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Twisted analogue of
the Kummer-Leopoldt constant

J. Assim, Z. Boughadi and A. Driwach

ABSTRACT. Let F be a number field and let p be an odd prime. Denote by
S the set of p-adic and infinite places of F. We study a generalization to K-
theory of the Kummer-Leopoldt constant for the S-units introduced in [7,
Section 4]. We express in particular its value as the exponent of some Galois
module. As an application, we give a new characterization of (p, i)-regular
quadratic number fields.
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1. Introduction

Let p be an odd prime and let F be a number field. The Kummer-Leopoldt
constant [7, Definiton 1] x(F) is the smallest integer c satisfying the following
property: if n is sufficiently large and u is a unit of F that is a p"*¢-th power
locally at all primes dividing p, then u is a global p"-th power. This constant
exists when the couple (F, p) satisfies Leopoldt’s conjecture. Given this defini-
tion, Kummer’s lemma states that if p is a regular prime number and F is the
p-th cyclotomic field then x(F) is zero. Kummer’s lemma has been generalized
by several authors to p"-th cyclotomic fields, n > 1 [33], [32], or to totally real
number fields [27]. In [33, 32, 27], the authors give an upper bound for the
Kummer-Leopoldt constant in terms of special values of the associated p-adic
L-function.

More generally, for an arbitrary number field F, the quantity p*F) is the ex-
ponent of the Galois group Gal(FB¥/FLy) [7, Théoréme 1], where F®F is the
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Bertrandias-Payan field of F [9, 25], F is the composite of all Z p-extensions of
F and Lp is the maximal abelian unramified p-extension of F.

The Bertrandias-Payan field FPF is contained in F, the maximal abelian pro-
p-extension of F which is unramified outside the p-adic primes. In particular,
the Kummer-Leopoldt constant x(F) is trivial if F = F. Number fields with
F = F and satisfying Leopoldt’s conjecture are called p-rational fields [20].
Obviously, k(F) is trivial if the field F is p-rational. This can be considered as a
generalization of Kummer’s lemma since the field Q(u,) is p-rational precisely
when p is regular, u, being the group of p-th roots of unity.

Let S be the set of p-adic and infinite places of F and let U be the group
of S-units of F. In [7, Section 4], the authors define also a Kummer-Leopoldt
constant for the S-units as the smallest integer ¢ having the following property:

Vn>0,VueU, (ue vam, Yo | p) = u € UP",

where for v | p, F,, is the completion of F at v.

Denote by U and F,, respectively, the pro-p-completion of U and F,. Let
Gs(F) be the Galois group over F of the maximal algebraic extension which is
unramified outside S. Then

U ~ H'(Gs(F), Z,(1)) and F, ~ H\(F,, Z,(1)).
For an integer i, we have a natural localization map

a® = @al : HYGs(F),Z,(i)) — @H(F,,Z,(i)
vlp vlp
x — @),

where, for each prime v above p, ocf,i) . HY(G4(F), Z,(1) — H\(F,, Z,(1)) is
the restriction homomorphism. For simplicity, if x € HYGs(F),Z p(0), we

keep the notation x := ocg)(x) € H 1(FU,Zp(i)). Then, we ask the follow-
ing natural question: Is there a positive integer c; such that for alln > 0,x €
HY(Gs(F), Z,,(i)

(x € HY(F,, Z,())P"™", Vv | p) => x € H\(G4(F), Z,(i))""?

In this article, we show that such an integer exists when the field F satis-
fies a twisted Leopoldt’s conjecture (Conjecture 2.1), and we define the twisted
analogue of the Kummer-Leopoldt constant x;(F) to be the smallest value of ¢;
satisfying this property. The study of the twisted Kummer-Leopoldt constant
leads us to define some Galois extensions, in particular we construct a twisted
analogue of the Bertrandias-Payan field and an étale analogue of the Hilbert
class field (see §2). Using these definitions we express the twisted Kummer-
Leopoldt constant as the exponent of a certain Galois group inside the twisted
Bertrandias-Payan module (Theorem 3.8).

By the Quillen-Lichtenbaum conjecture, which is now a theorem thanks to
the work of Voevodsky and Rost on the Bloch-Kato conjecture, the p-adic co-
homology group H'(Gs(F), Z ,(i)) is isomorphic to the pro-p-completion of the
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K-theory group K,;_F [17, Theorem 5.6.8]. Hence for i > 2, the constant x;(F)
can be considered as a generalization to K-theory of the Kummer-Lepoldt con-
stant.

In the last section of this paper, we study the vanishing of the twisted Kummer-
Leopolodt constant. We show, in particular, that x;,_;(F) = 0if F is a (p, i)-
regular number field in the sense of [2]. Furthermore, we give a new character-
ization of (p, i)-regular number fields in terms of the triviality of x,_;(F). More
precisely, we prove the following theorem:

Theorem. Leti # 0,1 be an integer and let F be a number field satisfying the
twisted Leopoldt’s conjecture. Then F is (p, i)-regular if and only if the following
three conditions hold:

1 1 (F)=0;

2. The natural injective map

H(Gs(F), Q,/Z,(1 - 1)) — SE)HO(FU, Qp/Zp(1-1)

is an isomorphism;
3. HO c FO, where the fields F© and H® are defined in Definitions 2.5
and 2.9, respectively.

As an application we get a characterization of (p, i)-regular quadratic number
fields in the spirit of [12, §4.1], (see Propositions 4.6 and 4.7 below).
Notation: For a number field F, and an odd prime number p, we adopt the
following notation throughout this paper:

Or the ring of integers of F;

Mp the group of p-th roots of the unity;

E the composite of F and the p-th cyclotomic field
ie.,E = F(,up);

S the set of p-adic and infinite places;

U the group of S-units in F;

U the pro-p-completion of U;

F, the completion of F at a prime v of F;

U, the group of local units of F at a prime v of F;

F, the pro-p-completion of F;

F the cyclotomic Z p-extension of F;

r the Galois group Gal(F, /F);

F, the unique subfield of F, such that [F, : F] = p";

r, the Galois group Gal(F,/F,);

A= Z,[[T]] the Iwasawa algebra associated to I

E. the cyclotomic Z p-extension of E;

Gy the Galois group Gal(E, /F);

Fq the maximal algebraic extension of F which is unramified

outside S;
F the maximal abelian pro-p-extension of F which is
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unramified outside S;

E% the maximal abelian pro-p-extension of E,, which is
unramified outside S;

L., the maximal abelian unramified pro-p-extension of E,
which splits completely at p-adic primes of E;

XL the Galois group Gal(L., /E,.);

Gs(K) the Galois group Gal(Fs/K), for an arbitrary field K
inside Fg/F;

M(i) the i-th Tate twist of a Gg(F)-module M (i € Z2);

M[p"] the kernel of the multiplication by p”;

M/p" the co-kernel of the multiplication by p";

H"(Gg4(F),M) the n-th continuous cohomology group of G5(F) with
coefficients in M;
1"(Gs(F), M) the localization kernel ker(H"(G¢(F), M )—>@H "(F,, M));

MY = Hom(M, Q,/Z},), the Pontryagin dual of M

For a group G and a commutative ring R, let I; be the augmentation ideal of
the group ring R[G]; it is the ideal generated by {oc—1, 0 € G}. Unless otherwise
stated, R = Z,.

2. On certain Galois extensions

Let F be a number field and let p be an odd prime number. We denote by Fg
the maximal algebraic extension of F which is unramified outside the set S of
p-adic and infinite places of F. For a subfield K of F5 containing F, we denote by
G4(K) the Galois group Gal(Fg/K). The p-ramified Iwasawa module X is the
Galois group over K of the maximal abelian pro- p-extension which is unram-
ified outside S. In terms of homology groups, we have Xy ~ H,(Gs(K), Z,).
Indeed, using the cohomology-homology duality, we have:

HI(GS(K)a Zp) = HI(GS(K): @p/zp)v
Hom(Gs(K), Q,/Z,)"
=~ ‘X‘K'

R

For an integer i, denote by Xg) the first homology group H,(Gs(K), Z,(—1))
which can then be considered as a twisted analogue of the p-ramified Iwasawa

module Xx. The module Xg) has been studied by several authors in the case
where K is a multiple Z ,-extension of F. For example, [14, 11] for i = 0 and [4]
for i # 0. Returning to the case K = F, the Z,-rank of the p-ramified Iwasawa
module Xr is conjecturally equal to r, + 1, where r, is the number of complex
places of F (Leopoldt’s conjecture). There are many equivalent formulations of
this conjecture. In terms of cohomology, it is equivalent to the triviality of the
second cohomology group H*(Gg(F), Q »/Z,) (e.g., [24, Proposition 12]). More
generally, we have the following conjecture (Greenberg [10], Schneider [28], ...)
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Conjecture 2.1 (C®). Let F be a number field. Then for every integer i # 1, the
second cohomology group H*(Gg(F), Q p/Z (1)) is trivial.

Conjecture C® is the Leopoldt’s conjecture, it holds for all F that are abelian
over Q or over an imaginary quadratic number field. If i > 2, Conjecture C®”
holds for any number field F, as a consequence of the finiteness of the K-theory
groups K,;_,Or [30]. By a well known result on Brauer groups [13] or [28, §4,
Lemma 2], there is no Conjecture c,

In the next proposition we give two equivalent formulations of the Conjec-
ture C® that we will use in the sequel. These formulations are well known, we
add here a proof for the reader’s convenience.

Proposition 2.2. Let F be a number field and let i # 1 be an integer. The follow-
ing assertions are equivalent:

1) Conjecture C% holds for F;
2) the p-adic cohomology group H*(G4(F), Z,(1)) is finite;
3) the Galois module X;o(i — g, is finite.

Proof. For k > 1, the exact sequence
0 — Z,(i) L Z,(i)— 7/p*@{i) —0
induces in cohomology the exact sequence
H"(Gs(F), Z,(1))/ p*— H"(Gs(F), Z/ p“(i)) — H"* (G5 (F), Z,()[p*]
Passing to the direct limit on k, we obtain the exact sequence [23, (4.3.4.1)]

0 — H"(Gs(F), Zp(1)) ® Qp/Z, — H"(Gs(F), Q[ Z (1)) j Y]

L> tor,, H™(Gs(F), Z,(i)) — 0.

In fact, by [31, Proposition 2.3], H*(Gs(F), Z,(i)) ® Q,/Z, is the maximal di-
visible subgroup of H"(Gs(F), Q,/Z ,(i)).
Since the cohomological dimension cd(Gg(F)) < 2, we have an isomorphism

HX(Gs(F), Z,(1) ® Q,/Z,, = HXGs(F), B,/ Z,(i)) @)

Since the Z,-module H*(G4(F),Z p(D) is finitely generated (see [23, Proposi-
tion 4.2.3]), the equivalence between 1) and 2) follows from the isomorphism
(2).

Observe that ifi # 1, IIT*(Gs(F), Z,(i)) ~ X{,(i—1)g_ [28, Section 6, Lemma
1] and by the local duality theorem, we have

HA(F,,Z,()) 2 H(F,,Q,/Z,(1 - i))".
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In particular, the group @ H%(F,,Z p() isfinite. Then, the equivalence 2) <
veS
3) follows from the exact sequence

0 — IT*(Gs(F), Z,(i)) — H*(Gs(F), Z,,(1)) — UEESHZ(FU, Z (1))

O

Remark 2.3. For an integer i, we denote by J° g) the Z ,-torsion sub-module of
LKS). When the field F satisfies Conjecture C¥ (i # 1), the cohomology group
H?*(G4(F), Z,(1)) is finite. Hence the exact sequence (1) (for n = 1) induces by

duality the following well known cohomological description of T g) [26, Lemme
4.1]

TY =~ HA(G4(F), Z,,(1)".
As in the case where i = 0, Conjecture C is related to the Z p-rank of the
module x}f). In [28, §4, Satz 6], the co-ranks of the groups H(G¢(F), Q,/Z,1)
were computed. By duality,
rankZle(GS(F), Z,(-D) = corankZle(GS(F), Qp/Z,(0)).
It follows that if i # 0, 1, the field F satisfies C%) if and only if

r, +r, ifiisodd;

(3)

rank, W = .
p~ F fi
I if i is even,

here, as usual, r; (resp. r,) is the number of real (resp. complex) places. In the
sequel we will frequently use the following well known lemma:

Lemma 2.4 (Tate’s lemma). Let F be a number field and let i be a non-zero in-
teger. Then the Galois cohomology groups H*(G, Q,/Z,(i)) vanish forall k > 1,
where G is either G, = Gal(E,/F) or G, = Gal(Ey ,/F,), v being a finite
prime of F.

As a consequence of Tate’s lemma, we get that
Hl(rs HO(GS(Foo)s @p/zp(l))) =0,

where T is the Galois group Gal(F.,/F). Indeed, let A be the Galois group
Gal(E,, /F ). We have

HO(GS(Foo)’ Qp/zp(i))

H(A, H(Gs(Ew), Qp/ Z5()))
H(A,Qp/Z (D). 4)

Since cd(T") < 1, the Hochschild-Serre spectral sequence associated to the group
extension
0>A+G,—=T-0

yields the following exact sequence

0= HY(T,H°(A,Q,/Z,1))) ~ H (G, Q,/Z,(1)) = HY(A,Q,/ Z ()" = 0.
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By Tate’s Lemma, we get
HY(T,H%(A,Q,/Z,(1))) = 0.
From the equality (4), it follows that
H'(T,H%(Gs(Fo), Qp/Z (1)) = 0
as required.

Recall that the Z,-module %1(:0) is isomorphic to Xz = Gal(F/F), where F
is the maximal abelian pro-p-extension of F which is unramified outside S.

When the integer i is non-zero, the Z,-module xg) can also be realized as a
Galois group. Indeed, using Tate’s lemma we get that H (G, Q,/7,1) =
H?*(G,,Q p/Z,(1)) = 0, since i # 0. Therefore, the restriction map

H'(Gs(F),Q,/Z (1)) — H'(Gs(Ew), @/ Z 5 (1)) (5)

is an isomorphism. Notice that the Galois group Gg(E,,) acts trivially on
Q,/Z,(i), so we have

Hl(GS(Eoo)’ @p/zp(i))cm

Hl(GS(Eoo)’ @p/zp)(i)cm
Hom(Gs(Ey), Q,/Z ,)(i)C.

R

Then, by duality, the isomorphism (5) induces the following isomorphism:
20 = X (i)g, (6)

where X, = H1(Gs(E), Z)p) is the Galois group over E, of E% the maximal
abelian pro-p-extension which is unramified outside S.

Definition 2.5. Let i # 0 be an integer. We define the field F® to be the subfield
of E% fixed by I (Xo(=10)); hence

Gal(F®/E) = X (=i)g, = XV

When i = 0, we define F© as the composite of the fields E, and F i.e, F© = E_F.
For every integer i, we denote by F® the subfield of F fixed by the Z p-torsion

sub-module T I(f) of X (i); hence
7Y ~ Gal(FO /FOD),

Remark 2.6. Inthe casei = 0, we don’t have the isomorphism (6) but we do have
the following exact sequence:

0— X)g, —Xp—T—0.

It follows that the field F© is the maximal subfield of EZ®, which is abelian over
F.
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Let X/, be the Galois group Gal(L;o /Es), Where L'oo is the maximal abelian
unramified pro-p-extension of E, which splits at p-adic primes of E,. We have
a natural surjective map

xoo(_i)Goo - X’oo(_i)Goo'
For i # 0, it is well known that X{,(—i)g_ is isomorphic to the localization
kernel

IT1*(Gs(F), Z,(1 — i) := ker(H*(Gs(F), Z,(1 — i)) — velin(FU, Z,(1 —1))),

[28, Section 6, Lemma 1]. For i > 2, the group III?(G4(F), Z,(1)) is called the
étale wild kernel and does not depend on S containing the p-adic places.
In the following proposition, we give an exact sequence which expresses the

link between the Z,-torsion module J° g) and the Pontryagin dual of X/ (i —
1)g_.. Let W=D be the co-kernel of the injective localization morphism

HO(GS(F)a <1:Dp/Zp(l - l)) - UGB)HO(FU’ G;Dp/zp(l - i)),

so that W=D ~ (ElBHO(FU, Q,/Z,(1 - i))) /HGs(F), Qp/Z,(1 = 0)).
vlp

Proposition 2.7. Let F be a number field and let i # 1 be an integer such that F
satisfies Conjecture C. Then we have the following exact sequence:

0— WD — 79 Hom(X,,(i — 1)g_, Q,/Z,) —O. 7
Proof. We start by recalling the first part of the Poitou-Tate exact sequence:

0= HOGS(F), Qp/Z,(1 = D) ——= @H'(Fy, Qp/Z,(1 = D) >

L HX(G5(F), Z,(i))Y — X (Gs(F), Qp/Z,(1 — i) = 0.
Clearly, for i # 1, we have
1Y (Gs(F),Q,/Z,(1 — 1)) = Hom(X(,(i — D)g_, Q,/Z)).

Furthermore, if the field F satisfies Conjecture C®, Remark 2.3 gives an iso-
morphism

T = HA(Gs(F), Z,()”
Summarizing, we can rewrite the Poitou-Tate exact sequence as follows:

0> WD~ 79 ~ Hom(X, (i — 1)g_,Q,/Z,) = 0.
O

Note that the group X, (—i)¢_ is a quotient of the Galois group X¢, thus it
could be realized as a Galois group of an abelian and totally decomposed exten-
sion of E, (this extension is denoted by £, in [3, Section 2, page 653]).
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Definition 2.8. The field L is the subfield of L., fixed by I_(X(,(—1)), hence
Gal(LW/Ey) = Xl (=i)g,,-

In [3, Proposition 1], it is noticed that the extension L% is not in general abelian
over F so we can not use the descent process to realize the group X go(—i)Gw asa
Galois group over F. Using the same methods of Jaulent and Soriano [15, Sec-
tion 3, page 3], one constructs a field H @ (this field is denoted by F in [3, Sec-
tion 2, page 653]) which is a Galois extension over F and the group X éo(_i)Gm is
isomorphic to the Galois group Gal(H" /E, ), where E,, = HY nE, [3, Propo-
sition 2]. Mention that in [3, page 653] the author assumes that u,, C F but the
generalization is easy. Let us recall the precise definition of the field H®.

Definition 2.9. The field HY is the composite of the fields F,, where F,, is the
subfield of L fixed by a lifting of a topological generator y of T.

Remark 2.10. Since the Galois groups Gal(L¥ /E ) and Gal(H® /E,, ,) are iso-
morphic, and E,, = HY N E,, we have L® = E, H®,

Let K /F be a cyclic p-extension of F. Following [9], we say that K is an infin-
itely embeddable extension of F if it is embeddable in a cyclic p-extension of F
of arbitrary large degree. By class field theory, a p-extension K /F is infinitely
embeddable if and only if for any place v of F, the local extension K, /F,, is em-
beddable in a Z,-extension of F,. We denote by FB? the composite of all infin-
itely embeddable extensions of F. Obviously the field FB¥ contains the compos-
ite F ofall Z p-extensions of F. We set T := Gal(FB? /F) to be the Bertrandias-
Payan module of F i.e., the Z ,-torsion sub-module of Gal(FB? /F). Let F be the
maximal abelian pro-p-extension of F which is unramified outside S. In view of
[25, Theorem 4.2], we can see that FB? is the subfield of F fixed by the image of
w = ElB,up(FU)//xp(F) in T, the Z ,-torsion sub-module of X := Gal(ﬁ/F).

vlp

In a natural way, we define a twisted analogue of the Bertrandias-Payan field as
follows:

Definition 2.11. Leti # 1 be an integer such that F satisfies Conjecture C9). The
twisted Bertrandias-Payan field FB*® is defined as the subfield of F® fixed by the

image of W=D in T g) in the exact sequence (7).

Let Tg) be the Z ,-torsion of Gal(FB*"/E_ ). Assume that F satisfies Con-

jecture C®O. By the definition of FB™®) and the exact sequence (7), we have the
following isomorphism:

T ~ Hom(X% (i — Dg_, Qp/Z,).
In particular, if i = 0 we obtain the following isomorphism:

TF = Hom(Xéo(_l)Goo, @p/Zp),
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(c.f. [25, Theorem 4.2]). Hence Tg) is a twisted analogue of the Bertrandias-
Payan module. In this context, we have the twist analogue of the exact sequence
in [25, Theorem 4.2].

Corollary 2.12. Let F be a number field and let i # 1 be an integer such that F
satisfies Conjecture C. Then, we have the following exact sequence:

0—wid g9 10 0 (8)

Proposition 2.13. For every integer i # 0,1 such that F satisfies Conjecture C®,
the twisted Bertrandias-Payan field FP>(® contains the field LY.

Proof. Since i # 0, we have III?(G4(F), Z,(1 =) =~ Xfx,(—i)Gm. Thus, the
Poitou-Tate exact sequence [19, page 682]

HY(Gs(F), Z,(1 — 1)) 2= @H(F,, Z,(1 — i) — X
>

<—> II*(Gs(F), Z,(1 — 1)) — 0
induces a surjective homomorphism:
2 — X1 (—i)g..

Its kernel YO := Gal(F® /L®) is isomorphic to the co-kernel of the localiza-
tion map
HY(Gs(F), Z,(1 - i)) — ElBHl(Fu, Zp(1—=1)).
vlp

This map is injective since Conjecture C) holds. Thus we have an exact se-
quence:

0— H'(Gs(F), Z,(1 - 1)) = ®@H\(F,,Z,(1 - i)) = Y® —o0.
olp

Taking the restriction to the Z,-torsion sub-modules, we obtain the following
exact sequence:

torz, H'(Gs(F), Z,(1 = D))~ @torz H'(F,, Z,(1—1)) - toerY@. 9)
vlp

Moreover, we have the following well known isomorphisms
H°(Gs(F),Q,/Z,(1 — 1)) =~ torZPHl(GS(F), Z,(1—-1))

and
H(F,,Q,/Z,1—1) ~ toerHl(FU, Z,(1—1))
[31, Proposition 2.3]. The exact sequence (9) becomes

0 — H%(Gs(F),Q,/Z,(1 —i)) - EIBHO(FU, Q,/Z,(1 —i)) = torg, Y®,
vlp
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Then we obtain that the image of W1~ in xf;') is contained in the Z,-torsion
of the kernel Y& := Gal(F®/L®). This means that the field L® is contained
in FBPO), a

The following figure is an illustration of the situation in which we work:
70 Fq

e -

— T F®

no
|
F(,up) =E

F

Now, let K /F be a Galois p-extension of number fields, with Galois group G.
If the extension K /F is unramified outside S, there exists a natural restriction
map
fi © HXGs(F), Z,(i)) — H*(Gs(K), Z,())°.
We denote by H'(G, -) the modified Tate cohomology groups (see [29]). If i #
0, 1, the kernel and co-kernel of the map f; are given by

ker(f;) = H'(G, H'(Gs(K), Z (1)) = H™'(G, H*(Gs(K), Z (1))
and
COker(fi) = HZ(G,Hl(GS(K)’ Zp(l))) = I:IO(GaHZ(GS(K)’ Zp(l)))

[1, Proposition 3.1, page 41], [18, Theorem 1.2] and [16, Proposition 2.9] (the
proof for i # 0,1 is the same as for i > 2). If K satisfies Conjecture C, the
group H%(G4(K), Z p(1) is finite and the above descriptions of the kernel and
co-kernel of the map f; show that, if G is cyclic, ker(f;) and coker(f;) have the
same order.

Similarly for a prime v of F dividing p and a prime w of K above v, we have
a restriction map [1, Chapter 3]

fi,v . Hz(Fva Zp(l)) — Hz(Kw’ Zp(i))Gw



380 J. ASSIM, Z. BOUGHADI AND A. DRIWACH

where G,, = Gal(K,,/F,) is the decomposition group of w in the extension K /F.
Then exactly as in the global case, we have [1, Proposition 3.1, page 41]

ker(fi,) = HY (G, H'(K,, Z,(1)) = HYG,, HX(K,, Z,(1)))
and
coker(f;,) = H*(Gy,, H'(Ky, Z,(1))) = H*(G,, H*(Kyy, Z (1))
Consider the commutative diagram

H*(Gs(K), Z,()° — | @ | H*(Ky, Z,())]° = UGGBSHZ(KW, Z,(i)

fi ] | veeasfi’u T
H2(G5(F), Z,()) @ H(F,, 7,()

where for each v € S, the isomorphism [ @ H*(K,,, Z,(i))]° = H*(K,,, Z,(i))
wlv

is a consequence of Shapiro’s lemma, w being a prime of K above v. It follows
that there exists a restriction map

Ji(K/F) : TX(Gs(F), Z (1)) — TIA(Gs(K), Z,(1))°.
We are interested in the dual map
K /F) : (T — TP

when K is contained in the cyclotomic Z ,-extension F, of F.
We need some additional notation. For all positive integer n, we denote by
F, the unique sub-extension of F, such that G, := Gal(F,/F) ~ Z/p"Z

and by TS) 1= ng the twisted Bertrandias-Payan module of F,. We define
the twisted Bertrandias-Payan module of F, as the projective limit of TS) ie.,
T(ol,? :=lim Tg), where the projective limit is taken via the natural maps j’ :=

«— . . L
Ji(Fp/F) (Tfj))Gn - TEZ) (n > m). Let I be the Galois group Gal(F,/F).
Then we have a well-defined homomorphism

Je t (TR —Tg.

In the next lemma we show that j’_ is injective, or equivalently that the re-
striction map
Jieo t XG5 (F), Z,,(1)) — (lim II*(Gg(Fy,), Z (D))"

induced by the maps j;(F, /F) is surjective provided that Conjecture C® holds.
More precisely,
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Lemma 2.14. Suppose that for every n > 0, the field F,, satisfies Conjecture C®,
i #0,1. Then, we have a commutative diagram with exact lines

Ker(jie) > TI(G(F), Z,(0)) = (lim I (G(F, ), Z, ()

| . 1

I, lim HY(G(Fy). Z, ()~ H(G(F), Z,(0)) " (lim HA(G5(F,), Z,(0)"

where f; o, is induced by the restriction maps
fin + H¥(Gs(F), Z,(i)) — H*(Gs(F ), Z5(i))".

Proof. Let v be a p-adic prime of F and let n > 0. For commodity of notation,
we denote also by v a prime of F,, above v and by G,,, = Gal(F, ,/F,) its de-
composition group in the extension F, /F. Let us first show that the restriction
homomorphism

fi(Fn,U/FU) : HZ(FU’ Zp(i)) - HZ(FVL,U’ Zp(i))G"’U
is injective. The local duality theorem gives an isomorphim
Hz(Fn,va Zp(i)) = HO(Fn,Ua @p/zp(l - i))v = HO(Fn,va @p/zp(i - 1))

Using Tate’s lemma and the Hochschild-Serre spectral sequence associated to
the extension groups

Gal(Eoo,v/Fn,v)(é Goo,v —>> Gn,v’

we see that the first cohomology group H(G,,,, H*(F,,,,, Q,/Z,(i — 1))) = 0.
Since G, ,, is a cyclic group, it follows that

H 4Gy, H(F,,,,Q,/Z,(i — 1)) = 0.

Summarizing, we obtain

ker( @ fi(Fnu/Fp)) = @ H ' (Gpp H*(Fpyp, Z,1)))
VES VES
= @SH_l(Gn,U’HO(Fn,U’ @p/Zp(i - 1))
ve
= 0

Now, the exact sequence

0> I—Hz(GS(Fn)a Zp(l)) - HZ(GS(Fn)a Zp(l)) j

Q ) Hz(Fn,v’ Zp(i)) - HO(GS(Fn)v @p/zp(l - i)V =0
VES
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leads to the following commutative diagram:

II*(Gs(Fy), Z,(1))°— H*(Gs(Fy), Z,5(1))r — Fé;HZ(Fn,U,Zp(i))G" (10)

ve
ji,n] fi,nT F?;fi(Fn,v/Fv)\]\

LI(G(F), Zy(0))— HG5(F), Z,()) —= & HFy, Z,(0).

where

ESHz(FU, Z,(i) 1= ker(veeast(Fv, Z (1)) — H(Gs(F),Q,/Z,(1 —)Y).

The map @ f;(F nv/Fp) is injective as the restriction of the map @ f;(F,,/F,)
vES vES
to @ H2(F,,Z p(0)). Since the fields F,,, n > 0, satisfy Conjecture C®, the group
veS

ﬁ_l’I)l COker(fi,n) = li_n)le(Gn’Hl(GS(Fn)a Zp(l)))

is trivial (the proof is exactly the same as [18, Proposition 3.2]). Taking the
inductive limit in (10), we then obtain the following commutative diagram with
exact lines and columns

lim LGy (F ), Z ()% lim H(G5(F,,), Z,p(i))% —= lim @ HX(Fy 0 Z,p(i))%
— — — ves
ji,ooT fi,ooT l:?i‘fi(Foo,u/FU?J
U*(Gs(F), Zp(i))—— H*(Gs(F), Z,(1)) @ H*(F,, Z,,(1))

veS

ker(jji o) ng(F,li_r)nHl(Gs(Fn), Z (1))
which shows that the map II1*(Gs(F), Z,(i)) — lim II%(Gs(Fy,), Z,(i))C is
surjective. Therefore, we get the commutative diagram of the lemma. O

Theorem 2.15. Let F be a number field and let i # 0,1 be an integer such that
Conjecture C9 holds for all the fields F,,, n > 0. Then the homomorphism

Jis (Tg)r—>T§;)

is injective. If we assume further that F is totally real and i is even, we get an
isomorphism

(T(olo))r ~ T}’)-

Proof. The first claim follows from the Pontryagin dual of the top exact se-
quence in the commutative diagram of Lemma 2.14 and the isomorphisms

T ~ 2(G4(F), Z,(1))",

Too = Um(IE(Gs(F,), Z,(0)") & Hom(lim IIP(Gy(Fy), Z,(0), @y /Z,p)
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Suppose now that F is totally real and i is even. Observe that, for every n > 1,
F,, is also totally real. Using the exact sequence (1), we obtain
rankZPHl(GS(Fn), Z,(i)) = co-rankH'(Gs(F,),Q,/Z(i))
= ranky, H,(Gs(F,), Z,(~D)).
Thus, the formula (3) shows that for n > 1, the group H'(Gs(F,), Z,(D)isaZy-
torsion module. Note that for all n > 1, H%(G4(F,,), Z,()) ® Qp/Z,, is trivial.

From the exact sequence (1), it follows that the connecting homomorphism is
an isomorphism

H(Gs(Fp), Q,/Z,(0)) = H'(Gs(Fp), Z,y(0)-

Hence we have a commutative diagram

HO(GS(Fn)’ @p/Zp(l)) — Hl(GS(Fn)’ Zp(l))

T T

H(Gs(F), Q,/Z (1)) — H'(Gs(F), Z,(1))

where the vertical maps are the restriction maps. Taking the inductive limit,
we get

R

h_r)nHl(GS(Fn): Zp(i)) h_n)lHO(GS(Fn)’ Qp/Zp(i))

HO(GS(Foo)’ Qp/zp(l))

R

Therefore,
HI(F,li_r)nHl(Gs(Fn), Z,(1))) ~ H'(T,H%(Gs(F), Q,/ Z ,(1))).

As explained after Lemma 2.4, H'(T, H*(Gs(F,), Q,/Z (1)) is trivial. Thus,
the cohomology group H 1(1",li_r1)1H Y(Gs(Fy), Z,(i))) is trivial. Using this fact
and Lemma 2.14, we obtain that

Jioo T (G5 (F), Z,,(1)) — (lim II*(Gs(Fy,), Z, (D))"

is an isomorphism. Taking the Pontryagin dual we get the desired isomor-
phism. O

3. The twisted Kummer-Leopoldt’s constant

Let F be a number field and let S be the set of p-adic and infinite places of
F.We set by Ar the p-primary part of the (p)-class group of F. We denote by U
the group of S-units of F and by U the pro-p-completion of U.

A description of the Galois group X is given by the class field exact sequence
relative to the decomposition

04~ @F, 2 Xp — Ap —0, (11)
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where o is the natural pro-p-diagonal map and ¢ is the product of the local
reciprocity homomorphisms which send each F, to the decomposition group
in Xp.

In Section 2, we noticed some equivalences formulations of Leopoldt’s con-
jecture in terms of the Z,-rank of the p-ramified Iwasawa module and coho-
mology groups. Another formulation of this conjecture is the injectivity of the
natural pro-p-diagonal map « or, equivalently, is the validity of the following
property: For all integer s > 1, there exists an integer ¢ > 1 such that:

VueU, (u eFUpt, Yo | p) = ueUP,
[7, Section 4]. Using the isomorphism
U = H'(Gs(F), Z,(1),
the map « is nothing but the localization homomorphism:

a® = @al’ : HYGs(F),Z,(1)) — @SH'(F,, Z,(1))
vlp vlp
x — @ o),

For an integer i, we consider the twisted analogue of the map «

a® = @al’ . HYGs(F),Z,(i)) — @H'(F,,Z,()
vlp vlp
X — @),

andifx € H'(G4(F),Z p(1)), we keep (for simplicity) the notation x := ocl(f)(x) S
H\(F,,Z p(1)). Then, we consider the following property:

) For all integer s > 1, there exists an integer t > 1 such that:
x € H'(Gs(F), Z,(1)) (x € H'(F,, Zp())P', Vv | p) = x € H'(Gs(F), Z,(0))P

S

Remark 3.1. Notice that for all t’ > t, we have
H\(F,, Z,())"" € H'(F,, Z, ()P
Therefore, we can suppose thatt > s in the property (£;).

For every integer i, the Poitou-Tate exact sequence with coefficients in the mod-
ules Z/p"Z(i) induces, by passing to the projective limit, the following exact
sequence [19, page 682]

HY(Gs(F), Z,()) % OH'(F, Z,(0) ~ X7V = II(Gs(F). Z,(1)  (12)

When i = 1, [II*(G4(F), Z,(i)) ~ Ap and the exact sequence (12) is nothing
but the class field theory exact sequence (11). Fori # 1,

I2(Gs(F), Z,(i)) = Xo(i — Vg
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[28, Section 6, Lemma 1] and we have a twisted analogue of (11):

[0) _ ;o
HY(Gs(F), Z,,(i)) <~ elaHl(Fv, Z,(0) — A X (i - 1)g_ — 0.
vlp

In the next lemma, for i # 0, we show an equivalence between the validity of
Conjecture C1~ and the injectivity of the localization map:

a® : HY(Gs(F), Z,(i)) — EPHl(FU, Z ,(i)).
vlp

Lemma 3.2. Leti # 0 be an integer. The following assertions are equivalent:
i) The map a®¥) is injective.
ii) Conjecture C'=9 holds for (F, p).

Proof. Remark that for every p-adic prime v of F, the absolute Galois group
of F, acts non trivially on Z,(i) when i # 0. Hence the cohomology group
H(F,,Z p(1)) is trivial for every p-adic prime v. Therefore, the Poitou-Tate exact
sequence induces the following exact sequence

0]
0 — H*(Gs(F), Qp/Z,(1 ~ 1)) — H'(Gs(F), Z,,(i)) ~ OH'(Fy, Z,(1).
vlp
This shows that
ker(aW) = H*(Gs(F),Q,/Z,(1 — D)) .
O
Remark 3.3. Although there is no Conjecture CV, the map o is always injec-
tive. Indeed, by the global Poitou-Tate duality, we have
ker(a®) := IIY(Gg(F), Z,) ~ IN*(Gs(F), Q,/Z,(1)).
Furthermore,
1*(Gs(F), Q,/Z (1)) = im IT*(Gs(F), pm)
= lim IT'(G4(F), Z/p" Z)¥
= lim Cl5(F)/p"
=CL(F)®Q,/Z,
=0.
In the next theorem we give other equivalences of the twisted Leopoldt’s con-
jecture. The proof is an adaptation of that of [7, Proposition 1].

Theorem 3.4. Let F be a number field. For all integer i # 0, the following prop-
erties are equivalent:
(i) Conjecture C'=9 holds for (F, p).
(ii) The property (&) is true.
(iii) There exists a positive integer c; such that foralln > 1,

x€HY(Gy(F), Z,())(x €EH'(F,, Z,())P""", Vv | p) = x€HY(Gs(F), Z,(i))”"
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(iv) There exists a positive integer c; such that for all n > 0,
x€H'(G5(F), Z,())(x €H'(Fy, Z,())"", Vv | p) = x€H'(Gs(F), Z,(D)""

Proof. For a positive integer ¢, the homomorphism a® induces the following
one
@ : H'(Gs(P). Zy0)/p' — @H'(Fus 2,0/ p"
vlp

For integers t > s > 1, we consider the following commutative diagram

: RO
0— kel‘(agl)) — H'(G4(F), Z,(i))/p* — G|9H1(Fw Z,@)/p'

vip
gt Lbs,[ lcs,t
o

0 — ker(a") — HY(Gs(F), Z,(i))/ p* —> OH'(F,. Zy(0)/p’
vlp

where the vertical maps are the natural ones. Since ker a® = lim ker ocgi) , the

homomorphism a(® is injective if and only if the homomorphism ag is trivial
for t > s. According to Lemma 3.2, it follows that the validity of Conjecture
C-D is equivalent to the triviality of the homomorphism ay, for ¢ > 5. Hence
we get the equivalence (i) < (ii).

Now we prove the implication (ii) = (iii). We suppose that the prop-
erty (%;) holds and we proceed by induction over n. First let r be an integer
such that HY(F,, Z p(i))Pr has no Z ,-torsion for all prime v above p. By (£;)
for s = r + 1, there is an integer ¢; > r (see Remark 3.1) such that for all
x € H'(Gs(F), Z (1))

r+1

(x € HY(F,, Z,()*"", Vv | p) => x € HY(Gs(F), Z, ()" (13)

The case n = 1 is deduced from (13). Let n > 1 and let x € H'(G4(F), Z,(1))

such that x belongs to H(F,, Z,(i))P"™" for all v above p. According to (13),

there is a y € H'(Gs(F),Z,(1) such that x = y?*. Since (PP = x €

(H\(F,, Zp(i))Pci+"_1)P , we obtain that y?" € H'(F,, Zp(i))Pci+"_l, by the choice
of r. Hence y? € H'(G5(F), Z,(i))*""', this implies that
x = (PP € H'(Gs(F), Z,())P".

The implications (iii) = (ii), (iii) = (iv) and (iv) = (i) are obvious. [J

Remark 3.5. i) From the proof of Theorem 3.4, we see that the truth of (%;)

is equivalent to the injectivity of the map a® also in the case where i = 0.

As a consequence of Remark 3.3, the property () is always true.

ii) The existence of the constant c; is trivial in the case of totally real number
field F and even integer i, since

H'(Gs(F), Z,(1)) = torz H'(Gs(F), Z,(1));

in particular, Conjecture C1=D holds for (F, p).
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Definition 3.6. We define the twisted Kummer-Leopoldt constant x; = x;(F) of
the field F to be the minimal integer c; satisfying the property (iv) of Theorem 3.4.

The aim now is to determine the exact value of the twisted Kummer-Leopoldt
constant. We shall express it as the exponent of a certain Galois module.

Lemma 3.7. Leti # 0,1 be an integer such that F satisfies Conjecture C). The
surjective homomorphism 1 : ch_i) — X,(i—1)g_ factors through a ho-
momorphism

v T X0 (- g,
and ker(W) is isomorphic to the Galois group Gal(FBP-(1=0) /FA-D(1-Dy

Proof. First of all, we recall from the end of the proof of Proposition 2.13 that
the image of W@ in 7 g_l) is contained in the kernel

YO = ker® : Xy > X4 - D).

Therefore, taking the restriction of the surjective homomorphism
¥ 20— XL~ D,

toJ 1(51—1'), we obtain the following commutative diagram with exact lines:

0 wo R

E

0 — torz, Y1) —— 7070 X (= 1),

Thus 3 induces the following homomorphism
w0 X (- 1),

Furthermore, reading the figure in page 379, we see that the kernel ker(¥) is
isomorphic to the Galois group Gal(FBP(1—D /F(-D[(1-D), O

Theorem 3.8. Let F be a number field and let i # 0,1 be an integer such that F
satisfies Conjecture C1=D. Let x; be the twisted Kummer-Leopoldt constant of F.
Then p* is the exponent of the Galois group Gal(FBP(1—0) /FA=D(1-D),

Proof. Let us prove that p* is the exponent of
ker(¥) ~ Gal(FBP-(1-0) /F(A-DL(1-D)
(Lemma 3.7). Let j = 1 — i and recall that the kernel

YO = ker(XY - Xlo(=e.)
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is equal to the Galois group Gal(F() /L()). For n sufficiently large such that p”

kills the Z ,-torsion J° g) of x;f), the multiplication by p" yields the following
exact sequence

0 — YO[p"] g9 Xl (=o-

Comparing with the exact sequence of Corollary 2.12, we get a commutative
diagram:

0— wi=) — g9 TV 0
| I w
0—YD[p"] — 7 — X1, (~ ).
Using the snake lemma, we obtain that
ker(¥) ~ coker(g,). (14)
Since Conjecture CY) holds for F, the map a¥) is injective (recall that j = 1—1).

Let us consider the following commutative diagram

0 — H'\(Gs(F), Z,(i)) S+ @ H(Fy Z,(i) — YV —0

vlp
lp" lpn LP”
0 — H'(Gs(F), Z,(i)) < oH'\F,, Z,() — Y9 —o0.
vlp

By the snake lemma, we obtain the following exact sequence

0 — H'(Gs(F), Z,(i))[p"] — ®H'(F,, Z,(i))[ p"] 2o YU[pn]
vlp j

a®
Q) H'(Gs(F), Z,(i))/p" —= UEBJHI(FU, Zy(D)/p" —— -

It follows that coker(¢,,) is isomorphic to the kernel ker(oc,(;)). Notice that for n
large enough,

HY(Gs(F), Z,())[p"] = H*(Gs(F), Q,/Z (1))
and
HY(F,, Z,())[p"] = H(F,, Q,/Z,,(1)
for all v over p. Hence, we get that coker(¢,,) is isomorphic to coker(g,,). Then,
by (14)
coker(g,) =~ ker(oc,(f))
~ Kker(¥).

Since p*i is the exponent of ker ocg), for n large enough, the result follows from
Lemma 3.7. U
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We finish this section with the following proposition in which we consider
the case of a CM-field.

Proposition 3.9. Let F be a CM-field with totally real subfield F* and let i be an
odd integer. Assume that the field F* satisfies Conjecture C'=9. Then the twisted
Kummer-Leopoldt constants x; : = x;(F) and Kl.+ :=x;(FT) are equal.

Proof. Let n be an integer such that p” kills both @H’(F,,Q,/Z,(i)) and
vlp

T g_i). According to the end of the proof of Theorem 3.8, we know that p*i is
the exponent of

ker(al) : H'(G(F), Z,(i))/p" — lgng(Fv,zp(i))/p").

Let 7 € Gal(F /F*) be the complex conjugation. Consider the decomposition
ker(ay”) = (ker(e, )" @ (ker(ay )™,
where (ker(ocg)))i =(1+7) ker(ocg)). We have to show that (ker(ag)))_ is trivial
and that the exponent of (ker(ocs )))+ is p"i+ . We start by observing that
HY(G(F), Z,())* = H'(G5(F*), Z,(1)).

Since
rankz H'(Gs(F), Z,(1)) = rankzy H'(Gs(F*), Z (1)),

it follows that H'(G4(F), Z p())” is a Z ,-torsion module. Furthermore, notice
that

HGs(F*),Q,/Zy(i)) =0 < i#0 mod [F*(up,) : F*].

Since [F*(u,) : F*]iseven and i is odd, we get that HO(G4(FY), Q,/Z,1) is
trivial. This implies that

H'(Gs(F), Z,(1))~ = torz, H'(Gs(F), Z,(1)).
Using this fact and the choice of n, we see that the map
(@)™ : HGs(F), Z,(i)/p")~ — ($H1(Fu, Z,()/p")”
is nothing but the injection
H(Gs(F), Q,/Z,(1)) - (Uéli?)Hl(Fu,Zp(i))/P")‘-

Therefore, (ker(oc,(f)))_ is trivial for n large enough.
Also, using the isomorphism

(H'(Gs(F), Z,())/p™* =~ H'(Gs(F*), Z,(1))/p"
we get that (ker(ocs )))+ is the kernel of the map
HY(Gs(F*), Z,(1))/p" - (UEE)HI(FU, Z,(1)/p")*

which is of exponent p"? . O
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4. On the triviality of the twisted Kummer-Leopoldt constant

Let i be an integer and let p be an odd prime number. The (p,i)-regular
number fields have been introduced in [2, Definition 1.1] as a generalization of
p-rational fields [20, 21, 22]. Recall that a number field F is (p, i)-regular if the
cohomology group H%(Gs(F), Z/pZ(i)) is trivial, or equivalently if F satisfies
Conjecture C? and the Z,-module J° 1(,’) is trivial. In particular, this triviality
implies that of Gal(FBP®) /FOL®D), where F is the subfield of F® fixed by 7%
(Definition 2.5). Hence, by Theorem 3.8, we see that x;_; is trivial for (p, i)-
regular number fields. In this section, we consider the other implication. Pre-
cisely, we give a characterization of the (p, i)-regularity in terms of the triviality
of Ki—i-

Theorem 4.1. Leti # 0,1 be an integer and let F be a number field satisfying
Conjecture C. Then F is (p, i)-regular ifand only if the following three conditions
hold:

Dx;=0;

2) The injective map

HY(Gs(F), Q,/Z,(1 - 1)) — UGEJHO(FU, Qp/Zp(1=1)

is an isomorphism;
3) HO c FO,

Proof. Letusrecall that p¥i-i is the exponent of Gal(FP>(® /FOL®) by Theorem
3.8 and that Gal(FBP® /FOLD) ~ ker(¥ : Tg) —> X (—i)) by Lemma 3.7.

Suppose that F is (p, i)-regular. Then, the Z,-torsion module J° S) is trivial.
Using the exact sequence (8) of Corollary 2.12, we get that the groups W=
and Tg) are both trivial. Therefore, we obtain Condition 2) from the triviality of
W=D, and Condition 1) from the triviality of T%. Furthermore, the vanishing
of I g) shows that F® = F®_ Since L® is contained in F®, we have L® c F®.
This proves that H® ¢ F®.

Now assume that the three conditions are satisfied. Using again the ex-
act sequence (8) of Corollary 2.12 we see that J I(,i) and Tg) are isomorphic,

since WD is trivial by Condition 2). Further, using Remark 2.10 with Con-
dition 3) we obtain that the field L® is contained in F). Hence the morphism

v Tg) — X ;O(—i) istrivial. In particular, the kernel of ¥ equals to Tg). There-

fore, by Theorem 3.8, the Bertrandias-Payan module Tg) is trivial because of the
nullity of x,_;. Hence the number field F is (p, i)-regular. O

Remark 4.2 (compare with [8, Proposition 2.3]). For the casei = 0, using the
same arguments in the proof of Theorem 4.1, we can show that F is p-rational
exactly when the three conditions hold:

1) x(F)=0;
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2) The map uy(F) — UGI%MP(FU) is an isomorphism;

3) Hp C F.
Here x(F) is the Kummer-Leopoldt constant for the units [7, Definition 1], H is
the Hilbert class field of F and F is the composite of all Z ,-extensions of F.

It is well known that the field of rational numbers Q is p-rational for any
prime number p. This is not the case for the (p, i)-regularity. For example, if
the prime p is irregular, there is at least an integer i for which Q is not (p, i)-
regular (a consequence of [2, (ii, ) Proposition 1.3]). It is also well known that
all subfields of a (p, i)-regular number field are (p, i)-regular. Thus, to study the
(p, i)-regularity of number fields we must suppose that Q is (p, i)-regular. From
now on, we assume that Q is (p, i)-regular and we consider the case of quadratic
number fields. The aim is to give a characterization of the (p, i)-regularity of a
quadratic number field in the spirit of [12, §4.1].

We start with the following consequence of Theorem 4.1 and Proposition
3.9 that shows the triviality of some twisted Kummer-Leopoldt constants for
imaginary quadratic fields.

Corollary 4.3. Let p be an odd prime number and let i be an even integer such
that Q is (p, i)-regular. Then, the Kummer-Leopoldt constant x,_;(F) is zero for
any imaginary quadratic field F. (]

Now, we prove the following helpful lemma in which we show that the mor-
phism
HO(GS(F): @p/Zp(l - l)) - GlaHO(Fva @p/Zp(l - l))
vlp

is almost always an isomorphism.

Lemma4.4. LetF = Q(\/E) be a quadratic number field and let i be an integer.

Then, the map H*(G5(F),Q,/Z,(1 — i)) — @H’(F,,Q,/Z,(1 — 1)) is an
vlp

isomorphism exactly in the following situations:
i) the prime p splitsin F/Qandi# 1 mod (p — 1);
ii) the prime p is inert in F /Q;
iii) the prime p ramifies in F/Q and

Z(i—_ll) iseven ifi =1 mod (p%l)and
—

p-1
g, .
(=1) 2 —isasquarein Q.
p

Proof. We start with the following well known isomorphisms
H°(Gs(F),Q,/Z,(1 —1)) ~ Z/p*“Z and H*(F,,Q,/Z,(1 —i)) ~ Z/p*»iZ,
where
w; :=max{n | i=1 mod [F(up) : F[}
and
wy; =max{n | i=1 mod [F,(uym) : Fyl}
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To prove the lemma, we discuss on the ramification of the prime p in F/Q. We
start with the case where p splits in F/Q. Let v and v’ be the primes of F above
p. Observe that for all n > 1, we have

[F(,up") tF]= [Fv(:up") : Fv] = [Fv’(:up") : Fv’] = Pn_l(P - 1.
Hence, H(Gs(F),Q,/Z,(1 - i))—» ®H’(F,,Q,/Z,(1 — i)) is an isomorphism
vlp

if and only if the groups H°(Gs(F),Q,/Z,(1 — 1)), H*(F,,Q,/Z,(1 — i)) and
HO(F,, Q,/Z,(1 — 1)) are trivial. This is equivalent toi #1 mod (p — 1).

Suppose now that p is inert in F/Q and let v be the unique prime of F above
p.
Since F N Q(up) = Q and F, N Q,(up) = Q,, we have

[F(upn) : F]l=[Fy(up) : Fyl=p"(p—1) foralln>1.

Thus the map H(G5(F), Q,/Z,(1—1)) — H°(F,,Q,/Z,(1 1)) is always an
isomorphism.
The remainder case iswhen p rarnlﬁes 1n F/Q.Let v be the unique prime of F

above p. Suppose further that d # (— 1) 2 pand (— 1) 2 ; isasquarein Q,. On

the one hand, since Q(\/ (—1)% p) is the unique quadratic subfield of Q(x,),
p-1

we can see that F N Q(u,) = Q. On the other hand, the condition (1) 2 9isa
P
square in Q, means that F, N Q,(u,) = F,. Therefore for all n > 1, we have

[F(upn) : F1 = p"'(p —1) and [Fy(up) : Fy] = p"~ 1(P;1)

Comparing the integers w; and w, ;, we get that w; = w,; if and only if either

i#1 mod (pz;l)orizl mod?andm 11)1seven

To finish the proof we have to show that

H%(Gs(F), Q,/Z,(1 = 1)) » H(F,,Q,/Z,(1 - 1))

p—1 p—1 p-1

is an isomorphism when either d = (—=1) 2 pord # (—1) > p and (—1)7% is
not a square in Q. This is deduced from the fact that in both cases we have
[F(upn) : F]l =[Fy(upn) : Fy] foralln > 1.
O

Remark 4.5. a) When the integer i satisfiesi # 1 mod 272 the localiza-
tion map

HOGS(F), @/ Z,(1 = 1)) — DHO(F, Qp/Z,(1 = D)

is always an isomorphism.
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b) Ifthe integeri is even, then

HO(GS(F)’ Qp/zp(l - l)) - %HO(FU’ @p/Zp(l - l))

is not an isomorphism exactly when p ramifies in F /Q and the following
two conditions hold: ;
« p=3 mod (4),d # —p and — is a square in Q;
p
« i=1 mod (pT_l)andz(l—:l) is odd.

According to Corollary 4.3 and ii) of Remark 3.5, we see that the twisted
Kummer-Leopoldt constant x;_;(F) is always zero when F is an imaginary qua-
dratic field and i is even or F is a real quadratic field and i is odd. Using The-
orem 4.1 and Lemma 4.4, we get the following characterizations of the (p, i)-
regularity for quadratic fields.

Proposition 4.6. Let i > 2 be an integer such that Q is (p,i)-regular. For a
square free integer d > 0, let F = Q(y/(—=1)i*1d). Suppose that F satisfies one of
the three conditions in Lemma 4.4. Then, F is (p, i)-regular if and only if H® is
contained in FO. In particular, F is (p, i)-regular when X (=D, istrivial. O

Proposition 4.6 concerns only the cases when F is an imaginary quadratic
field and i is even or F is a real quadratic field and i is odd. In the other cases,
we have the following characterization.

Proposition 4.7. Leti > 2 be an integer such that Q is (p,i)-regular. For a

square free integer d > 0, let F = Q(1/(—1)id). Suppose that F satisfies one of the
three conditions in Lemma 4.4. Then the quadratic field F is (p, i)-regular exactly
when the following conditions hold:

a) The map H'(Gs(F), Z,(1—-1i))/p — @ H'(F,, Z,(1 —i))/p is injec-
vlp

tive.
b) The field HY is contained in F®.

Proof. Let j = 1 — i. For simplicity we suppose that H(Gs(F), Q,/Z,(j)) =
0. Following Theorem 4.1 and Lemma 4.4, we have to prove the equivalence
between the triviality of x; and the injectivity of the map

@) s HYGs(F).Z,()/p — @H'(Fu.Z,(1)/p.
vlp
Recall that «; is trivial precisely when

oc,ij) : HY(Gs(F),Q,/Z,(j)/p" — ﬁ?,Hl(F”’@P/Zp(j))/pn
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is injective for n large. Let’s consider the commutative diagram:

0= (H'(Gs(F), Z,(j))P = H'(Gs(F), Z,(j)) = H'(Gs(F), Z,(j))/p = 0
i et l -
0> (H'(Gs(F), Z,()M)P" = H'(Gs(F), Zp(})) = H'(Gs(F), Z,(j))/p" = 0
where the right vertical map is defined by
x mod H'(Gs(F), Z,(j)P = xP""  mod H(Gs(F), Z,(j))""

and is clearly injective. Hence we have
HY(Gs(F), Z,(j))/p" "= coker(H'(Gs(F), Z,(j))/ p> H'(Gs(F), Z ,(j))/ ")
Likewise, we see that for every p-adic place v

H'\(F,, Z(j))/p"~! = coker(H'(Fy, Z,(j))/ p—= H'(F,, Z,(j))/p".

Therefore, the commutative diagram

) ©)
0~ ker(a) — HY(Gs(F), Z,,(j))/p = ,;%Hl(FU, Z,(i))/p

L )

0~ ker(ay’) = HY(Gs(F), Z,(j))/p" = $H1<FU, Z,()/p"

and the snake lemma induce the following exact sequence:

)

00— ker(ocij )) — ker(a;j )) — ker(a,”,

)——=0. (15)

An inductive process and the exact sequence (15) show that ker(oc,gj )) is trivial
for all n > 2 when ker(ocgj )) is. This means that x; = 0 when ker(ocij )) is trivial.

Conversely, if x; = 0, the exact sequence (15) shows that ker(ocgj )) is trivial. O
The main results of this section can be compared with [8, Proposition 2.3]

and [12, Proposition 4.1]. In fact, Condition a) in the above proposition can
be interpreted using Kummer theory. Indeed, it is well known that there is a

subgroup D;H) of E* := E\ {0}, E = F(u,), such that
HY(Gs(F), Z,(1 = ))/p = Dy " /E*P(~i)

and, for each prime v of F above p, a subgroup D,(Jl_i) of E;,, w being a prime of
E above v, such that

HY(F,, Z,(1—))/p = D{ ™" /E,P(~i),
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[10, 5, 6]. So, Condition a) asserts that the natural map

D V/EP — elapgl"') JEiY,
vlp

where for each v above p, w is a place of E dividing v, is injective.

Example. The quadratic number field F = Q(\/i_p) is (p, i)-regular for every
integeri = 1 mod (p — 1). In fact, note that F has a unique p-adic prime and
its class number is less than p e.g., [8, page 14]. Hence according to (2, (ii, @),
Proposition 1.3], F is (p, i)-regular. Then the quadratic number field F satisfies
Conjecture CD and x;_; = 0 foralli=1 mod (p — 1).
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