\infty}(i-1)_{G_{\infty}}$$

and $\ker(\Psi)$ is isomorphic to the Galois group $\operatorname{Gal}(\mathsf{F}^{\operatorname{BP},(1-i)}/\widetilde{F}^{(1-i)}L^{(1-i)}).$

Proof. First of all, we recall from the end of the proof of Proposition 2.13 that the image of $W^{(i)}$ in $\mathcal{T}_F^{(1-i)}$ is contained in the kernel

$$Y^{(1-i)} := \ker(\psi : \mathcal{X}_F^{(1-i)} \twoheadrightarrow X_{\infty}'(i-1)_{G_{\infty}}).$$

Therefore, taking the restriction of the surjective homomorphism

$$\psi: \mathcal{X}_F^{(1-i)} \longrightarrow X_\infty'(i-1)_{G_\infty}$$

to $\mathcal{T}_{\scriptscriptstyle F}^{(1-i)},$ we obtain the following commutative diagram with exact lines:

$$0 \longrightarrow W^{(i)} \longrightarrow \mathcal{T}_F^{(1-i)} \longrightarrow \mathsf{T}_F^{(1-i)} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \Psi$$

$$0 \longrightarrow \mathsf{tor}_{\mathbb{Z}_p} Y^{(1-i)} \longrightarrow \mathcal{T}_F^{(1-i)} \longrightarrow X_\infty' (i-1)_{G_\infty}$$

Thus ψ induces the following homomorphism

$$\Psi: T_F^{(1-i)} \longrightarrow X'_{\infty}(i-1)_{G_{\infty}}.$$

Furthermore, reading the figure in page 379, we see that the kernel $\ker(\Psi)$ is isomorphic to the Galois group $\operatorname{Gal}(F^{BP,(1-i)}/\widetilde{F}^{(1-i)}L^{(1-i)})$.

Theorem 3.8. Let F be a number field and let $i \neq 0, 1$ be an integer such that F satisfies Conjecture $C^{(1-i)}$. Let κ_i be the twisted Kummer-Leopoldt constant of F. Then p^{κ_i} is the exponent of the Galois group $Gal(F^{BP,(1-i)}/\widetilde{F}^{(1-i)}L^{(1-i)})$.

Proof. Let us prove that p^{κ_i} is the exponent of

$$\ker(\Psi) \simeq \operatorname{Gal}(F^{\operatorname{BP},(1-i)}/\widetilde{F}^{(1-i)}L^{(1-i)})$$

(Lemma 3.7). Let i = 1 - i and recall that the kernel

$$Y^{(j)} = \ker(\mathcal{X}_F^{(j)} \twoheadrightarrow X_{\infty}'(-j)_{G_{\infty}})$$

is equal to the Galois group $\operatorname{Gal}(\widehat{F}^{(j)}/L^{(j)})$. For n sufficiently large such that p^n kills the \mathbb{Z}_p -torsion $\mathcal{T}_F^{(j)}$ of $\mathcal{X}_F^{(j)}$, the multiplication by p^n yields the following exact sequence

$$0 \longrightarrow Y^{(j)}[p^n] \longrightarrow \mathcal{F}_F^{(j)} \longrightarrow X_{\infty}'(-j)_{G_{\infty}}.$$

Comparing with the exact sequence of Corollary 2.12, we get a commutative diagram:

$$0 \longrightarrow W^{(1-j)} \longrightarrow \mathcal{T}_F^{(j)} \longrightarrow T_F^{(j)} \longrightarrow 0$$

$$\downarrow^{g_n} \qquad \qquad \downarrow^{\Psi}$$

$$0 \longrightarrow Y^{(j)}[p^n] \longrightarrow \mathcal{T}_F^{(j)} \longrightarrow X'_{\infty}(-j)_{G_{\infty}}$$

Using the snake lemma, we obtain that

$$\ker(\Psi) \simeq \operatorname{coker}(g_n).$$
 (14)

Since Conjecture $C^{(j)}$ holds for F, the map $\alpha^{(i)}$ is injective (recall that j=1-i). Let us consider the following commutative diagram

$$0 \longrightarrow H^{1}(G_{S}(F), \mathbb{Z}_{p}(i)) \xrightarrow{\alpha^{(i)}} \bigoplus_{v \mid p} H^{1}(F_{v}, \mathbb{Z}_{p}(i)) \longrightarrow Y^{(j)} \longrightarrow 0$$

$$\downarrow^{p^{n}} \qquad \downarrow^{p^{n}} \qquad \downarrow^{p^{n}}$$

$$0 \longrightarrow H^{1}(G_{S}(F), \mathbb{Z}_{p}(i)) \xrightarrow{\alpha^{(i)}} \bigoplus_{v \mid p} H^{1}(F_{v}, \mathbb{Z}_{p}(i)) \longrightarrow Y^{(j)} \longrightarrow 0.$$

By the snake lemma, we obtain the following exact sequence

$$0 \longrightarrow H^{1}(G_{S}(F), \mathbb{Z}_{p}(i))[p^{n}] \longrightarrow \bigoplus_{v \mid p} H^{1}(F_{v}, \mathbb{Z}_{p}(i))[p^{n}] \xrightarrow{\phi_{n}} Y^{(j)}[p^{n}] \longrightarrow H^{1}(G_{S}(F), \mathbb{Z}_{p}(i))/p^{n} \xrightarrow{\alpha_{n}^{(i)}} \bigoplus_{v \mid p} H^{1}(F_{v}, \mathbb{Z}_{p}(i))/p^{n} \longrightarrow \cdots$$

It follows that $\operatorname{coker}(\phi_n)$ is isomorphic to the kernel $\ker(\alpha_n^{(i)})$. Notice that for n large enough,

$$H^1(G_S(F), \mathbb{Z}_p(i))[p^n] \simeq H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(i))$$

and

$$H^1(F_v,\mathbb{Z}_p(i))[p^n]\simeq H^0(F_v,\mathbb{Q}_p/\mathbb{Z}_p(i))$$

for all v over p. Hence, we get that $\operatorname{coker}(\phi_n)$ is isomorphic to $\operatorname{coker}(g_n)$. Then, by (14)

$$\operatorname{coker}(g_n) \simeq \ker(\alpha_n^{(i)})$$

 $\simeq \ker(\Psi).$

Since p^{κ_i} is the exponent of ker $\alpha_n^{(i)}$, for n large enough, the result follows from Lemma 3.7.

We finish this section with the following proposition in which we consider the case of a CM-field.

Proposition 3.9. Let F be a CM-field with totally real subfield F^+ and let i be an odd integer. Assume that the field F^+ satisfies Conjecture $C^{(1-i)}$. Then the twisted Kummer-Leopoldt constants $\kappa_i := \kappa_i(F)$ and $\kappa_i^+ := \kappa_i(F^+)$ are equal.

Proof. Let *n* be an integer such that p^n kills both $\bigoplus_{v|p} H^0(F_v, \mathbb{Q}_p/\mathbb{Z}_p(i))$ and

 $\mathcal{T}_F^{(1-i)}$. According to the end of the proof of Theorem 3.8, we know that p^{κ_i} is the exponent of

$$\ker(\alpha_n^{(i)}: H^1(G_S(F), \mathbb{Z}_p(i))/p^n \to \bigoplus_{v|p} H^1(F_v, \mathbb{Z}_p(i))/p^n).$$

Let $\tau \in \operatorname{Gal}(F/F^+)$ be the complex conjugation. Consider the decomposition

$$\ker(\alpha_n^{(i)}) = (\ker(\alpha_n^{(i)}))^+ \oplus (\ker(\alpha_n^{(i)}))^-,$$

where $(\ker(\alpha_n^{(i)}))^{\pm}=(1\pm\tau)\ker(\alpha_n^{(i)})$. We have to show that $(\ker(\alpha_n^{(i)}))^-$ is trivial and that the exponent of $(\ker(\alpha_n^{(i)}))^+$ is $p^{\kappa_i^+}$. We start by observing that

$$H^1(G_S(F), \mathbb{Z}_p(i))^+ \simeq H^1(G_S(F^+), \mathbb{Z}_p(i)).$$

Since

$$\operatorname{rank}_{\mathbb{Z}_p} H^1(G_S(F), \mathbb{Z}_p(i)) = \operatorname{rank}_{\mathbb{Z}_p} H^1(G_S(F^+), \mathbb{Z}_p(i)),$$

it follows that $H^1(G_S(F), \mathbb{Z}_p(i))^-$ is a \mathbb{Z}_p -torsion module. Furthermore, notice that

$$H^0(G_S(F^+), \mathbb{Q}_p/\mathbb{Z}_p(i)) = 0 \iff i \not\equiv 0 \mod [F^+(\mu_p) : F^+].$$

Since $[F^+(\mu_p):F^+]$ is even and i is odd, we get that $H^0(G_S(F^+),\mathbb{Q}_p/\mathbb{Z}_p(i))$ is trivial. This implies that

$$H^1(G_S(F),\mathbb{Z}_p(i))^- = \operatorname{tor}_{\mathbb{Z}_p} H^1(G_S(F),\mathbb{Z}_p(i)).$$

Using this fact and the choice of n, we see that the map

$$(\alpha_n^{(i)})^- : (H^1(G_S(F), \mathbb{Z}_p(i))/p^n)^- \to (\bigoplus_{v \mid p} H^1(F_v, \mathbb{Z}_p(i))/p^n)^-$$

is nothing but the injection

$$H^0(G_S(F),\mathbb{Q}_p/\mathbb{Z}_p(i)) \to (\bigoplus_{v|p} H^1(F_v,\mathbb{Z}_p(i))/p^n)^-.$$

Therefore, $(\ker(\alpha_n^{(i)}))^-$ is trivial for n large enough.

Also, using the isomorphism

$$(H^1(G_S(F),\mathbb{Z}_p(i))/p^n)^+\simeq H^1(G_S(F^+),\mathbb{Z}_p(i))/p^n$$

we get that $(\ker(\alpha_n^{(i)}))^+$ is the kernel of the map

$$H^1(G_S(F^+),\mathbb{Z}_p(i))/p^n \to (\bigoplus_{v|p} H^1(F_v,\mathbb{Z}_p(i))/p^n)^+$$

which is of exponent $p^{\kappa_i^+}$.

4. On the triviality of the twisted Kummer-Leopoldt constant

Let i be an integer and let p be an odd prime number. The (p,i)-regular number fields have been introduced in [2, Definition 1.1] as a generalization of p-rational fields [20, 21, 22]. Recall that a number field F is (p,i)-regular if the cohomology group $H^2(G_S(F), \mathbb{Z}/p\mathbb{Z}(i))$ is trivial, or equivalently if F satisfies Conjecture $C^{(i)}$ and the \mathbb{Z}_p -module $\mathcal{F}_F^{(i)}$ is trivial. In particular, this triviality implies that of $\mathrm{Gal}(F^{\mathrm{BP},(i)}/\widetilde{F}^{(i)}L^{(i)})$, where $\widetilde{F}^{(i)}$ is the subfield of $\widehat{F}^{(i)}$ fixed by $\mathcal{F}_F^{(i)}$ (Definition 2.5). Hence, by Theorem 3.8, we see that κ_{1-i} is trivial for (p,i)-regular number fields. In this section, we consider the other implication. Precisely, we give a characterization of the (p,i)-regularity in terms of the triviality of κ_{1-i} .

Theorem 4.1. Let $i \neq 0, 1$ be an integer and let F be a number field satisfying Conjecture $C^{(i)}$. Then F is (p, i)-regular if and only if the following three conditions hold:

- 1) $\kappa_{1-i} = 0$;
- 2) The injective map

$$H^0(G_S(F),\mathbb{Q}_p/\mathbb{Z}_p(1-i)) \longrightarrow \underset{v|p}{\bigoplus} H^0(F_v,\mathbb{Q}_p/\mathbb{Z}_p(1-i))$$

is an isomorphism;

3) $H^{(i)} \subset \widetilde{F}^{(i)}$.

Proof. Let us recall that $p^{\kappa_{1-i}}$ is the exponent of $\operatorname{Gal}(F^{\operatorname{BP},(i)}/\widetilde{F}^{(i)}L^{(i)})$ by Theorem 3.8 and that $\operatorname{Gal}(F^{\operatorname{BP},(i)}/\widetilde{F}^{(i)}L^{(i)}) \simeq \ker(\Psi : \operatorname{T}_F^{(i)} \longrightarrow X_\infty'(-i))$ by Lemma 3.7.

Suppose that F is (p,i)-regular. Then, the \mathbb{Z}_p -torsion module $\mathcal{F}_F^{(i)}$ is trivial. Using the exact sequence (8) of Corollary 2.12, we get that the groups $W^{(1-i)}$ and $T_F^{(i)}$ are both trivial. Therefore, we obtain Condition 2) from the triviality of $W^{(1-i)}$, and Condition 1) from the triviality of $T_F^{(i)}$. Furthermore, the vanishing of $\mathcal{F}_F^{(i)}$ shows that $\widehat{F}^{(i)} = \widetilde{F}^{(i)}$. Since $L^{(i)}$ is contained in $\widehat{F}^{(i)}$, we have $L^{(i)} \subset \widetilde{F}^{(i)}$. This proves that $H^{(i)} \subset \widetilde{F}^{(i)}$.

Now assume that the three conditions are satisfied. Using again the exact sequence (8) of Corollary 2.12 we see that $\mathcal{T}_F^{(i)}$ and $\mathrm{T}_F^{(i)}$ are isomorphic, since $W^{(1-i)}$ is trivial by Condition 2). Further, using Remark 2.10 with Condition 3) we obtain that the field $L^{(i)}$ is contained in $\widetilde{F}^{(i)}$. Hence the morphism $\Psi:\mathrm{T}_F^{(i)}\longrightarrow X_\infty'(-i)$ is trivial. In particular, the kernel of Ψ equals to $\mathrm{T}_F^{(i)}$. Therefore, by Theorem 3.8, the Bertrandias-Payan module $\mathrm{T}_F^{(i)}$ is trivial because of the nullity of κ_{1-i} . Hence the number field F is (p,i)-regular.

Remark 4.2 (compare with [8, Proposition 2.3]). For the case i = 0, using the same arguments in the proof of Theorem 4.1, we can show that F is p-rational exactly when the three conditions hold:

1)
$$\kappa(F) = 0$$
:

2) The map
$$\mu_p(F) \longrightarrow \bigoplus_{v|p} \mu_p(F_v)$$
 is an isomorphism;

3)
$$H_F \subset \widetilde{F}$$
.

Here $\kappa(F)$ is the Kummer-Leopoldt constant for the units [7, Definition 1], H_F is the Hilbert class field of F and \widetilde{F} is the composite of all \mathbb{Z}_p -extensions of F.

It is well known that the field of rational numbers $\mathbb Q$ is p-rational for any prime number p. This is not the case for the (p,i)-regularity. For example, if the prime p is irregular, there is at least an integer i for which $\mathbb Q$ is not (p,i)-regular (a consequence of $[2,(ii,\beta)$ Proposition 1.3]). It is also well known that all subfields of a (p,i)-regular number field are (p,i)-regular. Thus, to study the (p,i)-regularity of number fields we must suppose that $\mathbb Q$ is (p,i)-regular. From now on, we assume that $\mathbb Q$ is (p,i)-regular and we consider the case of quadratic number fields. The aim is to give a characterization of the (p,i)-regularity of a quadratic number field in the spirit of $[12,\S4.1]$.

We start with the following consequence of Theorem 4.1 and Proposition 3.9 that shows the triviality of some twisted Kummer-Leopoldt constants for imaginary quadratic fields.

Corollary 4.3. Let p be an odd prime number and let i be an even integer such that \mathbb{Q} is (p,i)-regular. Then, the Kummer-Leopoldt constant $\kappa_{1-i}(F)$ is zero for any imaginary quadratic field F.

Now, we prove the following helpful lemma in which we show that the morphism

$$H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i)) \longrightarrow \bigoplus_{v \mid p} H^0(F_v, \mathbb{Q}_p/\mathbb{Z}_p(1-i))$$

is almost always an isomorphism.

Lemma 4.4. Let $F = \mathbb{Q}(\sqrt{d})$ be a quadratic number field and let i be an integer. Then, the map $H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i)) \longrightarrow \bigoplus_{v|p} H^0(F_v, \mathbb{Q}_p/\mathbb{Z}_p(1-i))$ is an isomorphism exactly in the following situations:

- i) the prime p splits in F/\mathbb{Q} and $i \not\equiv 1 \mod (p-1)$;
- ii) the prime p is inert in F/\mathbb{Q} ;
- iii) the prime p ramifies in F/\mathbb{Q} and $\frac{2(i-1)}{p-1}$ is even if $i \equiv 1 \mod \frac{(p-1)}{2}$ and $(-1)^{\frac{p-1}{2}} \frac{d}{p}$ is a square in \mathbb{Q}_p .

Proof. We start with the following well known isomorphisms

$$H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i)) \simeq \mathbb{Z}/p^{w_i}\mathbb{Z}$$
 and $H^0(F_v, \mathbb{Q}_p/\mathbb{Z}_p(1-i)) \simeq \mathbb{Z}/p^{w_{v,i}}\mathbb{Z}$, where

$$w_i := \max\{n \mid i \equiv 1 \mod [F(\mu_{p^n}) : F]\}$$

and

$$w_{v,i} := \max\{n \mid i \equiv 1 \mod [F_v(\mu_{p^n}) : F_v]\}.$$

To prove the lemma, we discuss on the ramification of the prime p in F/\mathbb{Q} . We start with the case where p splits in F/\mathbb{Q} . Let v and v' be the primes of F above p. Observe that for all $n \ge 1$, we have

$$[F(\mu_{p^n}):F] = [F_v(\mu_{p^n}):F_v] = [F_{v'}(\mu_{p^n}):F_{v'}] = p^{n-1}(p-1).$$

Hence, $H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i)) \to \bigoplus_{v|p} H^0(F_v, \mathbb{Q}_p/\mathbb{Z}_p(1-i))$ is an isomorphism

if and only if the groups $H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i))$, $H^0(F_v, \mathbb{Q}_p/\mathbb{Z}_p(1-i))$ and $H^0(F_{v'}, \mathbb{Q}_p/\mathbb{Z}_p(1-i))$ are trivial. This is equivalent to $i \not\equiv 1 \mod (p-1)$.

Suppose now that p is inert in F/\mathbb{Q} and let v be the unique prime of F above p.

Since $F \cap \mathbb{Q}(\mu_p) = \mathbb{Q}$ and $F_v \cap \mathbb{Q}_p(\mu_p) = \mathbb{Q}_p$, we have

$$[F(\mu_{p^n}):F] = [F_v(\mu_{p^n}):F_v] = p^{n-1}(p-1)$$
 for all $n \ge 1$.

Thus the map $H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i)) \longrightarrow H^0(F_v, \mathbb{Q}_p/\mathbb{Z}_p(1-i))$ is always an isomorphism.

The remainder case is when p ramifies in F/\mathbb{Q} . Let v be the unique prime of F above p. Suppose further that $d \neq (-1)^{\frac{p-1}{2}} p$ and $(-1)^{\frac{p-1}{2}} \frac{d}{p}$ is a square in \mathbb{Q}_p . On

the one hand, since $\mathbb{Q}(\sqrt{(-1)^{\frac{p-1}{2}}p})$ is the unique quadratic subfield of $\mathbb{Q}(\mu_p)$, we can see that $F \cap \mathbb{Q}(\mu_p) = \mathbb{Q}$. On the other hand, the condition $(-1)^{\frac{p-1}{2}}\frac{d}{p}$ is a square in \mathbb{Q}_p means that $F_v \cap \mathbb{Q}_p(\mu_p) = F_v$. Therefore for all $n \geq 1$, we have

$$[F(\mu_{p^n}):F]=p^{n-1}(p-1)$$
 and $[F_v(\mu_{p^n}):F_v]=p^{n-1}\frac{(p-1)}{2}$.

Comparing the integers w_i and $w_{v,i}$, we get that $w_i = w_{v,i}$ if and only if either $i \not\equiv 1 \mod \frac{(p-1)}{2}$ or $i \equiv 1 \mod \frac{(p-1)}{2}$ and $\frac{2(i-1)}{p-1}$ is even.

To finish the proof we have to show that

$$H^0(G_S(F),\mathbb{Q}_p/\mathbb{Z}_p(1-i))\to H^0(F_v,\mathbb{Q}_p/\mathbb{Z}_p(1-i))$$

is an isomorphism when either $d=(-1)^{\frac{p-1}{2}}p$ or $d\neq (-1)^{\frac{p-1}{2}}p$ and $(-1)^{\frac{p-1}{2}}\frac{d}{p}$ is not a square in \mathbb{Q}_p . This is deduced from the fact that in both cases we have

$$[F(\mu_{p^n}): F] = [F_v(\mu_{p^n}): F_v]$$
 for all $n \ge 1$.

Remark 4.5. *a)* When the integer i satisfies $i \not\equiv 1 \mod \frac{(p-1)}{2}$, the localization map

$$H^0(G_S(F),\mathbb{Q}_p/\mathbb{Z}_p(1-i)) \longrightarrow \underset{v|p}{\bigoplus} H^0(F_v,\mathbb{Q}_p/\mathbb{Z}_p(1-i))$$

is always an isomorphism.

b) If the integer i is even, then

$$H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(1-i)) \to \bigoplus_{v|p} H^0(F_v, \mathbb{Q}_p/\mathbb{Z}_p(1-i))$$

is not an isomorphism exactly when p ramifies in F/\mathbb{Q} and the following two conditions hold:

- $p \equiv 3 \mod (4)$, $d \neq -p$ and $\frac{-d}{p}$ is a square in \mathbb{Q}_p ;
- $i \equiv 1 \mod \frac{(p-1)}{2}$ and $\frac{2(i-1)}{(p-1)}$ is odd.

According to Corollary 4.3 and ii) of Remark 3.5, we see that the twisted Kummer-Leopoldt constant $\kappa_{1-i}(F)$ is always zero when F is an imaginary quadratic field and i is even or F is a real quadratic field and i is odd. Using Theorem 4.1 and Lemma 4.4, we get the following characterizations of the (p,i)-regularity for quadratic fields.

Proposition 4.6. Let $i \geq 2$ be an integer such that \mathbb{Q} is (p,i)-regular. For a square free integer d > 0, let $F = \mathbb{Q}(\sqrt{(-1)^{i+1}d})$. Suppose that F satisfies one of the three conditions in Lemma 4.4. Then, F is (p,i)-regular if and only if $H^{(i)}$ is contained in $\widetilde{F}^{(i)}$. In particular, F is (p,i)-regular when $X'_{\infty}(-i)_{G_{\infty}}$ is trivial. \square

Proposition 4.6 concerns only the cases when F is an imaginary quadratic field and i is even or F is a real quadratic field and i is odd. In the other cases, we have the following characterization.

Proposition 4.7. Let $i \ge 2$ be an integer such that \mathbb{Q} is (p,i)-regular. For a square free integer d > 0, let $F = \mathbb{Q}(\sqrt{(-1)^i d})$. Suppose that F satisfies one of the three conditions in Lemma 4.4. Then the quadratic field F is (p,i)-regular exactly when the following conditions hold:

- **a)** The map $H^1(G_S(F), \mathbb{Z}_p(1-i))/p \longrightarrow \bigoplus_{v|p} H^1(F_v, \mathbb{Z}_p(1-i))/p$ is injective
- **b)** The field $H^{(i)}$ is contained in $\widetilde{F}^{(i)}$.

Proof. Let j = 1 - i. For simplicity we suppose that $H^0(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(j)) = 0$. Following Theorem 4.1 and Lemma 4.4, we have to prove the equivalence between the triviality of κ_j and the injectivity of the map

$$\alpha_1^{(j)}: H^1(G_S(F), \mathbb{Z}_p(j))/p \longrightarrow \underset{v|p}{\bigoplus} H^1(F_v, \mathbb{Z}_p(j))/p.$$

Recall that κ_i is trivial precisely when

$$\alpha_n^{(j)}: H^1(G_S(F), \mathbb{Q}_p/\mathbb{Z}_p(j))/p^n \longrightarrow \underset{v|p}{\bigoplus} H^1(F_v, \mathbb{Q}_p/\mathbb{Z}_p(j))/p^n$$

is injective for *n* large. Let's consider the commutative diagram:

$$\begin{split} 0 & \Rightarrow (H^1(G_S(F), \mathbb{Z}_p(j)))^p \Rightarrow H^1(G_S(F), \mathbb{Z}_p(j)) \Rightarrow H^1(G_S(F), \mathbb{Z}_p(j))/p \Rightarrow 0 \\ & \qquad \qquad \qquad \downarrow^{p^{n-1}} \qquad \qquad \qquad \downarrow^{p^{n-1}} \\ 0 & \Rightarrow (H^1(G_S(F), \mathbb{Z}_p(j)))^{p^n} \Rightarrow H^1(G_S(F), \mathbb{Z}_p(j)) \Rightarrow H^1(G_S(F), \mathbb{Z}_p(j))/p^n \Rightarrow 0 \end{split}$$

where the right vertical map is defined by

$$x \mod H^1(G_S(F), \mathbb{Z}_p(j))^p \mapsto x^{p^{n-1}} \mod H^1(G_S(F), \mathbb{Z}_p(j))^{p^n}$$

and is clearly injective. Hence we have

$$H^1(G_S(F), \mathbb{Z}_p(j))/p^{n-1} \simeq \operatorname{coker}(H^1(G_S(F), \mathbb{Z}_p(j))/p \hookrightarrow H^1(G_S(F), \mathbb{Z}_p(j))/p^n).$$

Likewise, we see that for every p-adic place v

$$H^1(F_v, \mathbb{Z}_p(j))/p^{n-1} \simeq \operatorname{coker}(H^1(F_v, \mathbb{Z}_p(j))/p^{c} \longrightarrow H^1(F_v, \mathbb{Z}_p(j))/p^n).$$

Therefore, the commutative diagram

$$0 \to \ker(\alpha_1^{(j)}) \to H^1(G_S(F), \mathbb{Z}_p(j))/p \xrightarrow{\alpha_1^{(j)}} \bigoplus_{v \mid p} H^1(F_v, \mathbb{Z}_p(j))/p$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

and the snake lemma induce the following exact sequence:

$$0 \longrightarrow \ker(\alpha_1^{(j)}) \longrightarrow \ker(\alpha_n^{(j)}) \longrightarrow \ker(\alpha_{n-1}^{(j)}) \longrightarrow 0.$$
 (15)

An inductive process and the exact sequence (15) show that $\ker(\alpha_n^{(j)})$ is trivial for all $n \geq 2$ when $\ker(\alpha_1^{(j)})$ is. This means that $\kappa_j = 0$ when $\ker(\alpha_1^{(j)})$ is trivial. Conversely, if $\kappa_j = 0$, the exact sequence (15) shows that $\ker(\alpha_1^{(j)})$ is trivial. \square

The main results of this section can be compared with [8, Proposition 2.3] and [12, Proposition 4.1]. In fact, Condition a) in the above proposition can be interpreted using Kummer theory. Indeed, it is well known that there is a subgroup $D_F^{(1-i)}$ of $E^{\bullet}:=E\setminus\{0\}, E=F(\mu_p)$, such that

$$H^{1}(G_{S}(F), \mathbb{Z}_{p}(1-i))/p \cong D_{F}^{(1-i)}/E^{\bullet p}(-i)$$

and, for each prime v of F above p, a subgroup $D_v^{(1-i)}$ of E_w^{\bullet} , w being a prime of E above v, such that

$$H^{1}(F_{v}, \mathbb{Z}_{p}(1-i))/p \cong D_{v}^{(1-i)}/E_{w}^{\bullet p}(-i),$$

[10, 5, 6]. So, Condition a) asserts that the natural map

$$D_F^{(1-i)}/E^{\bullet p} \longrightarrow \bigoplus_{v|p} D_v^{(1-i)}/E_w^{\bullet p},$$

where for each v above p, w is a place of E dividing v, is injective.

Example. The quadratic number field $F = \mathbb{Q}(\sqrt{\pm p})$ is (p,i)-regular for every integer $i \equiv 1 \mod (p-1)$. In fact, note that F has a unique p-adic prime and its class number is less than p e.g., [8, page 14]. Hence according to $[2, (ii, \alpha), Proposition 1.3]$, F is (p,i)-regular. Then the quadratic number field F satisfies Conjecture $C^{(i)}$ and $\kappa_{1-i} = 0$ for all $i \equiv 1 \mod (p-1)$.

Acknowledgement We thank the referee for his/her valuable comments and suggestions which improved the quality of this work.

References

- [1] ASSIM, JILALI. Sur la p-nullité de certains noyaux de la K-théorie. PhD thesis, Université de Franche-Comté. 1994. 379, 380
- [2] ASSIM, JILALI. Codescente en K-théorie étale et corps de nombres J. Manuscripta Math. 86 (1995), no. 4, 499–518. MR1324685, Zbl 0835.11043, doi: 10.1007/BF02568008. 371, 390, 391, 395
- [3] ASSIM, JILALI. Analogues étales de la p-tour des corps de classes. J. Théor. Nombres Bordeaux 15 (2003), no. 3, 651–663. MR2142228, Zbl 1162.11389, doi: 10.5802/jtnb.418. 376, 377
- [4] ASSIM, JILALI; BOUGHADI, ZOUHAIR. On Greenberg's generalized conjecture. J. Number Theory 242 (2023), 576–602. MR4490460, Zbl 1522.11112, doi:10.1016/j.jnt.2022.05.002.372
- [5] ASSIM, JILALI; MOVAHHEDI, ABBAS. Bounds for étale capitulation kernels. J. K-Theory 33 (2004), no. 3, 199–213. MR2138541, Zbl 1163.11347, doi: 10.1007/s10977-004-7337-8. 395
- [6] ASSIM, JILALI; MOVAHHEDI, ABBAS. Norm index formula for the Tate kernels and applications. J. K-theory 9 (2012), no. 2, 359–383. MR2922393, Zbl 1254.11105, doi:10.1017/is011003006jkt135.395
- [7] ASSIM, JILALI; NGUYEN QUANG DO, THONG. Sur la constante de Kummer-Leopoldt d'un corps de nombres. *Manuscripta mathematica* 115 (2004), no. 1, 55–72. MR2092776, Zbl 1081.11071, doi: 10.1007/s00229-004-0482-9. 369, 370, 384, 385, 391
- [8] BENMERIEME, YOUSSEF; MOVAHHEDI, ABBAS. Multi-quadratic p-rational number fields. J. Pure and Applied Algebra 225 (2021), no. 9, 106657. MR4192837, Zbl 1470.11290, doi: 10.1016/j.jpaa.2020.106657. 390, 394, 395
- [9] BERTRANDIAS, FRANÇOISE; PAYAN, JEAN-JACQUES. Γ-extensions et invariants cyclotomiques. Annales scientifiques de l'École Normale Supérieure 5 (1972), 517–543.
 MR337882, Zbl 0246.12005, doi: 10.24033/asens.1236. 370, 377
- [10] GREENBERG, RALPH. A note on K_2 and the theory of \mathbb{Z}_p -extensions. *American Journal of Mathematics* **100** (1978), no. 6, 1235–1245. MR522698, Zbl 0408.12012, doi: 10.2307/2373971. 372, 395
- [11] GREENBERG, RALPH. On the structure of certain Galois groups. *Inventiones mathematicae* **47** (1978), no. 1, 85–99. MR504453, Zbl 0403.12004, doi:10.1007/BF01609481. 372
- [12] GREENBERG, RALPH. Galois representations with open image. Annales Mathématiques du Québec 40 (2016), no. 1, 83–119. MR3512524, Zbl 1414.11151, doi: 10.1007/s40316-015-0050-6. 371, 391, 394

- [13] HABERLAND, KLAUS. Galois cohomology of algebraic number fields. With two appendices by Helmut Koch and Thomas Zink, *VEB Deutscher Verlag der Wissenschaften, Berlin* (1978), 145 pp. MR519872, Zbl 0418.12004. 373
- [14] IWASAWA, KENKICHI. \mathbb{Z}_ℓ -extensions of algebraic number fields. *Annals of Mathematics* **98** (1973), 246–326. MR349627, Zbl 0285.12008, doi: 10.2307/1970784. 372
- [15] JAULENT, JEAN-FRANÇOIS; SORIANO, FLORENCE. Sur les tours localement cyclotomiques. Archiv der Mathematik 73 (1999), no. 2, 132–140. MR1703681, Zbl 0945.11021, doi: 10.1007/s000130050378. 377
- [16] KOLSTER, MANFRED. K-theory and arithmetic. In Contemporary developments in algebraic K-theory 15, ICTP Lect. Notes, Abdus Salam Int. Cent. Theoret. Phys., Trieste (2004), 191–258. MR2175640, Zbl 1071.19002, 379
- [17] KOLSTER, MANFRED. The norm residue theorem and the Quillen-Lichtenbaum conjecture. London Mathematical Society Lecture Note Series, Cambridge University Press 418 (2015), 97–120. MR3497675, Zbl 1353.14030, 371
- [18] KOLSTER, MANFRED; MOVAHHEDI, ABBAS. Galois co-descent for étale wild kernels and capitulation. Annales de l'institut Fourier 50 (2000), no. 1, 35–65. MR1762337, Zbl 0951.11029, doi: 10.5802/aif.1746. 379, 382
- [19] KOLSTER, MANFRED; NGUYEN QUANG DO, THONG; FLECKINGER, VINCENT. Twisted S-units, p-adic class number formulas, and the Lichtenbaum conjectures. Duke Mathematical J. 84 (1996), no. 3, 679–717. MR1408541, Zbl 0863.19003, doi:10.1215/S0012-7094-96-08421-5. 378, 384
- [20] MOVAHHEDI, ABBAS. Sur les *p*-extensions des corps *p*-rationnels *J. PhD thesis, Paris 7* (1988). 370, 390
- [21] MOVAHHEDI, ABBAS. Sur les *p*-extensions des corps *p*-rationnels. *J. Math. Nachr* **149** (1990), 163–176. MR1124802, Zbl 0723.11054, doi: 10.1002/mana.19901490113. 390
- [22] MOVAHHEDI, ABBAS; NGUYEN QUANG DO, THONG. Sur l'arithmétique des corps de nombres p-rationnels. Séminaire de théorie des nombres de Paris 81 (1990), 155–200. MR1042770, Zbl 0703.11059. 390
- [23] NEKOVÁŘ, JAN Selmer complexes. Astérisque 310. Paris: Société Mathématique de France (2006), viii+559 pp. MR2333680, Zbl 1211.11120. 373
- [24] NGUYEN QUANG DO, THONG. Sur la structure galoisienne des corps locaux et la théorie d'Iwasawa. J. Compositio Mathematica 46 (1982), no. 1, 85–119. MR660155, Zbl 0481.12004. 372
- [25] NGUYEN QUANG DO, THONG. Sur la \mathbb{Z}_p -torsion de certains modules galoisiens. *Annales de l'institut Fourier* **36** (1986), no. 2, 27–46. MR850741, Zbl 0576.12010, doi: 10.580/aif.1045. 370, 377, 378
- [26] NGUYEN QUANG DO, THONG. Sur la cohomologie de certains modules galoisiens p-ramifiés. Théorie des nombres, J-M De Koninck et C. Levesque (éd.), C. R. Conf. Int. Quebec/Can. 1987 (1989), 740–754. MR1024600, Zbl 0697.12009. 374
- [27] OZAKI, MANABU. Kummer's lemma for \mathbb{Z}_p -extensions over totally real number fields. *Acta Arithmetica* **81** (1997), no. 1, 37–44. MR1454154, Zbl 0873.11059, doi: 10.4064/aa-81-1-37-44. 369
- [28] SCHNEIDER, PETER. Über gewisse Galoiscohomologiegruppen. *J. Mathematische Zeitschrift* **168** (1979), no. 2, 181–205. MR544704, Zbl 0421.12024, doi: 10.1007/BF01214195. 372, 373, 374, 376, 385
- [29] SERRE, JEAN-PIERRE. Local fields. Springer-Verlag, New York-Berlin 67 (1979), viii+241 pp. MR554237, Zbl 0137.02601. 379
- [30] SOULÉ, CHRISTOPHE. *K*-théorie des anneaux d'entiers de corps de nombres et cohomologie étale. *Inventiones mathematicae* **55** (1979), no. 3, 251–295. MR553999, Zbl 0437.12008, doi: 10.1007/BF01406843. 373
- [31] TATE, JOHN Relations between K_2 and Galois cohomology. *Inventiones mathematicae* **36** (1976), no. 1, 257–274. MR429837, Zbl 0359.12011, doi: 10.1007/BF01390012. 373, 378

- [32] WASHINGTON, LAWRENCE C. Units of irregular cyclotomic fields. *Illinois Journal of Mathematics* **23** (1979), no. 4, 635–647. MR540401, Zbl 0427.12004. 369
- [33] WASHINGTON, LAWRENCE C. Kummer's lemma for prime power cyclotomic fields. *J. Number Theory* **40** (1992), no.2, 165–173. MR1149735, Zbl 0746.11043, doi:10.1016/0022-314X(92)90037-P. 369
- (J. Assim) MOULAY ISMAIL UNIVERSITY, FACULTY OF SCIENCES, MEKNES, MOROCCO j.assim@umi.ac.ma
- (Z. Boughadi) Moulay Ismail University, Faculty of Sciences, Meknes, Morocco ${\tt z.boughadi@edu.umi.ac.ma}$
- (A. Driwach) MOULAY ISMAIL UNIVERSITY, FACULTY OF SCIENCES, MEKNES, MOROCCO a.driwach@edu.umi.ac.ma

This paper is available via http://nyjm.albany.edu/j/2024/30-14.html.