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Sewing and propagation of conformal blocks

Bin Gui

Abstract. Propagation is a standard way of producing certain new confor-
mal blocks from old ones that corresponds to the geometric procedure of
adding new distinct points to a pointed compact Riemann surface. On the
other hand, sewing conformal blocks corresponds to sewing compact Rie-
mann surfaces.

In this article, we clarify the relationships between these two procedures.
Most importantly, we show that, “sewing and propagation are commuting
procedures.” More precisely: letϕ be a conformal block associated to a vertex
operator algebra𝕍 and a compact Riemann surface to be sewn, and let ≀𝑛ϕ be
its 𝑛-times propagation. If the sewing 𝒮ϕ converges, then 𝒮 ≀𝑛 ϕ (the sewing
of ≀𝑛ϕ) automatically converges, and it equals ≀𝑛𝒮ϕ (the 𝑛-times propagation
of the sewing 𝒮ϕ).

The proof of this result relies on establishing the propagation of conformal
blocks associated to holomorphic families of compact Riemann surfaces. We
prove this in our paper using the idea that, “propagation is itself a sewing fol-
lowed by an analytic continuation.” This result generalizes previous ones on
single Riemann surfaces [Zhu94, FB04], and supplements those on algebraic
families of complex algebraic curves [Cod19, DGT19a].

The results in this paper will be used in [Gui21] as the main technical
tools to relate the (genus-0) permutation-twisted 𝕍⊗𝑘-conformal blocks (i.e.
intertwining operators) and the untwisted 𝕍-conformal blocks (of possibly
higher genera).
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1. Introduction
Propagating conformal blocks. Let 𝕍 be a vertex operator algebra (VOA)
with vacuum vector 𝟏. Let 𝔛 = (𝐶; 𝑥1, … , 𝑥𝑁 ; 𝜂1, … , 𝜂𝑁) be an 𝑁-pointed com-
pact Riemann surface with local coordinates, namely, each connected compo-
nent of the compact Riemann surface 𝐶 contains at least one of the distinct
marked points 𝑥1, … , 𝑥𝑁 , and each 𝜂𝑗 is an injective holomorphic function on
a neighborhood of 𝑥𝑗 sending 𝑥𝑗 to 0 (i.e., an (analytic) local coordinate at 𝑥𝑗).
Associate to each 𝑥𝑗 a 𝕍-module𝕎𝑗. Then a conformal block associated to 𝔛
and𝕎∙ = 𝕎1⊗⋯⊗𝕎𝑁 is a linear functionalϕ ∶ 𝕎∙ → ℂ “invariant” under
the actions of 𝕍 (Cf. [Zhu94, FB04, DGT19a]). When 𝐶 is the Riemann sphere
ℙ1, the simplest examples of conformal blocks are as follows. (We let 𝜁 be the
standard coordinate of ℂ.)

(1) 𝔛 = (ℙ1; 0; 𝜁),𝕎 is associated to the marked point 0. Then each 𝑇 ∈
Hom𝕍(𝕎,𝕍′) (where𝕍′ is the contragredient module of the vacuum𝕍)
provides a conformal block

𝑤 ∈ 𝕎 ↦ ⟨𝑇𝑤, 𝟏⟩

Here ⟨⋅, ⋅⟩ refers to the standard pairing of 𝕍 and 𝕍′. Of particular in-
terest is the case that an isomorphism of 𝕍-modules 𝑇 ∶ 𝕍

≃
,→ 𝕍′ exists

and is fixed. Then there is a canonical conformal block associated to𝔛
and 𝕍.

(2) 𝔛 = (ℙ1; 0,∞; 𝜁, 𝜁−1), and𝕎,𝕎′ are associated to 0,∞. Then we have
a conformal block

τ𝕎 ∶ 𝕎⊗𝕎′ → ℂ,𝑤 ⊗ 𝑤′ ↦ ⟨𝑤,𝑤′⟩. (1)

(3) 𝔛 = (ℙ1; 0, 𝑧,∞; 𝜁, 𝜁 − 𝑧, 𝜁−1), and𝕎,𝕍,𝕎′ are associated to 0, 𝑧,∞.
The the vertex operation 𝑌 for𝕎 defines a conformal block

𝑤 ⊗ 𝑣 ⊗𝑤′ ∈ 𝕎⊗𝕍⊗𝕎′ ↦ ⟨𝑌(𝑣, 𝑧)𝑤,𝑤′⟩. (2)

Now, we add a new point 𝑦 ∈ 𝐶∖{𝑥1, … , 𝑥𝑁} (together with a local coordinate
𝜇) to 𝔛 and call this new data ≀𝔛𝑦, and associate the vacuum module 𝕍 to 𝑦.
Then each conformal block ϕ ∶ 𝕎∙ → ℂ associated to 𝔛 and𝕎∙ canonically
gives rise to one ≀ϕ𝑦 ∶ 𝕍 ⊗𝕎∙ → ℂ associated to ≀𝔛𝑦 and 𝕍 ⊗𝕎∙, called the
propagation ofϕ at 𝑦. The propagation is uniquely determined by the fact that

≀ϕ(𝟏 ⊗ 𝑤∙)𝑦 = ϕ(𝑤∙). (3)

For example, it follows easily from such uniqueness that the third example
above is the propagation of the second one at 𝑧, i.e.

≀τ𝕎(𝑣 ⊗ 𝑤 ⊗𝑤)𝑧 = ⟨𝑌(𝑣, 𝑧)𝑤,𝑤′⟩.
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More generally, when 𝑦 ∈ 𝐶 is close to 𝑥𝑖 and the local coordinate 𝜇 at 𝑦 is
𝜂𝑖 − 𝜂𝑖(𝑦),

≀ϕ(𝑣 ⊗ 𝑤∙)𝑦 = ϕ(𝑤1 ⊗⋯⊗𝑌(𝑣, 𝜂𝑗(𝑦))𝑤𝑖 ⊗⋯⊗𝑤𝑁) (4)

where the right hand side converges absolutely as a formal Laurent series of
𝜂𝑗(𝑦). (Cf. [Zhu94, Thm. 6.2], [FB04, Chapter 10], or Thm. 7.1 of this article.)
The uniqueness of ≀ϕ satisfying (3) is not hard to show; what is more difficult is
to prove the existence of propagation (cf. [TUY89, Zhu94, Zhu96, FB04, Cod19,
DGT19a]).

Sewing conformal blocks. It is worth noting that the right hand side of (4)
is the sewing ofϕ and ≀𝜏𝕎 (=the conformal block defined in (2)) corresponding
the geometric sewing of 𝐶 and ℙ1 along the points 𝑥𝑖,∞ with respect to their
local coordinates 𝜂𝑖, 𝜁−1. In general, given an (𝑁+2)-pointed compact Riemann
surface with local coordinates 𝔛̃ = (𝐶; 𝑥1, … , 𝑥𝑁 , 𝑥′, 𝑥′′; 𝜂1, … , 𝜂𝑁 , 𝜉,𝜛) where
each connected component of 𝐶 intersects {𝑥1, … , 𝑥𝑁}, if 𝜉 (resp. 𝜛) is defined
on a neighborhood𝑊′ of 𝑥′ (resp. 𝑊′′ of 𝑥′′) such that 𝜉(𝑊′) is the open disc
𝒟𝑟 with radius 𝑟 (resp. 𝜛(𝑊′′) = 𝒟𝜌), and that𝑊′ (resp. 𝑊′′) contains only
one point among 𝑥1, … , 𝑥𝑁 , 𝑥′, 𝑥′′. Then for each 0 < |𝑞| < 𝑟𝜌, we remove

𝐹′ = {𝑦 ∈ 𝑊′ ∶ |𝜉(𝑦)| ≤ |𝑞|∕𝜌}, 𝐹′′ = {𝑦 ∈ 𝑊′′ ∶ |𝜛(𝑦)| ≤ |𝑞|∕𝑟},

from 𝐶, and glue the remaining part by identifying all 𝑦′ ∈ 𝑊′ with 𝑦′′ ∈ 𝑊′′

if 𝜉(𝑦′)𝜛(𝑦′′) = 𝑞. As a result, we obtain a new compact Riemann surface 𝒞𝑞
with marked points 𝑥1, … , 𝑥𝑁 and local coordinates 𝜂1, … , 𝜂𝑁 . We denote this
data by𝔛𝑞. Corresponding to this geometric sewing, we associated 𝕍-modules
𝕎1, … ,𝕎𝑁 ,𝕄,𝕄′ to the marked points 𝑥1, … , 𝑥𝑁 , 𝑥′, 𝑥′′ where 𝕄′ is contra-
gredient to 𝕄, and assume that the modules are ℕ-gradable (i.e., admissible)
with grading operator 𝐿̃0 such that each graded subspace is finite-dimensional.
𝑞𝐿̃0 ∈ End(𝕄)[[𝑞]] can be regarded as an element of 𝕄 ⊗ 𝕄′[[𝑞]], which we
denote by 𝑞𝐿̃0▶⊗◀. Ifψ ∶ 𝕎∙⊗𝕄⊗𝕄′ → ℂ is a conformal block associated
to 𝔛̃, we define a linear 𝒮ψ ∶ 𝕎∙ → ℂ[[𝑞]] sending each 𝑤 ∈ 𝕎∙ to

𝒮ψ(𝑤) = ψ(𝑤 ⊗ 𝑞𝐿̃0▶⊗◀). (5)

It was shown in [DGT19b, Thm. 8.5.1] that the above linear map defines a
“formal conformal block” (i.e., a “conformal block” when 𝑞 is infinitesimal). If
this series converges absolutely on |𝑞| < 𝑟𝜌, then it defines an actual conformal
block associated to 𝔛𝑞 [Gui23, Thm. 11.2], called the sewing of ψ.
In the above process, if 𝐶 is connected, then 𝒞𝑞 is the self-sewing of 𝐶. For

instance, if we sew the𝔛 in the above example 3 along 0 and∞ to get a torus, we
accordingly sew the conformal block (2) to obtain the (normalized) character
of 𝕎-module 𝑣 ↦ Tr(𝑌(𝑣, 𝑧)𝑞𝐿̃0), which plays an important role in the early
development of VOA theory. If 𝐶 has two connected component 𝐶1, 𝐶2, and if
we sew 𝐶 along 𝑥′ ∈ 𝐶1, 𝑥′′ ∈ 𝐶2, we obtain a connected sum of 𝐶1 and 𝐶2. If
we choose 𝐶 = 𝐶 ⊔ ℙ1 and sew 𝐶 along 𝑥𝑖 ∈ 𝐶 and∞ ∈ ℙ1, then at 𝑞 = 1,
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the corresponding sewing of the conformal blocks ϕ and (2) is just (4), and the
new Riemann surface we get is naturally equivalent to 𝐶.

Propagation is a sewing followed by an analytic continuation. Now, (4)
indicates that propagation and sewing are related. Roughly speaking, propa-
gation can be understood as follows: When the inserted point 𝑦 is close to a
marked point 𝑥𝑖, the propagation is defined by sewing. When 𝑦 is far from the
marked points, the propagation is defined by analytic continuation (provided
that it exists). (See Exp. 5.6 and the proof of Thm. 7.1 for details.)
The above important point is implicit in the literature ([Zhu94, Zhu96]).

However, it seems that no existing result relies completely on this idea (and
especially on sewing) to establish the existence of propagation. The first result
for general VOAs over Riemann surfaces is due to Zhu [Zhu94]. Zhu used an-
alytic methods to establish the propagation of conformal blocks over a single
compact Riemann surface. However, instead of using sewing in the proof, he
constructed propagation using certain “Verma modules”. (See [Zhu94, Thm.
6.1]) Amore algebraic approach was later given in [FB04, Thm. 10.3.1]. Propa-
gation over algebraic families of complex algebraic curves was given in [Cod19,
Thm. 3.6] and [DGT19a, Thm. 5.1]. Instead of using sewing in their proofs,
they used a PBW basis instead. (In fact, the analytic sewing is unavailable in
algebraic geometry.)
Unlike previous approaches to propagation, ours is based largely on the above

understanding of propagation (i.e. it is sewing+analytic continuation). Let us
explain it in more details below.

Main result: propagation of analytic families of conformal blocks. The
first main result of this article is Thm. 7.1, which establishes the propagation of
conformal blocks for a holomorphic family of compact Riemann surfaces with
marked points. Roughly speaking, Thm. 7.1 says the following: Suppose that
we have a (holomorphic) family 𝔛 of compact Riemann surfaces with marked
points. Letℬ be a basemanifoldwith holomorphic parameters 𝜏∙ = (𝜏1, … , 𝜏𝑚).
Suppose that a holomorphic section 𝜑 = 𝜑(𝜏∙) of conformal blocks associated
to 𝔛 is given. Then its propagation ≀𝜑 = ≀𝜑(𝜏∙, 𝑧) exists as a section which
is simultaneously holomorphic with respect to 𝜏∙ and 𝑧. Here 𝑧 is (locally) a
parameter on the fibers of Riemann surfaces.
I have mentioned that propagation over a single Riemann surface was al-

ready proved in the literature. However, one cannot use fiberwise propagation
to construct ≀𝜑 for a family of surfaces: it implies only that ≀𝜑(𝜏∙, 𝑧) is holomor-
phic over 𝑧 for each fixed 𝜏∙, but not that ≀𝜑(𝜏∙, 𝑧) is holomorphic over 𝜏∙ for
each fixed 𝑧 (even if we know that 𝜑(𝜏∙) is holomorphic over 𝜏∙).

Ideas of the proof of Thm. 7.1. Compare to the results already existing in the
literature, the most novel part in Thm. 7.1 is that the holomorphicity of 𝜑(𝜏∙)
with respect to 𝜏∙ implies the (simultaneous) holomorphicity of ≀𝜑(𝜏∙, 𝑧) with
respect to 𝜏∙, 𝑧. Our main tool for proving this fact is the strong residue the-
orem for holomorphic families of compact Riemann surfaces, given in Thm.
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A.1. Roughly speaking, the (classical) strong residue theorem says the follow-
ing: Suppose that to eachmarked point of a compact Riemann surface a formal
Laurent series is associated. Then these formal Laurent series are expansions
of ameromorphic sectionwith possible poles only at thesemarked points if and
only if it satisfies the residue theorem when multiplied by any meromorphic 1-
forms with possible poles only at these points. The classical strong residue the-
orem is an easy application Serre’s duality for holomorphic bundles on compact
Riemann surfaces (cf. [Ueno08, Sec. 1.2.3]). Its generalization to holomorphic
families (i.e. Thm. A.1) is more involved: our proof combines Serre’s duality
with Grauert’s base change theorem in an appropriate way.
Another feature of our proof of Thm. 7.1 is that we uses essentially the view-

point that propagation is a sewing followed by an analytic continuation. In fact,
in the proof of Thm. 7.1, we first establish the existence of ≀𝜑(𝜏∙, 𝑧) when 𝑧 is
neared a marked point. We prove this part by using the fact that ≀𝜑(𝜏∙, 𝑧) is a
sewing of 𝜑(𝜏∙) and a 3-pointed genus 0 conformal block. Then we perform the
analytic continuation. The details of this sewing construction are given in Exp.
5.6.
In particular, this viewpoint allows us to prove that ≀𝜑 is a conformal block

(but not just an arbitrary element) when 𝑧 is near the marked points by using
the nontrivial fact that the sewing of a conformal block is again a conformal
block as long as the sewing is convergent, cf. Thm. 5.5. (This theorem was
originally proved in [Gui23, Thm. 11.3].) It is precisely this part that plays the
role of the construction of certain Verma modules in the proof of [Zhu94], and
that of the PBW basis in the proofs of [Cod19, DGT19a]. Similarly, in the proof
of Thm. 7.1 we also need the fact that the analytic continuation of a conformal
block is a conformal block, as proved in [Gui23, Prop. 6.4] (cf. Prop. 4.2).

Main result: sewing and propagation are commuting. Using Thm. 7.1
and induction, it is now easy to prove Thm. 9.1, another main result of this
article, which says roughly that “sewing commutes with propagation”.
Roughly speaking, Thm. 9.1 says the following: Suppose that ψ is a confor-

mal block associated to a compact Riemann surface with marked point. Sup-
pose that the sewing 𝒮ψ = (5) along a pair of marked points is convergent.
Then we have

≀𝑛𝒮ψ = 𝒮 ≀𝑛 ψ, (6)

where both sides are well-defined holomorphic sections.
Note that Thm. 9.1 shows, in particular, that the convergence of 𝒮ψ implies

automatically the convergence/analyticity of the sewing 𝒮 ≀𝑛 ψ. This nontriv-
ial phenomenon first appeared in a prominent way in [Zhu96]. In that paper,
Zhu first used differential equations to establish the analyticity of 1-pointed
conformal blocks of genus-1 for 𝐶2-cofinite VOAs. Then he used his recurrent
formula to prove that the 𝑛-pointed conformal blocks of genus-1 are analytic
when all the marked points are associated with the vacuum module 𝕍. His
proof of “1-pointed convergence/analyticity implies 𝑛-pointed analyticity” in
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genus 1 by recurrent formula does not rely on 𝐶2-cofiniteness or differential
equations. However, this phenomenon in higher genus was not further inves-
tigated in [Zhu94].
In the proof of Thm. 9.1, the analyticity of 𝒮 ≀𝑛 ψ follows from that of ≀𝑛𝒮ψ

(since they are locally equal as formal power series). The analyticity of ≀𝑛𝒮ψ is
an easy consequence of Thm. 7.1 (applied inductively to the propagation of the
holomorphic family of conformal blocks ≀𝑛−1𝒮ψ).

Applications. We give an application of Theorem 9.1. Let

𝔜 = (𝐶; 𝑥1, … , 𝑥𝑁 ; 𝜂1, … , 𝜂𝑁),

associate 𝕎𝑗 to 𝑥𝑗 for each 𝑗, and choose a conformal block ϕ ∶ 𝕎∙ → ℂ
associated to 𝔜. Choose 1 ≤ 𝑖 ≤ 𝑁. Let 𝔓 = (ℙ1; 0,∞; 𝜁, 𝜁−1), and associate
𝕎𝑖,𝕎′

𝑖 to 0,∞. Then ψ ∶= ϕ ⊗ τ𝕎𝑖
∶ 𝕎∙ ⊗ 𝕎𝑖 ⊗ 𝕎′

𝑖 → ℂ (recall (1)) is
a conformal block associate to the disjoint union 𝔛̃ = 𝔜 ⊔ 𝔓. If we sew 𝔛̃
along 𝑥𝑖 ∈ 𝐶 and ∞ ∈ ℙ1 at 𝑞, the new pointed Riemann surface with local
coordinates 𝔛𝑞 is

𝔛𝑞 = (𝐶; 𝑥1, … , 𝑥𝑁 ; 𝜂1, … , 𝑞−1𝜂𝑖, … , 𝜂𝑁),

and (setting 𝑤∙ = 𝑤1 ⊗⋯⊗𝑤𝑁 as usual)

𝒮ψ(𝑤∙) = ϕ(𝑤1 ⊗⋯⊗ 𝑞𝐿̃0𝑤𝑖 ⊗⋯⊗𝑤𝑁), (7)

which clearly converges absolutely for all 𝑞. Assume 𝜂𝑖 is defined on an open
disc𝑊𝑖 ∋ 𝑥𝑖 such that 𝜂𝑖(𝑊𝑖) = 𝒟𝑟𝑖 has radius 𝑟𝑖, and that𝑊𝑖 contains only
𝑥𝑖 among 𝑥1, … , 𝑥𝑁 . Choose 𝑟 > 0. Then, according to our main result, the
sewing of 𝑛-propagation

𝒮 ≀𝑛 ψ(𝑣1 ⊗⋯⊗ 𝑣𝑛 ⊗𝑤∙)𝜂−1𝑖 (𝑞𝑧1),…,𝜂−1𝑖 (𝑞𝑧𝑛)

=ϕ(𝑤1 ⊗⋯⊗𝑤𝑖−1 ⊗ 𝑞𝐿̃0▶⊗𝑤𝑖+1 ⊗⋯⊗𝑤𝑁)
⋅ ≀𝑛τ𝕎𝑖

(𝑣1 ⊗⋯⊗ 𝑣𝑛 ⊗𝑤𝑖 ⊗◀)𝑧1,…,𝑧𝑛

(assuming that the local coordinate at each 𝑧𝑗 ∈ ℙ1 is 𝜁 − 𝑧𝑗, and the one at
𝜂−1𝑖 (𝑞𝑧𝑗) ∈ 𝐶 is 𝑞−1𝜂𝑖 − 𝑧𝑗) converges absolutely and uniformly when 𝑧1, … , 𝑧𝑛
vary on any compact set of the configuration space Conf𝑛(𝒟×

𝑟 ) (where 𝒟×
𝑟 =

{𝑧 ∈ ℂ ∶ 0 < |𝑧| < 𝑟}) and when |𝑞| < 𝑟𝑖∕𝑟.
We are especially interested in the case that 𝑞 = 1, which is accessible when

𝑟 < 𝑟𝑖, namely, when 0 < |𝑧1|, … , |𝑧𝑛| < 𝑟𝑖. Then ≀𝑛𝒮ψ = 𝒮 ≀𝑛 ψ implies (notice
(7))

≀𝑛 ϕ(𝑣1 ⊗⋯⊗ 𝑣𝑛 ⊗𝑤∙)𝜂−1𝑖 (𝑧1),…,𝜂−1𝑖 (𝑧𝑛)

=ϕ(𝑤1 ⊗⋯⊗𝑤𝑖−1 ⊗▶⊗𝑤𝑖+1 ⊗⋯⊗𝑤𝑁) (8)
⋅ ≀𝑛τ𝕎𝑖

(𝑣1 ⊗⋯⊗ 𝑣𝑛 ⊗𝑤𝑖 ⊗◀)𝑧1,…,𝑧𝑛 . (9)
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In the special case that 0 < |𝑧1| < ⋯ < |𝑧𝑛| < 𝑟𝑖, the above relation becomes

≀𝑛 ϕ(𝑣1 ⊗⋯⊗ 𝑣𝑛 ⊗𝑤∙)𝜂−1𝑖 (𝑧1),…,𝜂−1𝑖 (𝑧𝑛)

=ϕ
(
𝑤1 ⊗⋯⊗𝑌(𝑣𝑛, 𝑧𝑛)⋯𝑌(𝑣1, 𝑧1)𝑤𝑖 ⊗⋯⊗𝑤𝑁

)
(10)

where the right hand side converges absolutely. Zhu proved relation (10) in
[Zhu94, Thm. 6.2] when 𝑣1, … , 𝑣𝑛 are primary, or when the local coordinates
are contained in a projective structure (i.e., an atlas whose transition functions
are Möbius transforms). But, as explained below, the general case, especially
when 0 < |𝑧1| = ⋯ = |𝑧𝑛| < 𝑟𝑖, is also important.
Take an automorphism 𝑔 of 𝕍⊗𝑘 to be the permutation associated to the cy-

cle (12⋯𝑘). Starting from a 𝕍-module 𝕎, Barron-Dong-Mason constructed
in [BDM02] a (canonical) 𝑔-twisted 𝕍⊗𝑘-module structure on the same vector
space𝕎. In particular, they explicitly described the twisted vertex operator 𝑌𝑔

for vectors in 𝕍⊗𝑘 of the form 𝟏 ⊗⋯⊗ 𝑣 ⊗⋯⊗ 𝟏. For an arbitrary vector of
𝕍⊗𝑘, the 𝑌𝑔 can then be described using normal ordering. Their proof that 𝑌𝑔

satisfies the axioms of a 𝑔-twisted module is algebraic, and in particular relies
on a previous algebraic result of [Li96]. Recently, another algebraic proof was
given by Dong-Xu-Yu in [DXY21] using Zhu’s algebras.
Now, our observation in this article is that since 𝑌𝑔(𝑣1 ⊗⋯⊗ 𝑣𝑘, 𝑧) can be

described by ≀𝑘τ𝕎𝑖
at (𝑧1, … , 𝑧𝑘) (where 𝑧1, … , 𝑧𝑘 are the distinct 𝑘-th roots of

unity of 𝑧), using the consequences of our main result such as relation (9), we
can give a geometric and complex-analytic proof that 𝑌𝑔 satisfies the axioms
of a 𝑔-twisted module. Namely, we check that𝑌𝑔 satisfies the complex-analytic
version of Jacobi identity (as in [Hua10]). See Sec. 10 for details. Our proof is in
the same spirit as checking the Jacobi identity for VOAmodules using contour
integrals. Note that the geometric meaning of Barron-Dong-Mason’s construc-
tion of twisted modules was given in [BDM02, BHL08], but the verification in
[BDM02] that these twisted modules satisfy Jacobi identity is purely algebraic.
The merit of our approach, on the other hand, is that we use geometric methods
to prove results about mathematical objects with geometric origins.
Moreover, our complex-analytic method will be generalized in [Gui21] to

construct permutation twisted conformal blocks from untwisted ones, and vice
versa. As an important consequence, the fusion rules for permutation twisted
modules of a strongly rational VOA will be completely determined in [Gui21].

Outline. This article is organized as follows. In Section 2, we fix the geomet-
ric notations used in later sections, and define the (multi) propagations for an
(analytic) family of compact Riemann surfaces. In the case of a single compact
Riemann surface 𝐶 with marked points 𝑆 = {𝑥1, … , 𝑥𝑁}, its 𝑛-propagation is
easy to describe: If we let several distinct points 𝑦1, … , 𝑦𝑛 move on 𝐶⧵𝑆, we ob-
tain a family of compact Riemann surfaces (all isomorphic to 𝐶) with 𝑁 fixed
marked points and 𝑛 varying points over the base manifold Conf𝑛(𝐶 ⧵ 𝑆).
We recall the definitions and basic properties of sheaves of VOAs (i.e. VOA

bundles) and conformal blocks in Sections 3 and 4. In Section 5, we recall some
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important facts about the sewing of conformal blocks associated to the sewing
of a family of compact Riemann surfaces. In Section 6, we relate sheaves of
VOAs and the W -sheaves which were naturally introduced to define (sheaves
of) conformal blocks.
In Section 7, we give a new proof of conformal block propagation for (ana-

lytic) families of compact Riemann surfaces. In particular, we prove that prop-
agation is compatible (in the complex analytic sense) with the deformation of
pointed compact Riemann surfaces. Roughly speaking, this means that if the
original conformal blocks are parametrized by 𝜏 ∈ ℬ whereℬ is the base man-
ifold of the family, and if the propagation on each fiber is parametrized by 𝑧,
then the propagation is a multivariable analytic function of (𝑧, 𝜏). The precise
statement is formulated using the language of sheaves; see Thm. 7.1. These re-
sults were proved in [Cod19, Thm. 3.6] for CFT type VOAs using a Lie-theoretic
method, which relies on the fact that such VOAs have PBWbases. As explained
earlier, our proof is based on the idea of sewing, and relies on the StrongResidue
Theorem and the fact that the sewing of conformal blocks are conformal blocks
[Gui23, Thm. 11.2], whose formal version was proved in [DGT19b].
Note that here we should use the Strong Residue Theorem for analytic fam-

ilies of compact Riemann surfaces. This result is well-known, although we are
not able to find a proof in the literature. So we include a proof in the Appendix
Section A.
We discuss elementary properties of multi-propagation in Section 8. Most

of these important properties were more or less known before (cf. [FB04]) but
not explicitly written down. We collect these results under Thm. 8.2 so that
they can be directly cited or used in future works on VOA. These results follow
rather directly from those in the previous sections.
The main theorem of this article, summarized by the slogan “sewing com-

mutes with propagation”, is proved in Section 9. To give an application of this
result, we construct in Section 10 permutation-twistedmodules for tensor prod-
uct VOAs.

Acknowledgment. I would like to thank Nicola Tarasca for helpful discus-
sions.

2. The geometric setting
We set ℕ = {0, 1, 2, … } and ℤ+ = {1, 2, 3, … }. Let ℂ× = ℂ ⧵ {0}. For each

𝑟 > 0, we let 𝒟𝑟 = {𝑧 ∈ ℂ ∶ |𝑧| < 𝑟} and 𝒟×
𝑟 = 𝒟𝑟 ⧵ {0}. For any topological

space 𝑋, we define the configuration space Conf𝑛(𝑋) = {(𝑥1, … , 𝑥𝑁) ∈ 𝑋𝑛 ∶
𝑥𝑖 ≠ 𝑥𝑗 ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑛}.
For each complex manifold 𝑋, O𝑋 is the sheaf of holomorphic functions of

𝑋. For each 𝑥 ∈ 𝑋 and any O𝑋-module E , E𝑥 is the stalk of E at 𝑥. 𝔪𝑋,𝑥 (or
simply𝔪𝑥 when no confusion arises) is by definition {𝑓 ∈ O𝑋,𝑥 ∶ 𝑓(𝑥) = 0}.
E |𝑥 ∶= E𝑥∕𝔪𝑥E𝑥 ≃ E ⊗O𝑋

O𝑋,𝑥∕𝔪𝑥 is the fiber of E at 𝑥. More generally, if 𝑌
is a closed complex sub-manifold of 𝑋 withI𝑌 being the ideal sheaf (the sheaf
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of all sections of O𝑋 vanishing at 𝑌), then the restriction E |𝑌 is defined to be
E ⊗O𝑋

O𝑋∕I𝑌 (restricted to the set 𝑌). We suppress the subscriptO𝑋 under⊗
when taking tensor products of O𝑋-modules. If 𝑠 is a section of E , then 𝑠|𝑌 is
the corresponding value 𝑠 ⊗ 1 in E |𝑌 .
(For the readers not familiar with the language of sheaf of modules: we only

consider the case that E is locally free (with finite or infinite rank), i.e., a holo-
morphic vector bundle. Then E |𝑌 resp. 𝑠|𝑌 is the usual restriction of the vector
bundle resp. vector field to the submanifold 𝑌.)
If E is locally free, E ∨ denotes its dual vector bundle.
For a Riemann surface 𝐶, its cotangent line bundle is denoted by 𝜔𝐶 .
A family of compact Riemann surfaces𝔛 is by definition a holomorphic

proper map of complex manifolds

𝔛 = (𝜋 ∶ 𝒞 → ℬ)

that is a submersion and satisfies that each fiber 𝒞𝑏 ∶= 𝜋−1(𝑏) (where 𝑏 ∈ ℬ)
is a (non-necessarily connected) compact Riemann surface.
A family of 𝑁-pointed compact Riemann surfaces is by definition

𝔛 = (𝜋 ∶ 𝒞 → ℬ; 𝜍1, … , 𝜍𝑁) (11)

where 𝜋 ∶ 𝒞 → ℬ is a family of compact Riemann surfaces, each section 𝜍𝑗 ∶
ℬ → 𝒞 is holomorphic and satisfies𝜋◦𝜍𝑗 = 𝟏ℬ, and any two 𝜍𝑖(ℬ), 𝜍𝑗(ℬ) (where
1 ≤ 𝑖 < 𝑗 ≤ 𝑁) are disjoint. Unless otherwise stated, we also assume that every
connected component of each fiber

𝒞𝑏 = 𝜋−1(𝑏)

(where 𝑏 ∈ ℬ) contains at least one of 𝜍1(𝑏), … , 𝜍𝑁(𝑏). We set

𝔛𝑏 = (𝒞𝑏; 𝜍1(𝑏), … , 𝜍𝑁(𝑏)),

which is an 𝑁-pointed compact Riemann surface. We define closed submani-
fold

𝑆𝔛 =
𝑁⋃

𝑗=1
𝜍𝑗(ℬ),

considered also as a divisor of 𝒞. For any sheaf of O𝒞-module E , and for any
𝑛 ∈ ℤ, we set

E (𝑛𝑆𝔛) ∶= E ⊗ O𝒞(𝑛𝑆𝔛),
E (⋆𝑆𝔛) = lim,,→

𝑛∈ℕ
E (𝑛𝑆𝔛).

When E is a vector bundle, E (𝑛𝑆𝔛) is the sheaf of sections of E which possibly
has poles at each 𝜍𝑗(ℬ) with order at most 𝑛.
For each 1 ≤ 𝑗 ≤ 𝑁, a local coordinate of 𝔛 at 𝜍𝑗 is defined to be a holo-

morphic function 𝜂𝑗 ∈ O(𝑊𝑖) (where𝑊𝑖 is a neighborhood of 𝜍𝑖(ℬ)) which is
injective on each fiber 𝑊𝑖 ∩ 𝜋−1(𝑏) and has value 0 on 𝜍𝑖(ℬ). It follows that
(𝜋, 𝜂𝑗) is a biholomorphism from 𝑊𝑖 to a neighborhood of ℬ × {0} in ℬ × ℂ.
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𝜂𝑗|𝒞𝑏 is a local coordinate of the fiber 𝒞𝑏 at the point 𝜍𝑗(𝑏), which identifies a
neighborhood of 𝜍𝑗(𝑏) (say𝑊𝑗 ∩𝒞𝑏) with an open subset ofℂ such that 𝜍𝑗(𝑏) is
identified with the origin. If 𝔛 is equipped with local coordinates 𝜂1, … , 𝜂𝑁 at
𝜍1(ℬ), … , 𝜍𝑁(ℬ) respectively, we set

𝔛𝑏 = (𝒞𝑏; 𝜍1(𝑏), … , 𝜍𝑁(𝑏); 𝜂1|𝒞𝑏 , … , 𝜂𝑁|𝒞𝑏).

In particular, 𝑆𝔛𝑏
=
∑

𝑗 𝜍𝑗(𝑏) is a divisor of 𝒞𝑏.
Now, we let 𝔛 = (11) be 𝑁-pointed but not necessarily equipped with lo-

cal coordinates. Define the propagated family ≀𝔛 as follows. Consider the
commutative diagram

𝒞 ×ℬ (𝒞 ⧵ 𝑆𝔛) 𝒞

𝒞 ⧵ 𝑆𝔛 ℬ

≀𝜋 𝜋

𝜋

where 𝒞 ×ℬ (𝒞 ⧵ 𝑆𝔛) is the closed submanifold of 𝒞 × (𝒞 ⧵ 𝑆𝔛) consisting of all
(𝑥, 𝑦) satisfying 𝜋(𝑥) = 𝜋(𝑦), the first horizontal arrow is the projection onto
the first component, and ≀𝜋 is the projection onto the second component. We
set

≀ℬ = 𝒞 ⧵ 𝑆𝔛, ≀𝒞 = 𝒞 ×ℬ (𝒞 ⧵ 𝑆𝔛).

The holomorphic section 𝜎 ∶ 𝒞 ⧵ 𝑆𝔛 → 𝒞 ×ℬ (𝒞 ⧵ 𝑆𝔛) is set to be the diagonal
map, i.e.,

𝜎 ∶ 𝑥 ↦ (𝑥, 𝑥).

Define sections

≀𝜍𝑗 ∶ 𝒞 ⧵ 𝑆𝔛 → 𝒞 ×ℬ (𝒞 ⧵ 𝑆𝔛), 𝑥 ↦ (𝜍𝑗◦𝜋(𝑥), 𝑥).

Then we obtain an (𝑁 + 1)-pointed family ≀𝔛 of compact Riemann surfaces to
be

≀𝔛 = (≀𝜋 ∶ ≀𝒞 → ≀ℬ; 𝜎, ≀𝜍1, … , ≀𝜍𝑁). (12)

Intuitively, ≀𝔛 is the result of adding one extra marked point to each fiber 𝒞𝑏
disjoint from 𝑆𝔛𝑏

, letting this marked point vary on 𝒞𝑏 ⧵𝑆𝔛𝑏
over all 𝑏 ∈ ℬ, and

fixing the other marked points.
One can define multi-propagation inductively by ≀𝑛𝔛 = ≀ ≀𝑛−1 𝔛, which cor-

responds to varying 𝑛 extra distinct points of 𝒞𝑏∖𝑆𝔛𝑏
. Write

≀𝑛𝔛 = (≀𝑛𝜋 ∶ ≀𝑛𝒞 → ≀𝑛ℬ; 𝜎1, … , 𝜎𝑛, ≀𝑛𝜍1, … , ≀𝑛𝜍𝑁).

Then ≀𝑛𝔛 can be described in a more explicit way. Let
𝑛∏

ℬ
𝒞 ⧵ 𝑆𝔛 = (𝒞 ⧵ 𝑆𝔛) ×ℬ ⋯×ℬ (𝒞 ⧵ 𝑆𝔛)⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑛
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which is the set of all (𝑥1, … , 𝑥𝑛) ∈
∏𝑛 𝒞 ⧵ 𝑆𝔛 satisfying 𝜋(𝑥1) = ⋯ = 𝜋(𝑥𝑛).

Define the relative configuration space

Conf𝑛ℬ(𝒞 ⧵ 𝑆𝔛) =
{
(𝑥1, … , 𝑥𝑁) ∈

∏𝑛

ℬ
𝒞 ⧵ 𝑆𝔛 ∶ 𝑥𝑖 ≠ 𝑥𝑗 for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

}

which clearly admits a submersion Conf𝑛ℬ(𝒞 ⧵ 𝑆𝔛) → ℬ (sending each point
(𝑥1, … , 𝑥𝑛) to 𝜋(𝑥1)). Take

≀𝑛𝜋 ∶ 𝒞 ×ℬ Conf
𝑛
ℬ(𝒞 ⧵ 𝑆𝔛) → Conf𝑛ℬ(𝒞 ⧵ 𝑆𝔛).

to be the pullback of 𝜋 ∶ 𝒞 → ℬ along Conf𝑛ℬ(𝒞 ⧵ 𝑆𝔛) → ℬ. So we have a
commutative diagram

𝒞 ×ℬ Conf
𝑛
ℬ(𝒞 ⧵ 𝑆𝔛) 𝒞

Conf𝑛ℬ(𝒞 ⧵ 𝑆𝔛) ℬ

≀𝑛𝜋 𝜋

Then ≀𝑛𝔛 is equivalent to
(
≀𝑛 𝜋 ∶ 𝒞 ×ℬ Conf

𝑛
ℬ(𝒞 ⧵ 𝑆𝔛) → Conf𝑛ℬ(𝒞 ⧵ 𝑆𝔛); 𝜎1, … , 𝜎𝑛, ≀𝑛𝜍1, … , ≀𝑛𝜍𝑁

)
,

where

𝜎𝑖(𝑥1, … , 𝑥𝑛) = (𝑥𝑖, 𝑥1, … , 𝑥𝑛),
≀𝑛𝜍𝑗(𝑥1, … , 𝑥𝑛) = (𝜍𝑗◦𝜋(𝑥1), 𝑥1, … , 𝑥𝑛)

for each 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑁, (𝑥1, … , 𝑥𝑛) ∈ Conf𝑛ℬ(𝒞 ⧵ 𝑆𝔛).

3. Sheaves of VOA
For any (ℂ-)vector space𝑊, we define four spaces of formal series

𝑊[[𝑧]] = {
∑

𝑛∈ℕ
𝑤𝑛𝑧𝑛 ∶ each 𝑤𝑛 ∈ 𝑊},

𝑊[[𝑧±1]] = {
∑

𝑛∈ℤ
𝑤𝑛𝑧𝑛 ∶ each 𝑤𝑛 ∈ 𝑊},

𝑊((𝑧)) =
{
𝑓(𝑧) ∶ 𝑧𝑘𝑓(𝑧) ∈ 𝑊[[𝑧]] for some 𝑘 ∈ ℤ

}
,

𝑊{𝑧} = {
∑

𝑛∈ℂ
𝑤𝑛𝑧𝑛 ∶ each 𝑤𝑛 ∈ 𝑊}.

Throughout this article,𝕍 is anℕ-graded vertex operator algebra (VOA)with
vacuum 𝟏 and conformal vector 𝐜. We write 𝑌(𝑣, 𝑧) =

∑
𝑛∈ℤ 𝑌(𝑣)𝑛𝑧

−𝑛−1. Then
{𝐿𝑛 = 𝑌(𝐜)𝑛+1} are Virasoro algebras, and 𝐿0 gives grading 𝕍 =

⨁
𝑛∈ℕ 𝕍(𝑛),

where each 𝕍(𝑛) is finite-dimensional.
In this article, a𝕍-module𝕎means afinitely-admissible𝕍-module. This

means that𝕎 is a weak 𝕍-module in the sense of [DLM97] with vertex opera-
tors 𝑌𝕎(𝑣, 𝑧) =

∑
𝑛∈ℤ 𝑌𝕎(𝑣)𝑛𝑧

−𝑛−1, that𝕎 is equipped with a diagonalizable
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operator 𝐿̃0 (not to be confused with 𝐿0 = 𝑌𝕎(𝐜)1 which is not necessarily di-
agonalizable!) satisfying

[𝐿̃0, 𝑌𝕎(𝑣)𝑛] = 𝑌𝕎(𝐿0𝑣)𝑛 − (𝑛 + 1)𝑌𝕎(𝑣)𝑛, (13)

that the eigenvalues of 𝐿̃0 are in ℕ, and that each eigenspace 𝕎(𝑛) is finite-
dimensional. Let

𝕎 =
⨁

𝑛∈ℕ
𝕎(𝑛)

be the grading given by 𝐿̃0. Each

𝕎≤𝑛 =
⨁

0≤𝑘≤𝑛
𝕎(𝑘)

is finite-dimensional. We choose the 𝐿̃0 operator on 𝕍 to be 𝐿0.
We can define the contragredient 𝕍-module𝕎′ of𝕎 as in [FHL93]. We

choose 𝐿̃0-grading to be

𝕎′ =
⨁

𝑛∈ℕ
𝕎′(𝑛), 𝕎′(𝑛) = 𝕎(𝑛)∗.

Therefore, if we let ⟨⋅, ⋅⟩ be the pairing between𝕎 and𝕎′, then ⟨𝐿̃0𝑤,𝑤′⟩ =
⟨𝑤, 𝐿̃0𝑤′⟩ for each 𝑤 ∈ 𝕎,𝑤′ ∈ 𝕎′.
The vertex operator 𝑌𝕎 for 𝕎 (abbreviated as 𝑌 in the following) gives a

linear map 𝑌 ∶ 𝕍⊗𝕎 →𝕎((𝑧)) sending 𝑣 ⊗𝑤 to 𝑌(𝑣, 𝑧)𝑤. We will write 𝑌𝕎
as 𝑌 when the context is clear. By identifying 𝕍 with 𝕍 ⊗ 1 in 𝕍 ⊗ ℂ((𝑧)) and
similarly𝕎 with𝕎⊗1 in𝕎⊗ℂ((𝑧)), 𝑌 can be extended ℂ((𝑧))-bilinearly to

𝑌 ∶
(
𝕍 ⊗ ℂ((𝑧))

)
⊗
(
𝕎⊗ℂ((𝑧))

)
→ 𝕎⊗ℂ((𝑧)),

𝑌(𝑢 ⊗ 𝑓, 𝑧)𝑤 ⊗ 𝑔 = 𝑓(𝑧)𝑔(𝑧)𝑌(𝑢, 𝑧)𝑤
(14)

(for each 𝑢 ∈ 𝕍,𝑤 ∈ 𝕎,𝑓, 𝑔 ∈ ℂ((𝑧))). It can furthermore be extended to

𝑌 ∶
(
𝕍 ⊗ ℂ((𝑧))𝑑𝑧

)
⊗
(
𝕎⊗ℂ((𝑧))

)
→ 𝕎⊗ℂ((𝑧))𝑑𝑧 (15)

in an obvious way. Thus, for each 𝑣 ∈ 𝕍⊗ℂ((𝑧))𝑑𝑧, we can define the residue

Res𝑧=0 𝑌(𝑣, 𝑧)𝑤, (16)

which, in case 𝑣 = 𝑢⊗𝑓𝑑𝑧,𝑤 = 𝑚⊗𝑔where 𝑢 ∈ 𝕍,𝑚 ∈ 𝕎, and𝑓, 𝑔 ∈ ℂ((𝑧)),
is the𝕎-coefficient of 𝑓(𝑧)𝑔(𝑧)𝑌(𝑣, 𝑧)𝑚𝑑𝑧 before 𝑧−1𝑑𝑧.
We define a group 𝔾 = {𝑓 ∈ Oℂ,0 ∶ 𝑓(0) = 0, 𝑓′(0) ≠ 0} where the stalk

Oℂ,0 is the set of holomorphic functions defined on a neighborhood of 0. The
multiplication rule of 𝔾 is the composition 𝜌1◦𝜌2 of any two elements 𝜌1, 𝜌2 ∈
𝔾. By [Hua97], for each 𝕍-module𝕎, there is a homomorphism 𝒰 ∶ 𝔾 → 𝕎
defined in the following way: If we choose the unique 𝑐0, 𝑐1, 𝑐2⋯ ∈ ℂ satisfying

𝜌(𝑧) = 𝑐0 ⋅ exp
( ∑

𝑛>0
𝑐𝑛𝑧𝑛+1𝜕𝑧

)
𝑧
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then we necessarily have 𝑐0 = 𝜌′(0), and we set

𝒰(𝜌) = 𝜌′(0)𝐿̃0 ⋅ exp
( ∑

𝑛>0
𝑐𝑛𝐿𝑛

)
.

Note that although the expression of𝒰(𝜌) involves infinite series, its restriction
to each𝕎≤𝑘 is a finite sum, because each

∑
𝑛>0 𝑐𝑛𝐿𝑛 lowers the 𝐿̃0-weights by

at least 1 and is therefore nilpotent and equals
∑𝑘

𝑛=1 𝑐𝑛𝐿𝑛 on𝕎
≤𝑘.

If 𝑋 is a complex manifold, a (holomorphic) family of transformations
𝜌 ∶ 𝑋 → 𝔾 is by definition an analytic function 𝜌 = 𝜌(𝑥, 𝑧) = 𝜌𝑥(𝑧) on a
neighborhood of𝑋×{0} ⊂ 𝑋×ℂ. Then𝒰(𝜌) (on each𝕎) is defined pointwisely,
which is an End(𝕎)-valued function on 𝑋 whose value at each 𝑥 ∈ 𝑋 is𝒰(𝜌𝑥).
𝒰(𝜌) can be regarded as an O𝑋-module automorphism of𝕎⊗ℂ O𝑋 .
Let 𝔛 = (𝜋 ∶ 𝒞 → ℬ) be a family of compact Riemann surfaces. Associated

to𝔛 one can define a sheaf ofO𝑋-modulesV𝔛 as follows. (Cf. [FB04, Chapter 6,
17]; our presentation follows [Gui23, Sec. 5].) First, suppose𝑈,𝑉 ⊂ 𝒞 are open
subsets, and we have two holomorphic functions 𝜂 ∈ O(𝑈), 𝜇 ∈ O(𝑉) locally
injective (i.e., étale) on each fiber 𝑈𝑏 ∶= 𝑈 ∩ 𝜋−1(𝑏), 𝑉𝑏 = 𝑉 ∩ 𝜋−1(𝑏) (𝑏 ∈ ℬ)
of 𝑈 and 𝑉 respectively. We can define a family of transformations 𝜚(𝜂|𝜇) ∶
𝑈∩𝑉 → 𝔾 as follows: for each 𝑝 ∈ 𝒞, both 𝜂−𝜂(𝑝) and 𝜇−𝜇(𝑝) restricts to an
injective holomorphic function on the fiber (𝑈 ∩ 𝑉)𝜋(𝑝) = 𝑈 ∩ 𝑉 ∩ 𝜋−1(𝜋(𝑝))
vanishing at 𝑝. Then 𝜚(𝜂|𝜇)𝑝 ∈ 𝔾 is determined by

𝜂 − 𝜂(𝑝)||||(𝑈∩𝑉)𝜋(𝑝)
= 𝜚(𝜂|𝜇)𝑝

(
𝜇 − 𝜇(𝑝)||||(𝑈∩𝑉)𝜋(𝑝)

)
(17)

on a neighborhood of 0 ∈ ℂ. Then 𝒰(𝜚(𝜂|𝜇)) is an O𝑈∩𝑉-module automor-
phism of 𝕍⊗ℂ O𝑈∩𝑉 which restricts to an automorphism of 𝕍≤𝑛 ⊗ℂ O𝑈∩𝑉 for
each 𝑛 ∈ ℕ. The cocycle condition 𝜚(𝜂|𝜇)𝜚(𝜇|𝜈) = 𝜚(𝜂|𝜈) holds for any holo-
morphic function 𝜈 on a neighborhood of 𝒞 which is injective on each fiber.
Thus, we can define V ≤𝑛

𝔛 to be the holomorphic vector bundle on 𝒞 which
associates to each open 𝑈 ⊂ 𝒞 and each 𝜂 ∈ O(𝑈) locally injective on fibers a
trivialization (i.e., an isomorphism of O𝑈-modules)

𝒰𝜚(𝜂) ∶ V ≤𝑛
𝔛 |𝑈

≃
,→ 𝕍≤𝑛 ⊗ℂ O𝑈 (18)

such that for another similar𝑉 ⊂ 𝒞, 𝜇 ∈ O(𝑉), we have the transition function

𝒰𝜚(𝜂)𝒰𝜚(𝜇)−1 = 𝒰(𝜚(𝜂|𝜇)) ∶ 𝕍≤𝑛 ⊗ℂ O𝑈∩𝑉
≃
,→ 𝕍≤𝑛 ⊗ℂ O𝑈∩𝑉 . (19)

If 𝑛′ > 𝑛, we have clearly an O𝒞-module monomorphism V ≤𝑛
𝔛 → V ≤𝑛′

𝔛 which,
for each open 𝑈 ⊂ 𝒞 and 𝜂 as above, is transported under the isomorphisms
(18) to the canonical monomorphism 𝕍≤𝑛 ⊗ℂ O𝑈 → 𝕍≤𝑛′ ⊗ℂ O𝑈 defined by
the inclusion 𝕍≤𝑛 ↪ 𝕍≤𝑛′ . Thus we are allowed to define

V𝔛 = lim,,→
𝑛∈ℕ

V ≤𝑛
𝔛 .
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Alternatively, one can directly define V𝔛 to be the O𝒞-module which is locally
free (of infinite rank) and isomorphic to 𝕍 ⊗ℂ O𝑈 via a morphism 𝒰𝜚(𝜂), and
whose transition function is given by 𝒰(𝜚(𝜂|𝜇)). We call V𝔛 the sheaf of VOA
associated to 𝔛 and 𝕍. If 𝔛 is a single compact Riemann surface 𝐶, we write
V𝔛 as V𝐶 .
For each fiber 𝒞𝑏 (where 𝑏 ∈ ℬ), we have a canonical equivalence

V𝔛|𝒞𝑏 ≃ V𝒞𝑏 ≡ V𝔛𝑏
(20)

such that if these twoO𝒞𝑏 -modules are identified by this isomorphism, then the
restriction of the trivialization (18) to 𝑈𝑏 = 𝑈 ∩ 𝜋−1(𝑏) equals

𝒰𝜚(𝜂|𝒞𝑏) ∶ V𝒞𝑏 |𝑈𝑏

≃
,→ 𝕍⊗ℂ O𝑈𝑏

.

Definition 3.1. Since the vacuum vector 𝟏 is killed by all 𝐿𝑛 (where 𝑛 ≥ 0), it is
fixed by any change of coordinate 𝒰(𝜌). It follows that we can define a section
𝟏 ∈ V𝔛(𝒞)which under any trivialization𝒰𝜚(𝜂) is the constant section 𝟏, called
the vacuum section.

4. Conformal blocks
Let 𝔛 be a family of 𝑁-pointed compact Riemann surfaces as in (11). We

choose 𝕍-modules𝕎1, … ,𝕎𝑁 . Set

𝕎∙ = 𝕎1 ⊗⋯⊗𝕎𝑁 .

𝑤 ∈ 𝕎∙ means a vector in𝕎∙, and 𝑤∙ ∈ 𝕎∙ means a vector of the form 𝑤1 ⊗
⋯⊗𝑤𝑁 where each 𝑤𝑖 ∈ 𝕎𝑖.
The sheaf of conformal blocks is anOℬ-submodule of an infinite-rank locally

free Oℬ-module W𝔛(𝕎∙), where the latter is defined as follows. For each open
subset 𝑉 ⊂ ℬ such that the restricted family

𝔛𝑉 ∶= (𝜋 ∶ 𝒞𝑉 → 𝑉; 𝜍1|𝑉 , … , 𝜍𝑁|𝑉)

(where 𝒞𝑉 = 𝜋−1(𝑉)) admits local coordinates 𝜂1, … , 𝜂𝑁 at 𝜍1(𝑉), … , 𝜍𝑁(𝑉) re-
spectively, we have a trivialization (i.e., an isomorphism of O𝑉-modules)

𝒰(𝜂∙) ≡ 𝒰(𝜂1) ⊗⋯⊗𝒰(𝜂𝑁) ∶ W𝔛(𝕎∙)|𝑉
≃
,→ 𝕎∙ ⊗ℂ O𝑉 .

If𝑉 is small enough such thatwe have another set of local coordinates𝜇1, … , 𝜇𝑁
at 𝜍1(𝑉), … , 𝜍𝑁(𝑉) respectively, for each 1 ≤ 𝑗 ≤ 𝑁 we choose a family of trans-
formations (𝜂𝑗|𝜇𝑗) ∶ 𝑉 → 𝔾 defined by

(𝜂𝑗|𝜇𝑗)𝑏◦𝜇𝑗|𝒞𝑏 = 𝜂𝑗|𝒞𝑏 (21)

for each 𝑏 ∈ 𝑉. Then each𝒰(𝜂𝑗|𝜇𝑗) is a holomorphic family of invertible endo-
morphisms of𝕎𝑗 associated to (𝜂𝑗|𝜇𝑗) (as defined in Sec. 3). The tensor prod-
uct of them, as a family of invertible transformations of𝕎∙ (more precisely, an
automorphism of the O𝑉-module𝕎∙ ⊗ℂ O𝑉), is the transition function:

𝒰(𝜂∙)𝒰(𝜇∙)−1 ∶= 𝒰(𝜂1|𝜇1) ⊗⋯⊗𝒰(𝜂𝑁|𝜇𝑁). (22)
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This gives the definition of W𝔛(𝕎∙).
In particular, W𝔛𝑏

(𝕎∙) is a vector space equivalent to𝕎∙ through 𝒰(𝜂∙|𝒞𝑏).
It is easy to see that for each 𝑏 ∈ ℬ, the restriction W𝔛(𝕎∙)|𝑏 (i.e., the fiber of
the vector bundle at 𝑏) is naturally equivalent to W𝔛𝑏

(𝕎∙):

W𝔛(𝕎∙)|𝑏 ≃ W𝔛𝑏
(𝕎∙). (23)

This equivalence is uniquely determined by the fact that if we identify the two
spaces, then the restriction of𝒰(𝜂∙) to themapW𝔛𝑏

(𝕎∙) → 𝕎∙ equals𝒰(𝜂∙|𝒞𝑏).
To define conformal blocks, we first consider the case thatℬ is a single point.

Then 𝐶 ∶= 𝒞 is a compact Riemann surface. We can define a linear action of
𝐻0(𝐶,V𝐶 ⊗ 𝜔𝐶(⋆𝑆𝔛)) on W𝔛(𝕎∙) as follows. Choose any local coordinate 𝜂𝑖
of 𝐶 at the point 𝑥𝑗 ∶= 𝜍𝑗(ℬ), defined on a neighboorhood 𝑊𝑗 of 𝑥𝑗 (so, in
particular, 𝜂𝑗(𝑥𝑗) = 0). Note 𝑆𝔛 = {𝑥1, … , 𝑥𝑁}. We assume

𝑊𝑗 ∩ 𝑆𝔛 = {𝑥𝑗}.

Note that we have a trivialization

𝒰𝜚(𝜂𝑗) ∶ V𝐶|𝑊𝑖

≃
,→ 𝕍⊗ℂ O𝑊𝑖

≃ 𝕍⊗ℂ O𝜂𝑖(𝑊𝑖)

which, tensored by (𝜂−1𝑗 )∗ ∶ 𝜔𝑊𝑗

≃
,→ 𝜔𝜂𝑗(𝑊𝑗), gives a trivialization

𝒱𝜚(𝜂𝑗) ∶ V𝐶|𝑊𝑖
⊗𝜔𝑊𝑖

(⋆𝑆𝔛)
≃
,→ 𝕍⊗ℂ 𝜔𝜂𝑗(𝑊𝑖)(⋆0)

Then for each 𝑣 ∈ 𝐻0(𝐶,V𝐶 ⊗ 𝜔𝐶(⋆𝑆𝔛)), we have a section 𝒱𝜚(𝜂𝑗)𝑣, which is
a 𝕍-valued (more precisely, 𝕍≤𝑛-valued for some 𝑛 ∈ ℕ) holomorphic 1-form
on 𝜂𝑗(𝑊𝑗) but possibly has poles at 𝜂𝑗(𝑥𝑗) = 0. By taking Laurent series expan-
sions, 𝒱𝜚(𝜂𝑗)𝑣 can be regarded as an element of 𝕍⊗ℂ((𝑧))𝑑𝑧. We then define,

(notice that we have an isomorphism 𝒰(𝜂∙) ∶ W𝔛(𝕎∙)
≃
,→ 𝕎∙) an action of 𝑣

on W𝔛(𝕎∙) by

𝒰(𝜂∙) ⋅ 𝑣 ⋅ 𝒰(𝜂∙)−1𝑤∙ =
𝑁∑

𝑗=1
𝑤1 ⊗⋯⊗𝒰(𝜂∙) ⋅ 𝑣 ⋅ 𝒰(𝜂∙)−1𝑤𝑗 ⊗⋯⊗𝑤𝑁

(24a)

𝒰(𝜂∙) ⋅ 𝑣 ⋅ 𝒰(𝜂∙)−1𝑤𝑗 = Res𝑧=0 𝑌
(
𝒱𝜚(𝜂𝑗)𝑣, 𝑧

)
𝑤𝑗 (24b)

for each 𝑤∙ ∈ 𝕎∙, where the residue is defined as in (16). That this definition
is independent of the choice of local coordinates 𝜂∙ follows from [FB04, Thm.
6.5.4] (see also [Gui23, Thm. 3.2]), which relies on a crucial change of variable
formula (cf. [Gui23, Thm. 3.3]) proved by Huang [Hua97].
Now that we have a linear action of 𝐻0(𝐶,V𝐶 ⊗ 𝜔𝐶(⋆𝑆𝔛)) on W𝔛(𝕎∙), we

say that a linear functionalϕ ∶ W𝔛(𝕎∙) → ℂ is a conformal block (associated
to 𝔛 and𝕎∙) exactly when ϕ vanishes on the vector space

J ∶= 𝐻0(𝐶,V𝐶 ⊗𝜔𝐶(⋆𝑆𝔛)) ⋅W𝔛(𝕎∙)

where Spanℂ is suppressed on the right hand side of the equality.
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Nowwe come back to the general setting that𝔛 is a family of𝑁-pointed com-
pact Riemann surfaces. Let ϕ ∶ W𝔛(𝕎∙) → Oℬ be an Oℬ-module morphism,
which can be understood in the following way: If locally we identifyW𝔛(𝕎∙)|𝑉
(where 𝑉 is an open subset of ℬ) with 𝕎∙ ⊗ℂ O𝑉 , then ϕ associates to each
vector 𝑤 ∈ 𝕎∙ (considered as the constant section 𝑤 ⊗ 1 ∈ 𝕎∙ ⊗ O(𝑉)) a
holomorphic function ϕ(𝑤) on 𝑈.

Definition 4.1. Let ϕ ∶ W𝔛(𝕎∙) → Oℬ be an Oℬ-module morphism. For
each 𝑏 ∈ ℬ, regard ϕ|𝑏 as the restriction of ϕ to the fiber map W𝔛(𝕎∙)|𝑏 ≃
W𝔛𝑏

(𝕎∙) → ℂ. Then, we say ϕ is a conformal block (over ℬ associated to 𝔛
and𝕎∙) if for each 𝑏 ∈ ℬ, ϕ|𝑏 is a conformal block associated to𝔛𝑏 (i.e., ϕ(𝑏)
vanishes on𝐻0(𝒞𝑏,V𝒞𝑏 ⊗𝜔𝒞𝑏(⋆𝑆𝔛|𝑏)) ⋅W𝔛𝑏

(𝕎∙)).

The following proposition is [Gui23, Prop. 6.4].

Proposition 4.2. Letϕ ∶ W𝔛(𝕎∙) → Oℬ be anOℬ-modulemorphism. Suppose
that each connected component of ℬ contains a non-empty open subset 𝑉 such
that the restriction ofϕ toW𝔛𝑉

(𝕎∙) → O𝑉 is a conformal block, then the original
ϕ is a conformal block associated to𝔛 and𝕎∙.

5. Sewing conformal blocks
Let 𝑁,𝑀 ∈ ℤ+. Let

𝔛̃ = (𝜋 ∶ 𝒞 → ℬ̃; 𝜍1, … , 𝜍𝑁 ; 𝜍′1, … , 𝜍
′
𝑀 ; 𝜍

′′
1 , … , 𝜍

′′
𝑀 ; )

be a family of (𝑁 + 2𝑀)-pointed compact Riemann surfaces. Unless otherwise
stated, we assume the following condition.

Assumption 5.1. We assume that for every 𝑏 ∈ ℬ̃, each connected component
of the fiber 𝒞𝑏 contains one of 𝜍1(𝑏), … , 𝜍𝑁(𝑏).

For each 1 ≤ 𝑗 ≤ 𝑀, we assume 𝔛̃ has local coordinates 𝜉𝑗 at 𝜍′𝑗(ℬ̃) defined
on a neighborhood 𝑊′

𝑗 ⊂ 𝒞 of 𝜍′𝑗(ℬ̃) and similarly 𝜛𝑗 at 𝜍′′𝑗 (ℬ̃) defined on a
neighborhood𝑊′′

𝑗 . We assume all𝑊
′
𝑗,𝑊

′′
𝑗 (1 ≤ 𝑗 ≤ 𝑀) are mutually disjoint

and are also disjoint from 𝜍1(ℬ̃), … , 𝜍𝑁(ℬ̃), so that 𝜍1(ℬ̃), … , 𝜍𝑁(ℬ̃) remain after
sewing. We also assume that for each 1 ≤ 𝑗 ≤ 𝑀, we can choose 𝑟𝑗, 𝜌𝑗 > 0 such
that

(𝜉𝑗, 𝜋) ∶ 𝑊′
𝑗

≃
,→ 𝒟𝑟𝑗 × ℬ̃ resp. (𝜛𝑗, 𝜋) ∶ 𝑊′′

𝑗
≃
,→ 𝒟𝜌𝑗 × ℬ̃ (25)

is a biholomorphic map. (Recall that 𝒟𝑟 is the open disc at 0 ∈ ℂ with radius
𝑟.)
We do not assume 𝔛̃ has local coordinates at 𝜍1(ℬ̃), … , 𝜍𝑁(ℬ̃).

Sewing families of compact Riemann surfaces. We can sew 𝔛̃ along all
pairs 𝜍′𝑗(ℬ̃), 𝜍

′′
𝑗 (ℬ̃) to obtain a new family

𝔛 = (𝜋 ∶ 𝒞 → ℬ; 𝜍1, … , 𝜍𝑁) (26)
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of compact Riemann surfaces. Here,

ℬ = 𝒟×
𝑟∙𝜌∙ × ℬ̃, 𝒟×

𝑟∙𝜌∙ = 𝒟×
𝑟1𝜌1 ×⋯ ×𝒟×

𝑟𝑀𝜌𝑀 .

𝔛 is described as follows.
For each 𝑞∙ ∈ 𝒟×

𝑟∙𝜌∙ and 𝑏 ∈ ℬ̃, the fiber 𝒞(𝑞∙,𝑏) is obtained by removing the
closed discs

𝐹′𝑗,𝑏 = {𝑦 ∈ 𝑊′
𝑗 ∩ 𝒞𝑏 ∶ |𝜉𝑗(𝑦)| ≤ |𝑞𝑗|∕𝜌𝑗}

𝐹′′𝑗,𝑏 = {𝑦 ∈ 𝑊′′
𝑗 ∩ 𝒞𝑏 ∶ |𝜛𝑗(𝑦)| ≤ |𝑞𝑗|∕𝑟𝑗}

(for all 𝑗) from 𝒞𝑏, and gluing the remaining part of the Riemann surface 𝒞𝑏 by
identifying (for all 𝑗) 𝑦′ ∈ 𝑊′

𝑗 ∩ 𝒞𝑏 with 𝑦
′′ ∈ 𝑊′′

𝑗 ∩ 𝒞𝑏 if 𝜉𝑗(𝑦
′)𝜛𝑗(𝑦′′) = 𝑞𝑗.

This procedure can be performed in a consistent way over all 𝑏 ∈ ℬ̃, which
gives 𝜋 ∶ 𝒞 → ℬ. See for instance [Gui23, Sec. 4] for details.1

SinceΩ = 𝒞⧵
⋃

𝑗(𝑊
′
𝑗∪𝑊

′′
𝑗 ) is not affected by gluing,𝒟

×
𝑟∙𝜌∙×Ω can be viewed

as a subset of𝔛, and the restriction of 𝜋 to this set is𝒟×
𝑟∙𝜌∙ ×Ω

1⊗𝜋
,,,,→ 𝒟×

𝑟∙𝜌∙ ×ℬ̃ =
ℬ. Thus, for each 1 ≤ 𝑖 ≤ 𝑁 the section 𝜍𝑖 for 𝔛̃ defines the corresponding
section 1× 𝜍𝑖 ∶ 𝒟×

𝑟∙𝜌∙ × ℬ̃ → 𝒟×
𝑟∙𝜌∙ ×Ω, also denoted by 𝜍𝑖. A local coordinate 𝜂𝑖

of 𝔛̃ at 𝜍𝑖(ℬ̃) extends constantly over 𝒟×
𝑟∙𝜌∙ to a local coordinate of 𝔛 at 𝜍𝑖(ℬ),

also denoted by 𝜂𝑖.

Sewing conformal blocks. We now define sewing conformal blocks associ-
ated to 𝔛̃. Associate to 𝜍1, … , 𝜍𝑁 𝕍-modules𝕎1, … ,𝕎𝑁 . Thenwe haveW𝔛̃(𝕎∙)
definedby (𝜋 ∶ 𝒞 → ℬ̃; 𝜍1, … , 𝜍𝑁). For each connected open𝑉 ⊂ ℬ̃,W𝔛̃(𝕎∙)(𝑉)
can be identified canonically with a subspace ofW𝔛(𝕎∙)(𝒟×

𝑟∙𝜌∙ ×𝑉) consisting
of sections of the latter which are constant with respect to sewing. More pre-
cisely, this identification is compatible with restrictions to open subsets of 𝑉;
moreover, if 𝑉 is small enough such that 𝔛̃|𝑉 has local coordinates 𝜂1, … , 𝜂𝑁 at
𝜍1(𝑉), … , 𝜍𝑁(𝑉)which give rise to 𝜂1, … , 𝜂𝑁 of 𝜂1, … , 𝜂𝑁 of𝔛|𝒟×

𝑟∙𝜌∙×𝑉
at 𝜍1(𝒟×

𝑟∙𝜌∙×
𝑉), … , 𝜍𝑁(𝒟×

𝑟∙𝜌∙×𝑉) (which are constant over𝒟
×
𝑟∙𝜌∙), then the following diagram

commutes:
W𝔛̃(𝕎∙)(𝑉) W𝔛(𝕎∙)(𝒟×

𝑟∙𝜌∙ × 𝑉)

𝕎∙ ⊗ℂ O(𝑉) 𝕎∙ ⊗ℂ O(𝒟×
𝑟∙𝜌∙ × 𝑉)

≃ 𝒰(𝜂∙) ≃𝒰(𝜂∙) (27)

where the bottomhorizontal line is defined by pulling pack the projection𝒟×
𝑟∙𝜌∙×

𝑉 → 𝑉.

1Indeed, one can extend 𝔛 to a slightly larger flat family of complex curves (with at worst
nodal singularities) with base manifold𝒟𝑟∙𝜌∙ × ℬ̃ (cf. for instance [Gui23, Sec. 4]).
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Associate to 𝜍′1, … , 𝜍
′
𝑀 𝕍-modules𝕄1, … ,𝕄𝑀 , whose contragredientmodules

𝕄′
1, … ,𝕄

′
𝑀 are associated to 𝜍′′1 , … , 𝜍

′′
𝑀 . We understand𝕎∙ ⊗𝕄∙ ⊗𝕄′

∙ as

𝕎1 ⊗⋯⊗𝕎𝑁 ⊗𝕄1 ⊗𝕄′
1 ⊗⋯⊗𝕄𝑀 ⊗𝕄′

𝑀 ,

where the order has be changed so that each 𝕄′
𝑗 is next to 𝕄𝑗. We can then

identify

W𝔛̃(𝕎∙ ⊗𝕄∙ ⊗𝕄′
∙) = W𝔛̃(𝕎∙) ⊗ℂ 𝕄∙ ⊗𝕄′

∙ (28)

such thatwhenever𝑉 ⊂ ℬ̃ is open such that 𝔛̃|𝑉 has local coordinates 𝜂1, … , 𝜂𝑁
at 𝜍1(𝑉), … , 𝜍𝑁(𝑉) as before, the following diagram commutes:

W𝔛̃(𝕎∙ ⊗𝕄∙ ⊗𝕄′
∙)
||||𝑉 W𝔛̃(𝕎∙)

||||𝑉 ⊗ℂ 𝕄∙ ⊗𝕄′
∙

𝕎∙ ⊗𝕄∙ ⊗𝕄′
∙ ⊗ℂ O𝑉

=

≃
𝒰(𝜂∙,𝜉∙,𝜛∙)

≃
𝒰(𝜂∙)⊗𝟏

(29)
We define

𝑞𝐿̃0𝑗 ▶⊗𝑗 ◀ =
∑

𝑛∈ℕ
𝑞𝑛𝑗

∑

𝑎∈𝔄𝑗,𝑛

𝑚(𝑛, 𝑎) ⊗ �𝑚(𝑛, 𝑎) ∈ (𝕄𝑗 ⊗𝕄′
𝑗)[[𝑞𝑗]]

where for each 𝑛 ∈ ℕ, 𝑠 ∈ ℂ, {𝑚(𝑛, 𝑎) ∶ 𝑎 ∈ 𝔄𝑗,𝑛} is a basis of𝕎(𝑛) with dual
basis { �𝑚(𝑛, 𝑎) ∶ 𝑎 ∈ 𝔄𝑗,𝑛} in𝕎′(𝑛).
Now, for any conformal block ψ ∶ W𝔛̃(𝕎∙ ⊗𝕄∙ ⊗𝕄′

∙) → Oℬ̃ associated to
the family 𝔛̃ and𝕎∙ ⊗𝕄∙ ⊗𝕄′

∙, we define an Oℬ̃-module morphism

𝒮ψ ∶ W𝔛̃(𝕎∙) → Oℬ̃[[𝑞1, … , 𝑞𝑀]]

by sending each section 𝑤 over an open 𝑉 ⊂ ℬ̃ to

𝒮ψ(𝑤) = ψ
(
𝑤 ⊗ (𝑞𝐿̃01 ▶⊗1 ◀)⊗⋯⊗ (𝑞𝐿̃0𝑀▶⊗𝑀 ◀)

)

∈ O(𝑉)[[𝑞1, … , 𝑞𝑀]]. (30)

The identification (28) is used in this definition. 𝒮ψ is called the (normalized)
sewing of ψ.

Definition 5.2. Let 𝑋 be a complex manifold. Consider an element

𝑓 =
∑

𝑛1,…,𝑛𝑀∈ℂ
𝑓𝑛1,…,𝑛𝑀𝑞

𝑛1
1 ⋯𝑞𝑛𝑀𝑀 ∈ O(𝑋){𝑞1, … , 𝑞𝑀}

where each 𝑓𝑛1,…,𝑛𝑀 ∈ O(𝑋). Let 𝑅1, … , 𝑅𝑀 ∈ [0, +∞] and 𝒟×
𝑅∙
= 𝒟×

𝑅1
× ⋯ ×

𝒟×
𝑅𝑀
. For any locally compact subset Ω of𝒟×

𝑅∙
× 𝑋, we say that formal series 𝑓
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converges absolutely and locally uniformly (a.l.u.) on Ω, if for any com-
pact subsets 𝐾 ⊂ Ω, we have

sup
(𝑞∙,𝑥)∈𝐾

∑

𝑛1,…,𝑛𝑀∈ℂ

||||𝑓𝑛1,…,𝑛𝑀 (𝑥)𝑞
𝑛1
1 ⋯𝑞𝑛𝑀𝑀

|||| < +∞.

In the case that 𝑓 ∈ O(𝑋)[[𝑞±11 , … , 𝑞±1𝑀 ]], it is clear from complex analysis that
𝑓 converges a.l.u. on𝒟×

𝑅∙
×𝑋 if and only if 𝑓 is the Laurent series expansion of

an element (also denoted by 𝑓) of O(𝒟×
𝑅∙
× 𝑋).

Definition 5.3. We say that 𝒮ψ converges a.l.u. (onℬ = 𝒟×
𝑟∙𝜌∙×ℬ̃), if for any

open subset 𝑉 ⊂ ℬ̃ and any section 𝑤 of W𝔛̃(𝕎∙)(𝑉), 𝒮ψ(𝑤) converges a.l.u.
on𝒟×

𝑟∙𝜌∙ × 𝑉.

Consider the following condition weaker than assumption 5.1:

Assumption 5.4. For every 𝑏 ∈ ℬ, each connected component of the fiber 𝒞𝑏
contains one of 𝜍1(𝑏), … , 𝜍𝑁(𝑏).

Theorem5.5 ([Gui23], Thm. 11.3). AssumeAssumption 5.4 instead of Assump-
tion 5.1. If 𝒮ψ converges a.l.u. on ℬ = 𝒟×

𝑟∙𝜌∙ × ℬ̃, then 𝒮ψ (resp. 𝒮ψ), when ex-
tended Oℬ-linearly to an Oℬ-module homomorphism W𝔛(𝕎∙) → Oℬ using the
inclusionW𝔛̃(𝕎∙) ⊂ W𝔛(𝕎∙) defined by (27), is a conformal block associated to
𝔛 and𝕎∙.

Example 5.6. Let 𝔜 = (𝐶; 𝑥1, … , 𝑥𝑁) be an 𝑁-pointed compact Riemann sur-
face with local coordinates 𝜂1, … , 𝜂𝑁 at 𝑥1, … , 𝑥𝑁 , defined on neighborhoods
𝑊1, … ,𝑊𝑁 satisfying 𝑊𝑗 ∩ {𝑥1, … , 𝑥𝑁} = 𝑥𝑗 for each 1 ≤ 𝑗 ≤ 𝑁. Assume
𝜂1(𝑊1) = 𝒟𝑟 for some 𝑟 > 0. Let 𝜁 be the standard coordinate of ℂ. Let 𝔛̃ be
the disjoint union of 𝔜 and (ℙ1; 0, 1,∞), namely, we have an (𝑁 + 3)-pointed
compact Riemann surface

𝔛̃ = (𝐶 ⊔ ℙ1; 𝑥1, … , 𝑥𝑁 , 0, 1,∞).

Weequip 𝔛̃with local coordinates 𝜂1, … , 𝜂𝑁 , 𝜁, (𝜁−1), 𝜁−1. The local coordinate
𝜁 at 0 should be defined at |𝑧| < 1 so that nomarked points other than 0 is inside
this region.
We sew 𝔛̃ along 𝑥1 ∈ 𝐶 and∞ ∈ ℙ1 using the chosen local coordinates 𝜂1

and 1∕𝜁 to obtain a family 𝔛. Then

𝔛 = (𝜋 ∶ 𝐶 × 𝒟×
𝑟 → 𝒟×

𝑟 ; 𝑥1, 𝑥2, … , 𝑥𝑁 , 𝜍)

where 𝜋 is the projection onto the 𝒟×
𝑟 -component, the sections 𝑥1, … , 𝑥𝑁 are

(rigorously speaking) sections sending 𝑞 to (𝑥1, 𝑞), … , (𝑥𝑁 , 𝑞). The section 𝜍 is
defined by 𝜍(𝑞) = (𝜂−11 (𝑞), 𝑞), where 𝜂−11 sends 𝒟𝑟 biholomorphically to 𝑊1.
Moreover, the local coordinates of 𝔛 defined naturally by those of 𝔛̃ are de-
scribed as follows: For each |𝑞| < 𝑟, their restrictions to

𝔛𝑞 = (𝐶; 𝑥1, 𝑥2, … , 𝑥𝑁 , 𝜂−11 (𝑞)) (31)
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are 𝑞−1𝜂1, 𝜂2, … , 𝜂𝑁 , 𝑞−1(𝜂1 − 𝑞).
Note that Assumption 5.4 is always satisfied, but Assumption 5.1 is not sat-

isfied when 𝑁 = 1.
Attach 𝕍-modules 𝕎1, … ,𝕎𝑁 ,𝕎1, 𝕍,𝕎′

1 to 𝑥1, … , 𝑥𝑁 , 0, 1,∞ (the marked
points of 𝔛̃), respectively. Fix the trivializations ofW -sheaves using the chosen
local coordinates. Letϕ ∶ 𝕎1⊗⋯⊗𝕎𝑁 → ℂ be a conformal block associated
to (𝐶; 𝑥1, … , 𝑥𝑁) and𝕎1, … ,𝕎𝑁 . Let

ω ∶ 𝕎1 ⊗𝕍⊗𝕎′
1 → ℂ,

𝑤 ⊗ 𝑢 ⊗𝑤′ ↦ ⟨𝑌(𝑢, 1)𝑤,𝑤′⟩ =
∑

𝑛∈ℤ
⟨𝑌(𝑢)𝑛𝑤,𝑤′⟩,

which is a conformal block associated to (ℙ1; 0, 1,∞) and 𝕎1, 𝕍,𝕎′
1. Then

ψ ∶= ϕ ⊗ ω is a conformal block for 𝔛̃. When 𝑢,𝑤1 are 𝐿̃0-homogeneous
(i.e. eigenvectors of 𝐿̃0) with eigenvalues (weights) w̃t(𝑢), w̃t(𝑤1) ∈ ℕ respec-
tively, by (13), 𝑌(𝑢)𝑛𝑤1 is 𝐿̃0-homogeneous with weight w̃t(𝑢) + w̃t(1) − 𝑛 − 1.
Then

𝒮ψ ∶ 𝕎1 ⊗⋯𝕎𝑁 ⊗𝕍 → ℂ[[𝑞]],
with

𝒮ψ(𝑤1 ⊗⋯⊗𝑤𝑁 ⊗ 𝑢) =
∑

𝑛∈ℤ
𝑞w̃t(𝑢)+w̃t(𝑤1)−𝑛−1 ⋅ψ

(
𝑌(𝑢)𝑛𝑤1 ⊗𝑤2 ⊗⋯⊗𝑤𝑁

)
(32)

when 𝑢,𝑤1 are 𝐿̃0-homogeneous.
From [FB04, Sec. 10.1], this series converges a.l.u. on 𝒟×

𝑟 (i.e. when 0 <
|𝑞| < 𝑟). (See the proof of Thm. 7.1 for the detailed explanation.) Then, by
Theorem 5.5, for each 0 < |𝑞| < 𝑟, (32) converges to a conformal block asso-
ciated to 𝔛𝑞 and the local coordinates mentioned after (31). If we change the
coordinates at 𝑥1 and 𝜂−11 (𝑞) to 𝜂1 and 𝜂1 − 𝑞 respectively, then in the formula
(32), 𝑢 and𝑤1 should bemultiplied both by 𝑞−𝐿̃0 . Under the trivialization given
by the new coordinates, 𝒮ψ(𝑤1 ⊗⋯⊗𝑤𝑁 ⊗ 𝑢) equals

ψ
(
𝑌(𝑢, 𝑞)𝑤1 ⊗𝑤2 ⊗⋯⊗𝑤𝑁

)
∶=

∑

𝑛∈ℤ
𝑞−𝑛−1 ⋅ψ

(
𝑌(𝑢)𝑛𝑤1 ⊗𝑤2 ⊗⋯⊗𝑤𝑁

)
.

(33)

We conclude that (once the a.l.u. convergence is established) for all 0 < |𝑞| < 𝑟,
(33) is a conformal block associated to𝔛𝑞, local coordinates 𝜂1, 𝜂2… , 𝜂𝑁 , 𝜂1−𝑞,
and modules𝕎1, … ,𝕎𝑁 , 𝕍.

6. An equivalence of sheaves
Recall ≀𝔛 = (≀𝜋 ∶ ≀𝒞 → ≀ℬ; 𝜎, ≀𝜍1, … , ≀𝜍𝑁) in (12). In particular, ≀𝒞 = 𝒞 ×ℬ

(𝒞 ⧵ 𝑆𝔛), ≀ℬ = 𝒞⧵𝑆𝔛. The goal of this section is to establish a canonicalO𝒞⧵𝑆𝔛-
module isomorphism

W≀𝔛(𝕍 ⊗𝕎∙) ≃ V𝔛 ⊗O𝒞
𝜋∗W𝔛(𝕎∙)|𝒞⧵𝑆𝔛 , (34)
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which relates the sheaves of VOAs and the W -sheaves.
The reason for establishing this equivalence is the following: We want to

construct 𝑛-times propagation ≀𝑛ϕ of a conformal block ϕ associated to a fixed
pointed compact Riemann surface𝔛0 by induction on 𝑛. ≀𝑛ϕ is the propagation
of ≀𝑛−1ϕwhere the latter is viewed as a conformal block associated to the family
of compact Riemann surfaces (namely ≀𝑛−1𝔛0, using the notations in Sec. 2)
describing the motion of 𝑛 − 1 distinct points on𝔛0. To understand ≀𝑛−1ϕ as a
conformal block, we need to describe the W -sheaf on ≀𝑛−1𝔛0 using sheaves of
VOAs. By setting ≀𝑛−2𝔛0 = 𝔛 and hence ≀𝔛 = ≀𝑛−1𝔛0, one needs to describe
the W -sheaf on ≀𝔛. This is fulfilled by the isomorphism (34).
Let us begin the formal discussion. Note that 𝜋∗W𝔛(𝕎∙) is the pullback

sheaf W𝔛(𝕎∙) ⊗Oℬ
O𝒞. This is the sheaf for the presheaf associating to each

open 𝑈 ⊂ 𝒞 the O(𝑈)-module W𝔛(𝕎∙)
(
𝜋(𝑈)

)
⊗O(𝜋(𝑈)) O(𝑈). (Note that 𝜋 is

an open map.) Assume the restriction 𝔛𝜋(𝑈) has local coordinates 𝜂1, … , 𝜂𝑁 at
𝜍1(𝜋(𝑈)), … , 𝜍𝑁(𝜋(𝑈)). We write

𝜋∗𝑤 ∶= 𝑤 ⊗ 1 ∈ W𝔛(𝕎∙) ⊗ℬ O𝒞 = 𝜋∗W𝔛(𝕎∙)

for any section 𝑤 ∈ W𝔛(𝕎∙). Sheafifying the tensor product 𝒰(𝜂∙) ⊗ 1 on the
presheaf provides an isomorphism of O𝒞-modules

𝜋∗𝒰(𝜂∙) ≡ 𝒰(𝜂∙) ⊗ 1 ∶ W𝔛(𝕎∙)
||||𝑈 ⊗O𝜋(𝑈)

O𝑈
≃
,→

(
𝕎∙ ⊗ℂ O𝜋(𝑈)

)
⊗O𝜋(𝑈)

O𝑈
(35)

or simply a trivialization (i.e. an O𝑈-module isomorphism)

𝜋∗𝒰(𝜂∙) ∶ 𝜋∗W𝔛(𝕎∙)
||||𝑈

≃
,→ 𝕎∙ ⊗ℂ O𝑈 . (36)

Choose 𝜇 ∈ O(𝑈) injective on each fiber of 𝑈. Then we have a trivialization

𝒰𝜚(𝜇) ⊗ 𝜋∗𝒰(𝜂∙) ∶ V𝔛 ⊗𝜋∗W𝔛(𝕎∙)
||||𝑈

≃
,→ 𝕍⊗𝕎∙ ⊗ℂ O𝑈 (37)

Now assume𝑈 ⊂ 𝒞⧵𝑆𝔛 = ≀ℬ. Then we can equip the family ≀𝔛𝑈 with local
coordinates as follows. For the local coordinate at each submanifold ≀𝜍𝑗(𝑈) of
≀𝒞𝑈 = ≀𝒞 ∩ ≀𝜋−1(𝑈), we choose ≀𝜂𝑗 defined by

≀𝜂𝑗(𝑥, 𝑦) = 𝜂𝑗(𝑥) (38)

whenever (𝑥, 𝑦) ∈ 𝒞×ℬ𝒞⧵𝑆𝔛makes the above definable. The local coordinate
at 𝜎(𝑈) is△𝜇 given by

△𝜇(𝑥, 𝑦) = 𝜇(𝑥) − 𝜇(𝑦) (39)

when (𝑥, 𝑦) ∈ 𝑈 ×ℬ 𝑈. (Recall that 𝜎 is the diagonal map.) We can then use
△𝜇, ≀𝜂∙ = (≀𝜂1, … , ≀𝜂𝑁) to obtain a trivialization

𝒰(△𝜇, ≀𝜂∙) ∶ W≀𝔛(𝕍 ⊗𝕎∙)|𝑈
≃
,→ 𝕍⊗𝕎∙ ⊗ℂ O𝑈 (40)

We shall relate the two trivializations. First, we need a lemma. Recall 𝑈 ⊂
𝒞 ⧵ 𝑆𝔛. Recall (17) and (21).
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Lemma 6.1. If 𝜂′1, … , 𝜂
′
𝑁 are local coordinates of𝔛𝜋(𝑈) at 𝜍1(𝜋(𝑈)), … , 𝜍𝑁(𝜋(𝑈))

respectively, and 𝜇′ ∈ O(𝑈) is injective on each fiber of𝑈. Then, for each 𝑥 ∈ 𝑈,
we have

(≀𝜂𝑗| ≀ 𝜂′𝑗)𝑥 = (𝜂𝑗|𝜂′𝑗)𝜋(𝑥), (△𝜇|△ 𝜇′)𝑥 = 𝜚(𝜇|𝜇′)𝑥.

Note that (≀𝜂𝑗| ≀ 𝜂′𝑗) is a family of transformations over𝑈 ⊂ ≀ℬ = 𝒞⧵𝑆𝔛, and
the transformation over the point 𝑥 is (≀𝜂𝑗| ≀ 𝜂′𝑗)𝑥. (△𝜇|△ 𝜇′)𝑥 is understood
in a similar way.

Proof. We identify ≀𝒞𝑥 with 𝒞𝜋(𝑥) by identifying (𝑦, 𝑥) ∈ 𝒞 ×ℬ 𝒞 ⧵ 𝑆𝔛 with
𝑦 ∈ 𝒞𝜋(𝑥). Then, from the definition of ≀𝜂𝑗, ≀𝜂′𝑗, we clearly have ≀𝜂𝑗|≀𝒞𝑥 = 𝜂𝑗|𝒞𝜋(𝑥)
and ≀𝜂′𝑗|≀𝒞𝑥 = 𝜂′𝑗|𝒞𝜋(𝑥) . By (21), we have

(≀𝜂𝑗| ≀ 𝜂′𝑗)𝑥◦ ≀ 𝜂
′
𝑗|≀𝒞𝑥 = ≀𝜂𝑗|≀𝒞𝑥 ,

(𝜂𝑗|𝜂′𝑗)𝜋(𝑥)◦𝜂
′
𝑗|𝒞𝜋(𝑥) = 𝜂𝑗|𝒞𝜋(𝑥) .

This proves (≀𝜂𝑗| ≀ 𝜂′𝑗)𝑥 = (𝜂𝑗|𝜂′𝑗)𝜋(𝑥).
Similarly,

(△𝜇|△ 𝜇′)𝑥◦△ 𝜇′|≀𝒞𝑥 =△𝜇|≀𝒞𝑥 .

By (39), we have△𝜇|≀𝒞𝑥 = (𝜇 − 𝜇(𝑥))|𝒞𝜋(𝑥) and△𝜇′|≀𝒞𝑥 = (𝜇′ − 𝜇′(𝑥))|𝒞𝜋(𝑥) .
These imply

(△𝜇|△ 𝜇′)𝑥◦(𝜇′ − 𝜇′(𝑥))|𝒞𝜋(𝑥) = (𝜇 − 𝜇(𝑥))|𝒞𝜋(𝑥) .

Comparing this relation with (17) shows that (△𝜇|△ 𝜇′)𝑥 = 𝜚(𝜇|𝜇′)𝑥. □

Proposition 6.2. Wehave aunique isomorphismofO𝒞⧵𝑆𝔛-modules (i.e. a unique
isomorphism of holomorphic vector bundles on 𝒞 ⧵ 𝑆𝔛)

Ψ𝔛 ∶ W≀𝔛(𝕍 ⊗𝕎∙)
≃
,→ V𝔛 ⊗O𝒞

𝜋∗W𝔛(𝕎∙)
||||𝒞⧵𝑆𝔛

(41)

such that for any open𝑈 ⊂ 𝒞⧵𝑆𝔛 and 𝜇,△𝜇, ≀𝜂∙ as above, the restriction of this
isomorphism to𝑈 makes the following diagram commutes.

W≀𝔛(𝕍 ⊗𝕎∙)
||||𝑈 V𝔛 ⊗𝜋∗W𝔛(𝕎∙)

||||𝑈

𝕍⊗𝕎∙ ⊗ℂ O𝑈

≃
Ψ𝔛

≃
𝒰(△𝜇,≀𝜂∙)

≃
𝒰𝜚(𝜇)⊗𝜋∗𝒰(𝜂∙) (42)

Proof. One can define an isomorphism Ψ𝔛 such that the above diagram com-
mutes. Such isomorphism is clearly unique. Thus, it remains to check that Ψ𝔛
is well-defined. We will do so by checking that the transition functions of the
two sheaves agree.
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Assume𝑈 is small enough such that we can have another set of 𝜇′, 𝜂′∙ similar
to 𝜇, 𝜂∙. Then by (22) and Lemma 6.1, for each 𝑥 ∈ 𝑈, we have equalities

𝒰(△𝜇, ≀𝜂∙)𝑥 ⋅ 𝒰(△𝜇′, ≀𝜂′∙)−1𝑥
=𝒰(△𝜇|△ 𝜇′)𝑥 ⊗𝒰(≀𝜂1| ≀ 𝜂′1)𝑥 ⊗⋯⊗𝒰(≀𝜂𝑁| ≀ 𝜂′𝑁)𝑥
=𝒰(𝜚(𝜇|𝜇′)𝑥) ⊗ 𝒰(𝜂1|𝜂′1)𝜋(𝑥) ⊗⋯⊗𝒰(𝜂𝑁|𝜂′𝑁)𝜋(𝑥) (43)

for transformations on 𝕍⊗𝕎∙ ⊗ℂ O𝑈|𝑥 ≃ 𝕍⊗𝕎∙.
By (22) and (35), we have

(
𝜋∗𝒰(𝜂∙)

)
𝑥
⋅
(
𝜋∗𝒰(𝜂′∙)

)−1
𝑥

= 𝒰(𝜂1|𝜂′1)𝜋(𝑥) ⊗⋯⊗𝒰(𝜂𝑁|𝜂′𝑁)𝜋(𝑥) (44)

for automorphisms of𝕎∙ ⊗ℂ O𝑈|𝑥 ≃ 𝕎∙. Thus, by (22) and (19),
(
𝒰𝜚(𝜇) ⊗ 𝜋∗𝒰(𝜂∙)

)
𝑥
⋅
(
𝒰𝜚(𝜇′) ⊗ 𝜋∗𝒰(𝜂′∙)

)−1
𝑥

=𝒰(𝜚(𝜇|𝜇′))𝑥 ⊗𝒰(𝜂1|𝜂′1)𝜋(𝑥) ⊗⋯⊗𝒰(𝜂𝑁|𝜂′𝑁)𝜋(𝑥),

which equals (43). □

7. Propagation of conformal blocks
The main result of this section, Thm. 7.1, says that any conformal block ϕ

associated to a family of pointed compact Riemann surfaces 𝔛 has a propaga-
tion ≀ϕ, which is a conformal block associated to ≀𝔛. Recall that, intuitively,
≀𝔛 is the family describing the motion of a point on𝔛 not meeting the marked
points of 𝔛. A crucial consequence of Thm. 7.1 (reflected by the fact that ≀ϕ
is anO𝒞⧵𝑆𝔛-module) is that ≀ϕ is simultaneously holomorphic with respect to the
parameter of the base manifold of 𝔛 and the parameter describing the motion of
a point on𝔛. The strong residue theorem is crucial to the proof of this fact.
Letϕ ∶ W𝔛(𝕎∙) → Oℬ be a conformal block associated to𝕎∙ = 𝕎1⊗⋯⊗

𝕎𝑁 and a family 𝔛 = (𝜋 ∶ 𝒞 → ℬ; 𝜍1, … , 𝜍𝑁) of 𝑁-pointed compact Riemann
surfaces. Recall ≀𝒞 = 𝒞 ×ℬ (𝒞 ⧵ 𝑆𝔛), ≀ℬ = 𝒞 ⧵ 𝑆𝔛. The goal of this section is to
prove the following theorem.

Theorem 7.1. There is a uniqueO𝒞⧵𝑆𝔛-module morphism ≀ϕ ∶ W≀𝔛(𝕍⊗𝕎∙) →
O𝒞⧵𝑆𝔛 satisfying the following property:
"Choose any open subset 𝑉 ⊂ ℬ such that the restricted family 𝔛𝑉 has local

coordinates 𝜂1, … , 𝜂𝑁 at 𝜍1(𝑉), … , 𝜍𝑁(𝑉). For each 𝑗, we choose a neighborhood
𝑊𝑗 ⊂ 𝒞𝑉 of 𝜍𝑗(𝑉) onwhich𝜂𝑗 is defined, such that𝑊𝑗 intersects only 𝜍𝑗(𝑉)among
𝜍1(𝑉), … , 𝜍𝑁(𝑉). Identify

𝑊𝑗 = (𝜂𝑗, 𝜋)(𝑊𝑗) via (𝜂𝑗, 𝜋)

so that𝑊𝑗 is a neighborhood of {0} × 𝑉 in ℂ × 𝑉. Let

𝑈𝑗 ∶= 𝑊𝑗 ⧵ 𝑆𝔛 = 𝑊𝑗 ⧵ ({0} × 𝑉)

which is inside ℂ× × 𝑉. Let 𝑧 be the standard coordinate of ℂ. Identify

W𝔛(𝕎∙)
||||𝑉 = 𝕎∙ ⊗ℂ O𝑉 via𝒰(𝜂∙).
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Identify

W≀𝔛(𝕍 ⊗𝕎∙)
||||𝑈𝑗

= 𝕍⊗𝕎∙ ⊗ℂ O𝑈𝑗
via𝒰(△𝜂𝑗, ≀𝜂∙) (45)

(cf. (40)). For each 𝑢 ∈ 𝕍,𝑤∙ ∈ 𝕎∙, consider each vector of𝕎∙ as a constant
section of𝕎∙ ⊗ O(𝑈𝑗) and 𝑢 ⊗ 𝑤∙ as a constant section of 𝕍 ⊗𝕎∙ ⊗ℂ O(𝑈𝑗).
Then the following equation holds at the level of O(𝑉)[[𝑧±1]]:

ϕ
(
𝑤1 ⊗⋯⊗𝑌(𝑢, 𝑧)𝑤𝑗 ⊗⋯⊗𝑤𝑁

)
= ≀ϕ(𝑢 ⊗ 𝑤∙) (46)

where 𝑌(𝑢, 𝑧)𝑤 ∶=
∑

𝑛∈ℤ 𝑌(𝑢)𝑛𝑤 ⋅ 𝑧−𝑛−1 is an element of𝕎𝑗((𝑧)), and ≀ϕ(𝑢 ⊗
𝑤∙) ∈ O(𝑈𝑗) is regarded as an element of O(𝑉)[[𝑧±1]] by taking Laurent series
expansion."
Moreover, ≀ϕ is a conformal block associated to ≀𝔛 and 𝕍⊗𝕎∙.

Note that the left hand side of (46) is understood as
∑

𝑛∈ℤ
ϕ
(
𝑤1 ⊗⋯⊗𝑌(𝑢)𝑛𝑤𝑗 ⊗⋯⊗𝑤𝑁

)
𝑧−𝑛−1,

which is in O(𝑈𝑗)((𝑧)).

Proof of the uniqueness of ≀ϕ. It suffices to restrict to the propagation of each
fiber 𝔛𝑏, i.e., restrict ≀ϕ to a morphism ϕ|≀(𝔛𝑏) ∶ W≀(𝔛𝑏)(𝕍 ⊗ 𝕎∙) → O𝒞𝑏⧵𝑆𝔛𝑏

.
(Note that ≀(𝔛𝑏) is 𝒞𝑏 × (𝒞𝑏 ⧵𝑆𝔛𝑏

) → 𝒞𝑏 ⧵𝑆𝔛𝑏
with marked points.) By (46), we

know ≀ϕ|≀(𝔛𝑏) is uniquely determined on (𝑊1∪⋯∪𝑊𝑁)∩𝒞𝑏. For two possible
propagations ≀1ϕ, ≀2ϕ, let Ω be the set of all 𝑥 ∈ 𝒞𝑏 ⧵ 𝑆𝔛𝑏

on a neighborhood
of which ≀1ϕ|≀(𝔛𝑏) agrees with ≀2ϕ|≀(𝔛𝑏). Then Ω is open and intersect any con-
nected component of𝒞𝑏. By complex analysis, it is clear that if𝑈 is a connected
open subset of𝒞𝑏⧵𝑆𝔛𝑏

intersectingΩ such that the restrictionW≀(𝔛𝑏)(𝕍⊗𝕎∙)|𝑈
is equivalent to 𝕍 ⊗𝕎∙ ⊗ℂ O𝑈 , then 𝑈 ⊂ Ω. So Ω is closed, and hence must
be 𝒞𝑏 ⧵ 𝑆𝔛𝑏

. This proves the uniqueness. □

Proof that (46) is independent of the choice of 𝜂∙. Let us show that if (46)
holds for all 𝑢,𝑤∙ for a set of local coordinates 𝜂∙ defined on𝑊1, … ,𝑊𝑁 , then
it holds for another set 𝜂′∙. Indeed, it suffices to check this fact when restricted
to each fiber 𝔛𝑏. So we may assume that 𝔛 is a single pointed Riemann sur-
face (𝐶; 𝑥1, … , 𝑥𝑁). Then (46) is equivalent to that for each 𝜈 ∈ 𝐻0(𝑊𝑗,V𝔛 ⊗
𝜔𝐶(⋆𝑆𝔛)),

ϕ(𝑤1 ⊗⋯⊗ 𝜈 ⋅ 𝑤𝑗 ⊗⋯⊗𝑤𝑁) = Res𝑥𝑖 ≀ ϕ(𝜈 ⊗ 𝑤∙)

where 𝜈⋅𝑤𝑗 is defined as in (24b). Then, as explained after (24b), this expression
is independent of the choice of local coordinates. □

Proof of the existence of ≀ϕ. We are going to identify W≀𝔛(𝕍 ⊗ 𝕎∙) with
V𝔛⊗𝜋∗W𝔛(𝕎∙)

||||𝒞⧵𝑆𝔛
as in Prop. 6.2, and construct anO𝒞𝑆𝔛

-module morphism

≀ϕ ∶ V𝔛 ⊗𝜋∗W𝔛(𝕎∙)
||||𝒞⧵𝑆𝔛

→ O𝒞⧵𝑆𝔛 satisfying (46). By the uniqueness proved
above, we can safely restrict the base manifold ℬ to 𝑉. So we assume in the



SEWING AND PROPAGATION OF CONFORMAL BLOCKS 211

following that ℬ = 𝑉 and hence 𝔛 has local coordinates 𝜂∙ at marked points.
So we identify W𝔛(𝕎∙) with𝕎∙ ⊗ℂ Oℬ through 𝒰(𝜂∙), which yields

V𝔛 ⊗𝜋∗W𝔛(𝕎∙) = V𝔛 ⊗ℂ 𝕎∙ (47)

For each 𝑘 ∈ ℕ, we let

E = (V ≤𝑘
𝔛 )∨

be the dual bundle of V ≤𝑘
𝔛 . Then the identifications𝑊𝑗 = (𝜂𝑗, 𝜋)(𝑊𝑗) and

V ≤𝑘
𝔛 |𝑊𝑗

= 𝕍≤𝑘 ⊗ℂ O𝑊𝑗
via 𝒰𝜚(𝜂𝑗) (48)

are compatible with the identifications in Sec. A if we set the 𝐸𝑖 in that section
to be (𝕍≤𝑘)∨. Choose any 𝑤∙ ∈ 𝕎∙. Let 𝑠𝑗 =

∑
𝑛∈ℤ 𝑒𝑗,𝑛 ⋅ 𝑧

𝑛 as in Sec. A where
each 𝑒𝑗,𝑛 ∈ (𝕍≤𝑘)∨ ⊗ℂ O(ℬ) is defined by

𝑢 ∈ 𝕍≤𝑘 ↦ ϕ
(
𝑤1 ⊗⋯⊗𝑌(𝑢)−𝑛−1𝑤𝑗 ⊗⋯⊗𝑤𝑁

)
∈ O(ℬ).

For each 𝑏 ∈ ℬ, since ϕ|𝑏 is a conformal block, it vanishes on 𝐻0(𝒞𝑏,V
≤𝑘
𝒞𝑏

⊗
𝜔𝒞𝑏(⋆𝑆𝔛𝑏

)) ⋅ 𝑤∙. This means that 𝑠1, … , 𝑠𝑁 satisfy condition (c) of Theorem
A.1. Hence, by that theorem, 𝑠1, … , 𝑠𝑁 are series expansions of a unique ele-
ment 𝑠 ∈ 𝐻0(𝒞, (V ≤𝑘

𝔛 )∨(⋆𝑆𝔛)), which restricts to 𝑠 ∈ 𝐻0(𝒞 ⧵ 𝑆𝔛, (V
≤𝑘
𝔛 )∨) and

hence defines an O𝒞⧵𝑆𝔛-module morphism V ≤𝑘
𝔛 |𝒞⧵𝑆𝔛 ⊗ℂ 𝑤∙ → O𝒞⧵𝑆𝔛 . These

morphisms are compatible for different 𝑘, and is extended O𝒞⧵𝑆𝔛-linearly to a
morphism ≀ϕ ∶ V𝔛 ⊗𝜋∗W𝔛(𝕎∙)

||||𝒞⧵𝑆𝔛
→ O𝒞⧵𝑆𝔛 (recall (47)).

By Prop. 6.2, we can regard ≀ϕ as a morphism ≀ϕ ∶ W≀𝔛(𝕍 ⊗𝕎∙) → O𝒞⧵𝑆𝔛 .
Note that the identifications (47) and (48) are compatible with (45), thanks to
the commutative diagram (42). Thus, ≀ϕ satisfies (46) under the required iden-
tifications with respect to the local coordinates 𝜂∙. By the previous step, ≀ϕ
satisfies (46) for any other choice of local coordinates. □

Proof that ≀ϕ is a conformal block. Since being a conformal block is a fiber-
wise condition, we may prove ≀ϕ is a conformal block by restricting it to each
fiber 𝔛𝑏 and its propagation ≀(𝔛𝑏). Therefore, we may assume that ℬ is a sin-
gle point. So 𝐶 ∶= 𝒞 is a compact Riemann surface. We trim each𝑊𝑗 so that
𝜂𝑗(𝑊𝑗) = 𝒟𝑟𝑗 for some 𝑟𝑗 > 0.
From the previous proof, we have a morphism ≀ϕ ∶ W≀𝔛(𝕍 ⊗𝕎∙) → O𝐶⧵𝑆𝔛

which, given the trivializations in the statement of Theorem 7.1, is equal to (46)
when restricted to𝑊𝑗⧵𝑆𝔛 = 𝑊𝑗⧵{𝜍𝑗}. This shows that the series (46) converges
a.l.u. on 0 < |𝑧| < 𝑟𝑗. Therefore, as explained in Example 5.6, we can use Thm.
5.5 to conclude that ≀ϕ is a conformal block when restricted to each 𝑊𝑗. By
Prop. 4.2, ≀ϕ is globally a conformal block. □

The proof of Thm. 7.1 is completed.
We now give an application of this theorem. Suppose 𝔼 is a set of vectors in

a 𝕍-module𝕎. We say 𝔼 generates𝕎 if𝕎 is spanned by vectors of the form
𝑌(𝑢1)𝑛1 ⋯𝑌(𝑢𝑘)𝑛𝑘𝑤 where 𝑘 ∈ ℤ+, 𝑢1, … , 𝑢𝑘 ∈ 𝕍, 𝑛1, … , 𝑛𝑘 ∈ ℤ, 𝑤 ∈ 𝔼.
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Proposition 7.2. Let 𝔛 = (𝐶; 𝑥1, … , 𝑥𝑁) be an 𝑁-pointed connected compact
Riemann surface, where 𝑁 ≥ 2. Choose local coordinate 𝜂𝑗 at 𝑥𝑗 . Associate 𝕍-
modules𝕎1, … ,𝕎𝑁 to 𝑥1, … , 𝑥𝑁 . IdentifyW𝔛(𝕎∙) = 𝕎1⊗⋯⊗𝕎𝑁 via𝒰(𝜂∙).
Suppose that for each 2 ≤ 𝑖 ≤ 𝑁, 𝔼𝑖 is a generating subset of 𝕎𝑖 . Then any
conformal block ϕ ∶ 𝕎1 ⊗ 𝕎2 ⊗ ⋯𝕎𝑁 → ℂ is determined by its values on
𝕎1 ⊗𝔼2 ⊗⋯⊗𝔼𝑁 .

Proof. Assume ϕ vanishes on𝕎1⊗𝔼2⊗⋯⊗𝔼𝑁 . We shall show that ϕ van-
ishes on𝕎1⊗𝑌(𝑢)𝑛𝔼2⊗⋯⊗𝔼𝑁 for each 𝑢 ∈ 𝕍, 𝑛 ∈ ℤ. Then, by successively
applying this result, we see that ϕ vanishes on𝕎1⊗𝕎2⊗𝔼3⊗⋯⊗𝔼𝑁 , and
hence (by repeating again this procedure several times) vanishes on𝕎1⊗𝕎2⊗
⋯⊗𝕎𝑁 .
Identify W≀𝔛(𝕍 ⊗𝕎∙) = V𝔛

||||𝐶⧵𝑆𝔛
⊗ℂ 𝕎∙ using (41). Then we can consider

≀ϕ as a morphism ≀ϕ ∶ V𝔛
||||𝐶⧵𝑆𝔛

⊗ℂ 𝕎∙ → O𝐶⧵𝑆𝔛 . Let Ω be the open set of all
𝑥 ∈ 𝐶⧵𝑆𝔛 such that 𝑥 has a neighborhood𝑈 ⊂ 𝐶⧵𝑆𝔛 such that the restriction

≀ϕ|𝑈 ∶ V𝔛|𝑈 ⊗ℂ 𝕎1 ⊗𝔼2 ⊗⋯⊗𝔼𝑁 → O𝑈

vanishes. We note that if 𝑈 is connected, and if we can find an injective 𝜂 ∈
O(𝑈) (so that V𝔛|𝑈 is trivialized to 𝕍 ⊗ℂ O𝑈), then by complex analysis, ≀ϕ|𝑈
vanishes whenever ≀ϕ|𝑉 vanishes for some non-empty open 𝑉 ⊂ 𝑈. We con-
clude that if such 𝑈 intersects Ω, then 𝑈 must be inside Ω. So Ω is closed. It is
clear that for each 𝑤1 ∈ 𝕎1, 𝑤2 ∈ 𝔼2, … , 𝑤𝑁 ∈ 𝔼𝑁 , the following formal series
of 𝑧

ϕ(𝑌(𝑢, 𝑧)𝑤1 ⊗𝑤2 ⊗⋯⊗𝑤𝑁)

vanishes. Thus, by Thm. 7.1, Ω contains𝑊0 ⧵ {𝑥0} for some neighborhood𝑊0
of 𝑥0. Therefore Ω = 𝐶 ⧵ 𝑆𝔛. By Thm. 7.1 again, we see

ϕ(𝑤1 ⊗𝑌(𝑢, 𝑧)𝑤2 ⊗⋯⊗𝑤𝑁)

also vanishes. This finishes the proof. □

Remark 7.3. Since 𝟏 generates 𝕍, we see that if 𝕍,𝕎2, … ,𝕎𝑁 (where 𝑁 ≥ 2)
are associated to a connected 𝔛 = (𝐶; 𝑥1, … , 𝑥𝑁), then any conformal block
ϕ ∶ 𝕍⊗𝕎2⊗⋯⊗𝕎𝑁 → ℂ is determined by its values on 𝟏⊗𝕎2⊗⋯⊗𝕎𝑁 .
This proves the following two well-known results. In fact, in the literature, the
propagation of conformal blocks is best known in the form of the following two
corollaries.

Corollary 7.4. Let 𝔛 = (𝐶; 𝑥1, … , 𝑥𝑁) be an 𝑁-pointed compact Riemann sur-
face associated with𝕍-module𝕎1, … ,𝕎𝑁 . IdentifyW≀𝔛(𝕍⊗𝕎∙) = V𝔛

||||𝒞⧵𝑆𝔛
⊗ℂ

W𝔛(𝕎∙) via (41). Then for each 𝑥 ∈ 𝒞 ⧵ 𝑆𝔛, ≀ϕ|𝑥 is the unique linear map
V𝔛

||||𝑥 ⊗ℂ W𝔛(𝕎∙) → ℂ which is a conformal block and satisfies

≀ϕ|𝑥(𝟏 ⊗ 𝑤) = ϕ(𝑤)

for each vector 𝑤 ∈ W𝔛(𝕎∙).
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Proof. The uniqueness follows from the previous remark. We shall show that
≀ϕ(𝟏⊗𝑤), which is an element ofO(𝐶⧵𝑆𝔛), equals the constant functionϕ(𝑤).
By complex analysis, it suffices to prove ≀ϕ(𝟏 ⊗ 𝑤) = ϕ(𝑤) when restricted
to each 𝑊𝑗 ⧵ {𝑥𝑗} (where 𝑊𝑗 is a small disc containing 𝑥𝑗 on which a local
coordinate is defined). This is true by (46). □

Corollary 7.5. Let 𝔛 = (𝐶; 𝑥1, … , 𝑥𝑁) be an 𝑁-pointed connected compact Rie-
mann surface associated with𝕍-module𝕎1, … ,𝕎𝑁 . Choose 𝑥 ∈ 𝐶⧵{𝑥1, … , 𝑥𝑁}.
Then the space of conformal blocks associated to 𝔛 and𝕎∙ is isomorphic to the
space of conformal blocks associated to (≀𝔛)𝑥 = (𝐶; 𝑥, 𝑥1, … , 𝑥𝑁) and to the mod-
ules 𝕍,𝕎1, … ,𝕎𝑁 .

Proof. We assume the identifications in Cor. 7.4. The linear map 𝐹 from the
first space to the second one is defined by ϕ ↦ ≀ϕ|𝑥. The linear map 𝐺 from
the second one to the first one is defined byψ↦ ψ(𝟏⊗ ⋅). By Cor. 7.4, we have
𝐺◦𝐹 = 1. By Remark 7.3, 𝐺 is injective. So 𝐺 is bijective. □

8. Multi-propagation
Let 𝔛 = (𝐶; 𝑥1, … , 𝑥𝑁) be an 𝑁-pointed compact Riemann surface. Recall

𝑆𝔛 = {𝑥1, … , 𝑥𝑁}. We choose local coordinates 𝜂1 ∈ O(𝑊1), … , 𝜂𝑁 ∈ O(𝑊𝑁) of
𝔛 at𝑥1, … , 𝑥𝑁 , where each𝑊𝑗 is a neighborhood of𝑥𝑗 satisfying𝑊𝑗∩𝑆𝔛 = {𝑥𝑗}.
Let 𝑛 ∈ ℤ+. By Section 2, ≀𝑛𝔛 is

≀𝑛𝔛 = (≀𝑛𝜋 ∶ 𝐶 × Conf𝑛(𝐶 ⧵ 𝑆𝔛) → Conf𝑛(𝐶 ⧵ 𝑆𝔛); 𝜎1, … , 𝜎𝑛, ≀𝑛𝑥1, … , ≀𝑛𝑥𝑁)

where ≀𝑛𝜋 is the projection onto the second component, and the sections are
given by

≀𝑛𝑥𝑗(𝑦1, … , 𝑦𝑛) = (𝑥𝑗, 𝑦1, … , 𝑦𝑛),
𝜎𝑖(𝑦1, … , 𝑦𝑛) = (𝑦𝑖, 𝑦1, … , 𝑦𝑛).

We define local coordinate
≀𝑛𝜂𝑗(𝑥, 𝑦1, … , 𝑦𝑛) = 𝜂𝑗(𝑥) (49)

of ≀𝑛𝔛 at 𝑥𝑗 × Conf𝑛(𝐶 ⧵ 𝑆𝔛), defined on𝑊𝑗 × Conf𝑛(𝐶 ⧵ 𝑆𝔛). Suppose 𝑈 is
an open subset of 𝐶 ⧵ 𝑆𝔛 which admits an injective 𝜇 ∈ O(𝑈). Then a local
coordinate△𝑖𝜇 of (≀𝑛𝔛)𝑈 at 𝜎𝑖(𝑈) is defined by

△𝑖𝜇(𝑥, 𝑦1, … , 𝑦𝑛) = 𝜇(𝑥) − 𝜇(𝑦𝑖) (50)

whenever this expression is definable.
We shall relate the W -sheaves with the exterior product V ⊠𝑛

𝐶 , which is an
O𝐶𝑛 -module defined by

V ⊠𝑛
𝐶 ∶= pr∗1V𝐶 ⊗ pr∗2V𝐶 ⊗⋯⊗ pr∗𝑛V𝐶 . (51)

Here, each pr𝑖 ∶ 𝐶
𝑛 = 𝐶 ×⋯× 𝐶⏟⎴⎴⏟⎴⎴⏟

𝑛

→ 𝐶 is the projection onto the 𝑖-th compo-

nent. The tensor products are over O𝐶𝑛 as usual. Similar to the description in
Section 6, the O𝐶𝑛 -module pr∗𝑖 V𝐶 is the pullback of the (infinite-rank) vector
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bundle V𝐶 along pr𝑖 to 𝐶
𝑛, i.e., V𝐶 ⊗O𝐶

O𝐶𝑛 where the action of 𝑓 ∈ O𝐶 onO𝐶𝑛
is defined by the multiplication of 𝑓◦pr𝑖. If 𝑈 ⊂ 𝐶 is open and 𝜇 ∈ O(𝑈) is
injective, we then have a trivilization

pr∗𝑖 𝒰𝜚(𝜇) ∶ pr∗𝑖 V𝐶
||||pr−1𝑖 (𝑈)

≃
,→ 𝕍⊗ℂ Opr−1𝑖 (𝑈).

Proposition 8.1. We have a unique isomorphism

W≀𝑛𝔛(𝕍⊗𝑛 ⊗𝕎∙)
≃
,→ V ⊠𝑛

𝐶
||||Conf𝑛(𝐶⧵𝑆𝔛)

⊗ℂ W𝔛(𝕎∙) (52)

such that for any 𝑛 mutually disjoint open subsets 𝑈1, … ,𝑈𝑛 ⊂ 𝐶 ⧵ 𝑆𝔛 and any
injective 𝜇1 ∈ O(𝑈1), … , 𝜇𝑛 ∈ O(𝑈𝑛), the restriction of this isomorphism to 𝑈
makes the following diagram commutes.

W≀𝑛𝔛(𝕍⊗𝑛 ⊗𝕎∙)
||||𝑈1×⋯×𝑈𝑛

V ⊠𝑛
𝐶

||||𝑈1×⋯×𝑈𝑛
⊗ℂ W𝔛(𝕎∙)

𝕍⊗𝑛 ⊗𝕎∙ ⊗ℂ O𝑈1×⋯×𝑈𝑛

≃

≃
𝒰(△∙𝜇∙,≀𝑛𝜂∙)

≃
pr∗1𝒰𝜚(𝜇1)⊗⋯⊗pr∗𝑛𝒰𝜚(𝜇𝑛)⊗𝒰(𝜂∙)

(53)
Here,

(△∙𝜇∙, ≀𝑛𝜂∙) ∶= (△1𝜇1, … ,△𝑛𝜇𝑛, ≀𝑛𝜂1, … , ≀𝑛𝜂𝑛).

Moreover, the isomorphism is independent of the choice of 𝜂∙.

Proof. Suppose we have another injective 𝜇′𝑖 ∈ O(𝑈𝑖). Similar to the proof of
Lemma 6.1, we see that for each 𝑦𝑖 ∈ 𝑈𝑖,

(△𝑖𝜇𝑖|△𝑖 𝜇′𝑖 )(𝑦1,…,𝑦𝑛) = 𝜚(𝜇𝑖|𝜇′𝑖 )𝑦𝑖 .

(See (17) and (21) for themeaning of notations.) Using this relation, one shows,
as in the proof of Prop. 6.2, that the transition functions for the two trivializa-
tions in (53) are equal. This finishes the proof. □

Choose a conformal block ϕ ∶ 𝕎∙ → ℂ associated to 𝔛 and W𝔛(𝕎∙). By
Theorem 7.1, we have 𝑛-propagation ≀𝑛ϕ defined inductively by

≀𝑛ϕ = ≀(≀𝑛−1ϕ)

which is a conformal block associated to ≀𝑛𝔛 and 𝕍⊗𝑛 ⊗𝕎∙. By Prop. 8.1, we
can regard ≀𝑛ϕ as a morphism

≀𝑛ϕ ∶ V ⊠𝑛
𝐶

||||Conf𝑛(𝐶⧵𝑆𝔛)
⊗ℂ W𝔛(𝕎∙) → OConf𝑛(𝐶⧵𝑆𝔛).
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Important facts about ≀𝒏ϕ. Choose open𝑈1, … ,𝑈𝑛 ⊂ 𝐶 (not necessarily dis-
joint) and write

Conf(𝑈∙ ⧵ 𝑆𝔛) = (𝑈1 ×⋯ ×𝑈𝑛) ∩ Conf
𝑛(𝐶 ⧵ 𝑆𝔛).

For any sections 𝑣𝑖 ∈ V𝐶(𝑈𝑖) and any 𝑤 ∈ W𝔛(𝕎∙), we write

≀𝑛ϕ(𝑣1, … , 𝑣𝑛, 𝑤) ∶= ≀𝑛ϕ
(
pr∗1𝑣1 ⊗⋯⊗ pr∗𝑛𝑣𝑛 ⊗𝑤||||Conf(𝑈∙⧵𝑆𝔛)

)

∈ O
(
Conf(𝑈∙ ⧵ 𝑆𝔛)

)
. (54)

We now summarize some important properties of ≀𝑛ϕ in this setting.
As an elementary fact, the map (𝑣1, … , 𝑣𝑛) ↦ ≀𝑛ϕ(𝑣1, … , 𝑣𝑛, 𝑤) intertwines

the action of eachO(𝑈𝑖) on the 𝑖-th component. (Here, each 𝑓 ∈ O(𝑈𝑖) acts on
O(Conf(𝑈∙ ⧵ 𝑆𝔛)) by the multiplication of (𝑓◦pr𝑖)|Conf(𝑈∙⧵𝑆𝔛)). Moreover, it is
compatible with restricting to open subsets of 𝑈𝑖.
We set ≀0ϕ = ϕ.

Theorem 8.2. Identify

W𝔛(𝕎∙) = 𝕎∙ via𝒰(𝜂∙).

Choose any𝑤∙ ∈ 𝕎∙. For each 1 ≤ 𝑖 ≤ 𝑛, choose an open subset𝑈𝑖 of𝐶 equipped
with an injective 𝜇𝑖 ∈ O(𝑈𝑖). Identify

V𝐶
||||𝑈𝑖

= 𝕍⊗ℂ O𝑈𝑖
via𝒰𝜚(𝜇𝑖).

Choose 𝑣𝑖 ∈ V𝐶(𝑈𝑖) = 𝕍 ⊗ℂ O(𝑈𝑖). Choose (𝑦1, … , 𝑦𝑛) ∈ Conf(𝑈∙ ⧵ 𝑆𝔛). Then
the following are true.

(1) If𝑈1 = 𝑊𝑗 (where 1 ≤ 𝑗 ≤ 𝑁) and contains only 𝑦1, 𝑥𝑗 among all 𝑥∙, 𝑦∙,
if 𝜇1 = 𝜂𝑗 , and if 𝑈1 contains the closed disc with center 𝑥𝑗 and radius
|𝜂𝑗(𝑦1)| (under the coordinate 𝜂𝑗), then

≀𝑛 ϕ(𝑣1, 𝑣2, … , 𝑣𝑛, 𝑤∙)
||||𝑦1,𝑦2,…,𝑦𝑛

= ≀𝑛−1 ϕ
(
𝑣2, … , 𝑣𝑛, 𝑤1 ⊗⋯⊗𝑌(𝑣1, 𝑧)𝑤𝑗 ⊗⋯⊗𝑤𝑁

)||||𝑦2,…,𝑦𝑛
||||𝑧=𝜂𝑗(𝑦1)

(55)

where the series of 𝑧 on the right hand side converges absolutely, and 𝑣1 is
considered as an element of 𝕍⊗ℂ((𝑧)) by taking Taylor series expansion
with respect to the variable 𝜂𝑗 at 𝑥𝑗 .

(2) If 𝑈1 = 𝑈2 and contains only 𝑦1, 𝑦2 among all 𝑥∙, 𝑦∙, if 𝜇1 = 𝜇2, and if
𝑈2 contains the closed disc with center 𝑦2 and radius |𝜇2(𝑦1) − 𝜇2(𝑦2)|
(under the coordinate 𝜇2), then

≀𝑛 ϕ(𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛, 𝑤∙)
||||𝑦1,𝑦2,…,𝑦𝑛

= ≀𝑛−1 ϕ
(
𝑌(𝑣1, 𝑧)𝑣2, 𝑣3, … , 𝑣𝑛, 𝑤∙

)||||𝑦2,…,𝑦𝑛
||||𝑧=𝜇2(𝑦1)−𝜇2(𝑦2)

(56)

where the series of 𝑧 on the right hand side converges absolutely, and 𝑣1 is
considered as an element of 𝕍⊗ℂ((𝑧)) by taking Taylor series expansion
with respect to the variable 𝜇2 − 𝜇2(𝑦2) at 𝑦2.
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(3) We have

≀𝑛ϕ(𝟏, 𝑣2, 𝑣3, … , 𝑣𝑛, 𝑤∙) = ≀𝑛−1ϕ(𝑣2, … , 𝑣𝑛, 𝑤∙). (57)

(4) For any permutation π of the set {1, 2, … , 𝑛}, we have

≀𝑛ϕ(𝑣π(1), … , 𝑣π(𝑛), 𝑤∙)
||||𝑦π(1),…,𝑦π(𝑛)

= ≀𝑛ϕ(𝑣1, … , 𝑣𝑛, 𝑤∙)
||||𝑦1,…,𝑦𝑛

. (58)

Proof. When 𝑣1, 𝑣2 are constant sections (i.e. in 𝕍), (1) and (2) follow from
Thm. 7.1 and especially formula (46). The general case follows immediately.
(3) follows from Cor. 7.4. By (3), part (4) holds when 𝑣1, … , 𝑣𝑛 are all the vac-
uum section 𝟏. Thus, it hols for all 𝑣1, … , 𝑣𝑛 due to Prop. 7.2. □

9. Sewing and multi-propagation

We assume, in addition to the setting of Section 5, that ℬ̃ is a single point.
Namely, we have an (𝑁 + 2𝑀)-pointed compact Riemann surface

𝔛̃ = (𝐶; 𝑥1, … , 𝑥𝑁 ; 𝑥′1, … , 𝑥
′
𝑀 ; 𝑥

′′
1 , … , 𝑥

′′
𝑀),

where each connected component of 𝐶 contains one of 𝑥1, … , 𝑥𝑁 . For each
1 ≤ 𝑗 ≤ 𝑀, 𝔛̃ has local coordinates 𝜉𝑗 at 𝑥′𝑗 and𝜛𝑗 at 𝑥′′𝑗 defined respectively
on neighborhoods 𝑊′

𝑗 ∋ 𝑥′𝑗,𝑊
′′
𝑗 ∋ 𝑥′′𝑗 . All 𝑊

′
𝑗,𝑊

′′
𝑗 (where 1 ≤ 𝑗 ≤ 𝑀) are

mutually disjoint and do not contain 𝑥1, … , 𝑥𝑁 . 𝜉𝑗(𝑊′
𝑗) = 𝒟𝑟𝑗 , and𝜛𝑗(𝑊′′

𝑗 ) =
𝒟𝜌𝑗 . For eachmarked point 𝑥𝑖 we associate a𝕍-module𝕎𝑖. To 𝑥′𝑗 and 𝑥

′′
𝑗 to we

associate respectively a 𝕍-module𝕄𝑗 and its contragredient𝕄′
𝑗. We set

𝑆𝔛̃ = {𝑥1, … , 𝑥𝑁}.

Also, for each 1 ≤ 𝑖 ≤ 𝑁, choose a local coordinate 𝜂𝑖 at 𝑥𝑖. Identify

W𝔛̃(𝕎∙ ⊗𝕄∙ ⊗𝕄′
∙) = 𝕎∙ ⊗𝕄∙ ⊗𝕄′

∙ via 𝒰(𝜂∙, 𝜉∙,𝜛∙).

We sew 𝔛̃ along each 𝑥′𝑗, 𝑥
′′
𝑗 to obtain a family

𝔛 = (𝜋 ∶ 𝒞 → 𝒟×
𝑟∙𝜌∙ ; 𝑥1, … , 𝑥𝑁),

where the points 𝑥1, … , 𝑥𝑁 on 𝐶 and the local coordinates 𝜂1, … , 𝜂𝑁 at these
points extend constantly (over 𝒟×

𝑟∙𝜌∙) to sections and local coordinates of 𝔛,
denoted by the same symbols. (Cf. Sec. 5.) For each 𝑞∙ ∈ 𝒟×

𝑟∙𝜌∙ , we identify

W𝔛𝑞∙
(𝕎∙) = 𝕎∙ via 𝒰(𝜂∙).

Let ϕ ∶ 𝕎∙ ⊗ 𝕄∙ ⊗ 𝕄′
∙ → ℂ be a conformal block associated to 𝔛̃ that

converges a.l.u. on 𝒟×
𝑟∙𝜌∙ . Let 𝑈1, … ,𝑈𝑛 ⊂ 𝐶 be open and disjoint from each

𝑊′
𝑗,𝑊

′′
𝑗 . For each 𝑞∙ ∈ 𝒟×

𝑟∙𝜌∙ , since the fiber 𝒞𝑞∙ is obtained by removing a
small part of each𝑊′

𝑗,𝑊
′′
𝑗 ⊂ 𝐶 and gluing the remaining part of 𝐶, we see that

each 𝑈𝑖 can be regarded as an open subset of the fiber 𝒞𝑞∙ . By Thm. 5.5,

𝒮𝑞∙ϕ ∶= 𝒮ϕ|𝑞∙
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is a conformal block associated to𝔛𝑞∙ . Thus, we can consider its 𝑛-propagation
≀𝑛𝒮𝑞∙ϕ. In the setting of Thm. 8.2, and setting

Conf(𝑈∙ ⧵ 𝑆𝔛̃) = (𝑈1 ×⋯ ×𝑈𝑛) ∩ Conf
𝑛(𝐶 ⧵ 𝑆𝔛̃),

for each 𝑣𝑖 ∈ V𝐶(𝑈𝑖) = V𝒞𝑞∙ (𝑈𝑖) and 𝑤∙ ∈ 𝕎∙,

≀𝑛𝒮𝑞∙ϕ(𝑣1, … , 𝑣𝑛, 𝑤∙) ∈ O(Conf(𝑈∙ ⧵ 𝑆𝔛̃)).

This expression relies holomorphically on 𝑞∙ due to Thm. 7.1 (applied 𝑛 times).
Thus, by varying 𝑞∙, we obtain

≀𝑛𝒮ϕ(𝑣1, … , 𝑣𝑛, 𝑤∙) ∈ O
(
𝒟×
𝑟∙𝜌∙ × Conf(𝑈∙ ⧵ 𝑆𝔛̃)

)
. (59)

Since ≀𝑛ϕ is a conformal block associated to ≀𝑛𝔛̃, we can talk about the a.l.u.
convergence of its sewing 𝒮 ≀𝑛ϕ, which is a conformal block by Thm. 5.5 again.
In the setting of Thm. 8.2, this means for each 𝑣𝑖 ∈ V𝐶(𝑈𝑖) and 𝑤∙ ∈ 𝕎∙ the
a.l.u. convergence of

𝒮 ≀𝑛 ϕ(𝑣1, … , 𝑣𝑛, 𝑤∙) ∶= ≀𝑛ϕ
(
𝑣1, … , 𝑣𝑛, 𝑤∙ ⊗ (𝑞𝐿̃01 ▶⊗1 ◀)⊗⋯⊗ (𝑞𝐿̃0𝑀▶⊗𝑀 ◀)

)

∈ O(Conf(𝑈∙ ⧵ 𝑆𝔛̃))[[𝑞1, … , 𝑞𝑀]] (60)

on 𝒟×
𝑟∙𝜌∙ × Conf(𝑈∙ ⧵ 𝑆𝔛̃) in the sense of Def. 5.2. We may ask whether this

convergence is true, and if it is true, whether the value of this expression at 𝑞∙
equals (59). The answer is Yes.

Theorem 9.1. If 𝒮ϕ converges a.l.u. on𝒟×
𝑟∙𝜌∙ , then for each open𝑈1, … ,𝑈𝑛 ⊂ 𝐶

disjoint from𝑊′
𝑗,𝑊

′′
𝑗 (1 ≤ 𝑗 ≤ 𝑁), each 𝑣𝑖 ∈ V𝐶(𝑈𝑖) and 𝑤∙ ∈ 𝕎∙, the relation

𝒮 ≀𝑛 ϕ(𝑣1, … , 𝑣𝑛, 𝑤∙) = ≀𝑛𝒮ϕ(𝑣1, … , 𝑣𝑛, 𝑤∙) (61)

holds at the level of ∈ O(Conf(𝑈∙ ⧵ 𝑆𝔛̃))[[𝑞
±1
1 , … , 𝑞±1𝑀 ]]. In particular, the left

hand side converges a.l.u. on𝒟×
𝑟∙𝜌∙ × Conf(𝑈∙ ⧵ 𝑆𝔛̃).

We note that the right hand side of (61) is considered as a series of 𝑞1, … , 𝑞𝑀
by taking Laurent series expansion.

Proof. We prove this theorem by induction on 𝑛. Let us assume the case for
𝑛 − 1 is proved. For each 1 ≤ 𝑖 ≤ 𝑁 we choose a neighborhood𝑊𝑖 ⊂ 𝐶 of 𝑥𝑖
on which 𝜂𝑖 is defined. We assume 𝑊𝑖 is small enough such that it does not
intersect any𝑊′

𝑗,𝑊
′′
𝑗 (1 ≤ 𝑗 ≤ 𝑁) and contains only 𝑥1 of 𝑥1, … 𝑥𝑁 .

Step 1. Note that we can clearly shrink 𝒟×
𝑟∙𝜌∙ since the formal series in (61)

are independent of the size of this punctured polydisc. Therefore, we can also
shrink each𝑊′

𝑗,𝑊
′′
𝑗 to smaller discs, so that the interior of 𝐶 ⧵

⋃
1≤𝑗≤𝑀(𝑊

′
𝑗 ∪

𝑊′′
𝑗 ) (denoted by 𝐇) is homotopic to 𝐇0 = 𝐶 ⧵ {𝑥′1, … , 𝑥

′
𝑀 , 𝑥

′′
1 , … , 𝑥

′′
𝑀}. There-

fore, since each connected component of 𝐶 (and hence each one of 𝐇0) inter-
sects 𝑥1, … , 𝑥𝑁 , each one of 𝐇0 contains at least one of𝑊1, … ,𝑊𝑁 . The same
is true for 𝐇. So each connected component of 𝐇 ⧵ 𝑆𝔛̃ contains at lease one
𝑊𝑗 ⧵ {𝑥𝑗}.
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Fix 𝑈2, … ,𝑈𝑛 and 𝑣2, … , 𝑣𝑛, 𝑤∙ as in the statement of this theorem. Let Ω
be the open set of all 𝑦1 ∈ 𝐇 ⧵ 𝑆𝔛̃ contained in an open 𝑈1 ⊂ 𝐇 ⧵ 𝑆𝔛̃ such
that (61) holds for all 𝑣1 ∈ V𝐶(𝑈1). By complex analysis, if 𝑉1 ⊂ 𝐇 ⧵ 𝑆𝔛̃ is
open such that V𝐶|𝑉1 is trivializable (e.g., when there is an injective element of
O(𝑉1)), then𝑉1 ⊂ Ωwhenever𝑉1∩Ω ≠ ∅. SoΩ is closed. Thus, ifΩ intersects
𝑊1 ⧵ {𝑥1}, … ,𝑊𝑁 ⧵ {𝑥𝑁}, then Ω = 𝐇 ⧵ 𝑆𝔛̃, which finishes the proof.
Step 2. We showΩ intersects𝑊1⧵{𝑥1}, andhence intersects the other𝑊𝑖⧵{𝑥𝑖}

by a similar argument. Indeed, we shall show that (61) holds whenever 𝑈1 =
𝑊1.
Note 𝑤∙ = 𝑤1 ⊗ 𝑤2 ⊗ ⋯ ⊗ 𝑤𝑁 by convention. We let 𝑤◦ = 𝑤2 ⊗ ⋯ ⊗

𝑤𝑁 . Identify𝑊1 with 𝜂1(𝑊1) via 𝜂1 so that 𝜂1 is identified with the standard
coordinate 𝑧. Let Conf(𝑈◦ ⧵ 𝑆𝔛̃) = (𝑈2 ×⋯×𝑈𝑛) ∩ Conf

𝑛−1(𝐶 ⧵ 𝑆𝔛̃). Identify
V𝐶|𝑊1

with 𝕍 ⊗ℂ O𝑊1
using 𝒰𝜚(𝜂1). Choose any 𝑣1 ∈ 𝕍 ⊗ℂ O(𝑊1). Then by

Thm. 8.2,

𝒮 ≀𝑛 ϕ(𝑣1, 𝑣2, … , 𝑣𝑛, 𝑤∙) = 𝒮 ≀𝑛−1 ϕ(𝑣2, … , 𝑣𝑛, 𝑌(𝑣1, 𝑧)𝑤1 ⊗𝑤◦)

at the level of O(Conf(𝑈◦ ⧵ 𝑆𝔛̃))[[𝑧
±1, 𝑞±11 , … , 𝑞±1𝑀 ]]. By our assumption on the

(𝑛 − 1)-case, this expression can be regarded as an element of (and hence this
equation holds at the level of) O(𝒟×

𝑟∙𝜌∙ × Conf(𝑈◦ ⧵ 𝑆𝔛̃))[[𝑧
±1]], and we have

𝒮 ≀𝑛 ϕ(𝑣1, 𝑣2, … , 𝑣𝑛, 𝑤∙) = ≀𝑛−1𝒮ϕ(𝑣2, … , 𝑣𝑛, 𝑌(𝑣1, 𝑧)𝑤1 ⊗𝑤◦)

also on this level. By Thm. 8.2 again, this expression equals

≀𝑛𝒮ϕ(𝑣1, 𝑣2, … , 𝑣𝑛, 𝑤1 ⊗𝑤◦)

on this level. Since the above is an element ofO(𝒟×
𝑟∙𝜌∙ ×Conf(𝑈∙ ⧵𝑆𝔛̃)), by the

uniqueness of Laurent series expansion, we see the left hand side of (61) is also
an element of this ring, and (61) holds on this level. □

Remark 9.2. We discuss how to generalize Thm. 9.1 to the case that 𝔛̃ is a
family of compact Riemann surfaces as in Sec. 5. We assume the setting of
that section, together with one more assumption that 𝔛̃ has local coordinates
𝜂1, … , 𝜂𝑁 at 𝜍1(ℬ̃), … , 𝜍𝑁(ℬ̃) so that we can identify theW -sheaves with the free
ones using the trivialization 𝒰(𝜂∙) or 𝒰(𝜂∙, 𝜉∙,𝜛∙).
We use freely the notations in Sec. 5. Let 𝑆𝔛̃ =

⋃
1≤𝑖≤𝑀 𝜍𝑖(ℬ̃). Let

ϕ ∶ 𝕎∙ ⊗𝕄∙ ⊗𝕄′
∙ ⊗ℂ Oℬ̃ → Oℬ̃

be a conformal block associated to 𝔛̃ converging a.l.u. on ℬ = 𝒟×
𝑟∙𝜌∙ × ℬ̃.

Choose any open𝑈1, … ,𝑈𝑛 ⊂ 𝒞 disjoint from all𝑊′
𝑗,𝑊

′′
𝑗 . Choose 𝑣𝑖 ∈ V𝔛̃(𝑈𝑖)

and 𝑤∙ ∈ 𝕎∙. Let Conf ℬ̃(𝑈∙ ⧵ 𝑆𝔛̃) be the set of all (𝑦1, … , 𝑦𝑛) ∈ Conf(𝑈∙ ⧵ 𝑆𝔛̃)
satisfying 𝜋(𝑦1) = ⋯ = 𝜋(𝑦𝑛). For each𝑚𝑗 ∈ 𝕄𝑗, 𝑚′

𝑗 ∈ 𝕄′
𝑗, we have

≀𝑛ϕ(𝑣1, … , 𝑣𝑛, 𝑤∙ ⊗𝑚∙ ⊗𝑚′
∙) ∈ O(Conf ℬ̃(𝑈∙ ⧵ 𝑆𝔛̃))

whose restriction to each𝒞×𝑛𝑏 (where 𝑏 ∈ ℬ̃ is such that𝒞𝑏 intersects𝑈1, … ,𝑈𝑛)
is ≀𝑛(ϕ|𝑏)(𝑣1, … , 𝑣𝑛, 𝑤∙ ⊗𝑚∙ ⊗𝑚′

∙). (Indeed, this expression is a priori only a
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function holomorphic when restricted to each 𝒞×𝑛𝑏 ; that it is holomorphic on
Conf ℬ̃(𝑈∙ ⧵ 𝑆𝔛̃) (i.e., holomorphic when 𝑏 also varies) is due to Thm. 7.1.)
Thus, we can define

𝒮 ≀𝑛 ϕ(𝑣1, … , 𝑣𝑛, 𝑤∙) ∈ O(Conf ℬ̃(𝑈∙ ⧵ 𝑆𝔛̃))[[𝑞
±1
1 , … , 𝑞±1𝑀 ]] (62)

using (60). Similarly, with the aid of Thm. 7.1 we can define

≀𝑛𝒮ϕ(𝑣1, … , 𝑣𝑛, 𝑤∙) ∈ O
(
𝒟×
𝑟∙𝜌∙ × Conf ℬ̃(𝑈∙ ⧵ 𝑆𝔛̃)

)
(63)

whose restriction to each𝒟×
𝑟∙𝜌∙ × 𝒞

×𝑛
𝑏 is ≀𝑛𝒮(ϕ|𝑏)(𝑣1, … , 𝑣𝑛, 𝑤∙).

Consider (63) at the level of O(Conf ℬ̃(𝑈∙ ⧵ 𝑆𝔛̃))[[𝑞
±1
1 , … , 𝑞±1𝑀 ]]. By applying

Thm. 9.1 to ϕ|𝑏, we see that the coefficients before 𝑞1, … , 𝑞𝑁 of (62) and (63)
agree when restricted to each 𝒞×𝑛𝑏 . So (62) = (63). In particular, (62) converges
a.l.u. on𝒟×

𝑟∙𝜌∙ × Conf ℬ̃(𝑈∙ ⧵ 𝑆𝔛̃).

10. A geometric construction of permutation-twisted
𝕍⊗𝒌-modules

Let 𝕌 be a (positive energy) VOA, and let 𝑔 be an automorphism of 𝕌 fixing
the vacuum and the conformal vector of 𝕌. In particular, 𝑔 preserves the 𝐿0-
grading of 𝕌. We assume 𝑔 has finite order 𝑘.
A (finitely-admissible) 𝑔-twisted 𝕌-module is a vector space 𝒲 together

with a diagonalizable operator 𝐿̃𝑔0 , and an operation

𝑌𝑔 ∶ 𝕌 ⊗𝒲 →𝒲[[𝑧±1∕𝑘]]

𝑢 ⊗ 𝑤 ↦ 𝑌𝑔(𝑢, 𝑧)𝑤 =
∑

𝑛∈ 1
𝑘
ℤ

𝑌𝑔(𝑢)𝑛𝑤 ⋅ 𝑧−𝑛−1

satisfying the following conditions:
(1) 𝒲 has 𝐿̃𝑔0-grading𝒲 =

⨁
𝑛∈ 1

𝑘
ℕ𝒲(𝑛), each eigenspace𝒲(𝑛) is finite-

dimensional, and for any 𝑢 ∈ 𝕌 we have

[𝐿̃𝑔0 , 𝑌
𝑔(𝑢)𝑛] = 𝑌𝑔(𝐿0𝑢)𝑛 − (𝑛 + 1)𝑌𝑔(𝑢)𝑛. (64)

In particular, for each 𝑤 ∈ 𝒲 the lower truncation condition follows:
𝑌𝑔(𝑢)𝑛𝑤 = 0 when 𝑛 is sufficiently small.

(2) 𝑌𝑔(𝟏, 𝑧) = 𝟏𝒲 .
(3) (𝑔-equivariance) For each 𝑢 ∈ 𝕌,

𝑌𝑔(𝑔𝑢, 𝑧) = 𝑌𝑔(𝑢, 𝑒−2𝐢𝜋𝑧) ∶=
∑

𝑛∈ 1
𝑘
ℤ

𝑌𝑔(𝑢)𝑛𝑤 ⋅ 𝑒2(𝑛+1)𝐢𝜋𝑧−𝑛−1. (65)

(4) (Jacobi identity-analytic version) Let𝒲′ =
⨁

𝑛∈ 1
𝑘
ℕ𝒲(𝑛)∗. Let 𝑃𝑛 be

the projection of𝒲 =
∐

𝑛∈ 1
𝑘
ℕ𝒲(𝑛)∗ (the dual space of𝒲′) onto𝒲(𝑛)

and similarly 𝕌 (the dual space of 𝕌′) onto 𝕌(𝑛). Then for each 𝑢, 𝑣 ∈
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𝕌,𝑤 ∈ 𝒲,𝑤′ ∈ 𝒲′, and for each 𝑧 ≠ 𝜉 in ℂ× with chosen arg 𝜉, the
following series of 𝑛

⟨𝑌𝑔(𝑢, 𝑧)𝑌𝑔(𝑣, 𝜉)𝑤,𝑤′⟩ ∶=
∑

𝑛∈ 1
𝑘
ℕ

⟨𝑌𝑔(𝑢, 𝑧)𝑃𝑛𝑌𝑔(𝑣, 𝜉)𝑤,𝑤′⟩ (66)

⟨𝑌𝑔(𝑣, 𝜉)𝑌𝑔(𝑢, 𝑧)𝑤,𝑤′⟩ ∶=
∑

𝑛∈ 1
𝑘
ℕ

⟨𝑌𝑔(𝑣, 𝜉)𝑃𝑛𝑌𝑔(𝑢, 𝑧)𝑤,𝑤′⟩ (67)

⟨𝑌𝑔(𝑌(𝑢, 𝑧 − 𝜉)𝑣, 𝜉)𝑤,𝑤′⟩ ∶=
∑

𝑛∈ℕ
⟨𝑌𝑔(𝑃𝑛𝑌(𝑢, 𝑧 − 𝜉)𝑣, 𝜉)𝑤,𝑤′⟩ (68)

(where 𝜉 is fixed) converge a.l.u. for 𝑧 in |𝑧| > |𝜉|, |𝑧| < |𝜉|, |𝑧 −
𝜉| < |𝜉| respectively. Moreover, for any fixed 𝜉 ∈ ℂ× with chosen
argument arg 𝜉, let 𝑅𝜉 be the ray with argument arg 𝜉 from 0 to∞, but
with 0, 𝜉,∞ removed. Any point on 𝑅𝜉 is assumed to have argument
arg 𝜉. Then the above three expressions, considered as functions of 𝑧
defined on 𝑅𝜉 satisfying the three mentioned inequalities respectively,
can be analytically continued to the same holomorphic function on the
open set

∆𝜉 = ℂ ⧵ {𝜉, −𝑡𝜉 ∶ 𝑡 ≥ 0},

which can furthermore be extended to amultivaluedholomorphic func-
tion 𝑓𝜉(𝑧) on ℂ× ⧵ {𝜉} (i.e., a holomorphic function on the universal
cover of ℂ× ⧵ {𝜉}).

In the above Jacobi identity, if we let the series
∑

𝑛 ℎ𝑛(𝑧) be any of (66), (67),
(68), then by saying that this series converges a.l.u. for 𝑧 in an open set Ω, we
mean sup𝑧∈𝐾

∑
𝑛 |𝑓𝑛(𝑧)| < +∞ for each compact 𝐾 ⊂ Ω; the sup is over all

𝑧 ∈ 𝐾 with all possible arg 𝑧.

Remark 10.1. The above analytic version of Jacobi identity is equivalent to
the usual algebraic one (cf. [Hua10, Thm. 2.4]). Indeed, assume without loss
of generality that 𝑔𝑢 = 𝑒2𝐢𝑗𝜋∕𝑘𝑢. Then the 𝑔-equivariance condition shows that

𝑧
𝑗
𝑘𝑌𝑔(𝑢, 𝑧) is single-valued over 𝑧. Thus, 𝑧

𝑗
𝑘 times (66), (67), (68) are series

expansions on |𝑧| > |𝜉|, |𝑧| < |𝜉|, |𝑧 − 𝜉| < |𝜉| respectively (not necessarily

restricting to 𝑅𝜉) of the same single-valued holomorphic function 𝑧
𝑗
𝑘𝑓𝜉 onℂ× ⧵

{𝜉}. By Strong Residue Theorem, this is equivalent to that for each𝑚, 𝑛 ∈ ℤ,

(
∮
|𝑧|=2|𝜉|

−∮
|𝑧|=|𝜉|∕3

−∮
|𝑧−𝜉|=|𝜉|∕3

)
𝑧
𝑗
𝑘
+𝑚(𝑧 − 𝜉)𝑛𝑓𝜉(𝑧)𝑑𝑧 = 0,
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where in these integrals, 𝑓𝜉(𝑧) is replaced by (66), (67), (68) respectively. Equiv-
alently,

∑

𝑙∈ℕ

( 𝑗
𝑘
+𝑚

𝑙

)⟨
𝑌𝑔(𝑌(𝑢)𝑛+𝑙𝑣, 𝜉

)
𝑤,𝑤′⟩𝜉

𝑗
𝑘
+𝑚−𝑙

=
∑

𝑙∈ℕ

(𝑛
𝑙

)
(−1)𝑙

⟨
𝑌𝑔(𝑢) 𝑗

𝑘
+𝑚+𝑛−𝑙𝑌

𝑔(𝑣, 𝜉)𝑤,𝑤′⟩𝜉𝑙

−
∑

𝑙∈ℕ

(𝑛
𝑙

)
(−1)𝑛−𝑙

⟨
𝑌𝑔(𝑣, 𝜉)𝑌𝑔(𝑢) 𝑗

𝑘
+𝑚+𝑙𝑤,𝑤

′⟩𝜉𝑛−𝑙. (69)

By comparing the coefficients before 𝜉−ℎ−1, the above is equivalent to that for
each𝑚, 𝑛 ∈ ℤ, ℎ ∈ 1

𝑘
ℤ, (suppressing 𝑤,𝑤′)

∑

𝑙∈ℕ

( 𝑗
𝑘
+𝑚

𝑙

)
𝑌𝑔(𝑌

(
𝑢
)
𝑛+𝑙

𝑣
)
𝑗
𝑘
+𝑚+ℎ−𝑙

=
∑

𝑙∈ℕ

(𝑛
𝑙

)
(−1)𝑙𝑌𝑔(𝑢

)
𝑗
𝑘
+𝑚+𝑛−𝑙

𝑌𝑔(𝑣
)
ℎ+𝑙

−
∑

𝑙∈ℕ

(𝑛
𝑙

)
(−1)𝑛−𝑙𝑌𝑔(𝑣

)
𝑛+ℎ−𝑙

𝑌𝑔(𝑢
)
𝑗
𝑘
+𝑚+𝑙

(70)

which is the algebraic Jacobi identity.

Construction of twisted representations associated to cyclic permuta-
tion actions of 𝕍⊗𝒌. We let 𝕌 = 𝕍⊗𝑘 with conformal vector 𝐜⊗ 𝟏⊗⋯⊗𝟏+
⋯+ 𝟏⊗⋯⊗ 𝟏⊗ 𝐜, and 𝑔 an automorphism defined by

𝑔 ∶ (𝑣1, 𝑣2, … , 𝑣𝑘) ∈ 𝕍⊗𝑘 ↦ (𝑣𝑘, 𝑣1, … , 𝑣𝑘−1).

For each 𝕍-module with 𝐿̃0-operator, we define a 𝑔-twisted 𝕌-module 𝒲 as
follows.
As a vector space,𝒲 =𝕎. We define 𝐿̃𝑔0 =

1
𝑘
𝐿̃0.

Let 𝜁 be the standard coordinate of ℂ. Let 𝔛 = (ℙ1; 0,∞). We associate to
0,∞ local coordinates local coordinates 𝜁, 𝜁−1 and 𝕍-modules𝕎,𝕎′. Note

𝒰(𝜁, 𝜁−1) ∶ W𝔛(𝕎⊗𝕎′)
≃
,→ 𝕎⊗𝕎′

Let ⟨⋅, ⋅⟩ be the pairing for𝕎 and𝕎′. We define a conformal block

τ𝕎 ∶ W𝔛(𝕎⊗𝕎′) → ℂ,

𝒰(𝜂0, 𝜂∞)−1(𝑤 ⊗ 𝑤′) ↦ ⟨𝑤,𝑤′⟩

whenever the local coordinates 𝜂0, 𝜂∞ at 0,∞ are such that (ℙ1; 0,∞; 𝜂0, 𝜂∞) ≃
(ℙ1; 0,∞; 𝜁, 𝜁−1). It is easy to see that this definition is independent of the
choice of such 𝜂0, 𝜂∞.
In the setting of Thm. 8.2, we have

≀𝑘τ𝕎 ∶ V𝔛(ℂ×) ⊗⋯⊗ V𝔛(ℂ×)
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

𝑘

⊗W𝔛(𝕎⊗𝕎′) → O(Conf 𝑘(ℂ×))
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where all the⊗ are over ℂ. Let

𝜔𝑘 = 𝑒−2𝐢𝜋∕𝑘.

Since 𝜁𝑘 ∶ 𝑧 ↦ 𝑧𝑘 is locally injective holomorphic onℂ×, we have a trivilization

𝒰𝜚(𝜁𝑘) ∶ V𝔛|ℂ×
≃

,,,,,,,→ 𝕍⊗ℂ Oℂ× .

Then, for each 𝑤 ∈ 𝕎,𝑤′ ∈ 𝕎′, and for each 𝑣1, … , 𝑣𝑛 ∈ 𝕍 (considered as a
constant section of 𝕍⊗ℂ O(ℂ×)) we define, for 𝑣∙ = 𝑣1 ⊗⋯⊗ 𝑣𝑘 ∈ 𝕍⊗𝑘,

⟨𝑌𝑔(𝑣∙, 𝑧)𝑤,𝑤′⟩

= ≀𝑘τ𝕎
(
𝒰𝜚(𝜁𝑘)−1𝑣1, … ,𝒰𝜚(𝜁𝑘)−1𝑣𝑘, 𝒰(𝜁, 𝜁−1)−1(𝑤 ⊗ 𝑤′)

)|||||𝜔∙−1𝑘
𝑘√𝑧

(71)

where, for each 𝑧 ∈ ℂ× with argument arg 𝑧,

𝜔∙−1𝑘
𝑘
√
𝑧 ∶= ( 𝑘

√
𝑧, 𝜔𝑘

𝑘
√
𝑧, 𝜔2𝑘

𝑘
√
𝑧,… , 𝜔𝑘−1𝑘

𝑘
√
𝑧) ∈ Conf𝑘(ℂ×), (72)

and 𝑘
√
𝑧 is assumed to have argument 1

𝑘
arg 𝑧.

(71) is a multi-valued function of 𝑧, single-valued of 𝑘
√
𝑧 ∈ ℂ×. So we have

Laurent series expansion

⟨𝑌𝑔(𝑣∙, 𝑧)𝑤,𝑤′⟩ =
∑

𝑛∈ 1
𝑘
ℤ

⟨𝑌𝑔(𝑣∙)𝑛𝑤,𝑤′⟩𝑧−𝑛−1

which defines 𝑌𝑔(𝑣∙)𝑛 as a linear map𝕎⊗𝕎′ → ℂ.

Lemma 10.2. Each𝑌𝑔(𝑣∙)𝑛 is a linear operator on𝕎. Moreover, (64) is satisfied.

Proof. For each 𝑞 ∈ ℂ× with chosen arg 𝑞, by (22) we have

𝒰(𝑞
1
𝑘 𝜁, 𝑞−

1
𝑘 𝜁−1)𝒰(𝜁, 𝜁−1)−1 = 𝑞

1
𝑘
𝐿̃0 ⊗ 𝑞−

1
𝑘
𝐿̃0 = 𝑞𝐿̃

𝑔
0 ⊗ 𝑞−𝐿̃

𝑔
0 .

Thus

⟨𝑌𝑔(𝑣∙, 𝑧)𝑞−𝐿̃
𝑔
0𝑤, 𝑞𝐿̃

𝑔
0𝑤′⟩

= ≀𝑘 τ𝕎
(
𝒰𝜚(𝜁𝑘)−1𝑣1, … ,𝒰𝜚(𝜁𝑘)−1𝑣𝑘, 𝒰(𝑞

1
𝑘 𝜁, 𝑞−

1
𝑘 𝜁−1)−1(𝑤 ⊗ 𝑤′)

)|||||𝜔∙−1𝑘
𝑘√𝑧
. (73)

Wehave an equivalence of pointedRiemann sphereswith locally injective func-
tions and local coordinates (at the last two marked points)

(ℙ1; 𝜔∙−1𝑘
𝑘
√
𝑧, 0,∞; 𝜁𝑘, 𝑞

1
𝑘 𝜁, 𝑞−

1
𝑘 𝜁−1)

≃(ℙ1; 𝜔∙−1𝑘
𝑘
√
𝑞𝑧, 0,∞; 𝑞−1𝜁𝑘, 𝜁, 𝜁−1)

defined by 𝑧 ∈ ℙ1 ↦ 𝑘
√
𝑞𝑧 ∈ ℙ1, where 𝑘

√
𝑞 has argument 1

𝑘
arg 𝑞. By (19) and

(17), on 𝕍 we have

𝒰𝜚(𝜁𝑘)𝒰𝜚(𝑞−1𝜁𝑘)−1 = 𝒰(𝜚(𝜁𝑘|𝑞−1𝜁𝑘)) = 𝑞𝐿0 .
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So (73) equals

≀𝑘 τ𝕎
(
𝒰𝜚(𝑞−1𝜁𝑘)−1𝑣1, … ,𝒰𝜚(𝑞−1𝜁𝑘)−1𝑣𝑘, 𝒰(𝜁, 𝜁−1)−1(𝑤 ⊗ 𝑤′)

)|||||𝜔∙−1𝑘
𝑘√𝑞𝑧

= ≀𝑘 τ𝕎
(
𝒰𝜚(𝜁𝑘)−1𝑞𝐿0𝑣1, … ,𝒰𝜚(𝜁𝑘)−1𝑞𝐿0𝑣𝑘, 𝒰(𝜁, 𝜁−1)−1(𝑤 ⊗ 𝑤′)

)|||||𝜔∙−1𝑘
𝑘√𝑞𝑧

We conclude

⟨𝑌𝑔(𝑣∙, 𝑧)𝑞−𝐿̃
𝑔
0𝑤, 𝑞𝐿̃

𝑔
0𝑤′⟩ = ⟨𝑌𝑔(𝑞𝐿0𝑣∙, 𝑞𝑧)𝑤,𝑤′⟩.

So, if 𝐿0𝑣∙ = 𝛼𝑣∙, 𝐿̃
𝑔
0𝑤 = 𝛽𝑤, 𝐿̃𝑔0𝑤

′ = 𝛾𝑤′, then

⟨𝑌𝑔(𝑣∙, 𝑧)𝑤,𝑤′⟩ = 𝑞𝛼+𝛽−𝛾⟨𝑌𝑔(𝑣∙, 𝑞𝑧)𝑤,𝑤′⟩,

which shows, by looking at the coefficients before 𝑧−𝑛−1, that ⟨𝑌𝑔(𝑣∙)𝑛𝑤,𝑤′⟩
equals 0unless𝛼+𝛽−𝛾−𝑛−1 = 0. This proves𝑌𝑔(𝑣∙)𝑛𝒲(𝛽) ⊂ 𝒲(𝛼+𝛽−𝑛−1).
In particular, 𝑌𝑔(𝑣∙)𝑛 can be regarded as a linear operator on𝒲. □

Using part (3) and (4) of Thm. 8.2, it is easy to show𝑌𝑔(𝟏, 𝑧) = 𝟏𝒲 and show
(65). Moreover:

Theorem 10.3. 𝑌𝑔 satisfies the Jacobi identity. Therefore, (𝒲,𝑌𝑔) is a 𝑔-twisted
𝕍⊗𝑘-module.

Proof. Choose the two vectors of𝕌 to be 𝑢∙ = 𝑢1⊗⋯⊗𝑢𝑘, 𝑣∙ = 𝑣1⊗⋯⊗𝑣𝑘 ∈
𝕍⊗𝑘. IdentifyW𝔛(𝕎⊗𝕎′) = 𝕎⊗𝕎′ via𝒰(𝜁, 𝜁−1). IdentifyV𝔛|ℂ× = 𝕍⊗ℂOℂ×

via 𝒰𝜚(𝜁𝑘). For each 𝜉 ∈ ℂ× with chosen arg 𝜉, we define

𝑓𝜉(𝑧) = ≀2𝑘τ𝕎(𝑢1, … , 𝑢𝑘, 𝑣1, … , 𝑣𝑘, 𝑤 ⊗ 𝑤′)
|||||𝜔∙−1𝑘

𝑘√𝑧, 𝜔∙−1𝑘
𝑘√𝜉

(74)

where 𝜔∙−1𝑘
𝑘
√
𝜉 is a 𝑘-tuple understood in a similar way as (72). Then 𝑓𝜉 is a

multivalued holomorphic function which lifts to a single-valued one on the 𝑘-
fold covering space ℂ× ⧵ (𝜔∙−1𝑘

𝑘
√
𝜉) of ℂ× ⧵ {𝜉}.

Let (𝑚𝑛,𝛼)𝛼∈𝔄 be a set of basis of𝕎(𝑛) with dual basis ( �𝑚𝑛,𝛼)𝛼∈𝔄. Assume
0 < |𝑧| < |𝜉|. We shall show that the following infinite sum over 𝑛

⟨𝑌𝑔(𝑣∙, 𝜉)𝑌𝑔(𝑢∙, 𝑧)𝑤,𝑤′⟩

=
∑

𝑛∈ℕ

∑

𝛼∈𝔄
≀𝑘τ𝕎(𝑢1, … , 𝑢𝑘, 𝑤 ⊗ �𝑚𝑛,𝛼)𝜔∙−1𝑘

𝑘√𝑧

⋅ ≀𝑘τ𝕎(𝑣1, … , 𝑣𝑘, 𝑚𝑛,𝛼 ⊗𝑤′)𝜔∙−1𝑘
𝑘√𝜉 (75)

converges a.l.u. to 𝑓𝜉(𝑧). Indeed, this expression is the sewing at 𝑞 = 1 of the
2𝑘-propagation of the conformal block

ϕ ∶ 𝕎⊗𝕎′ ⊗𝕎⊗𝕎′ → ℂ,
𝑤1 ⊗𝑤′

1 ⊗𝑤2 ⊗𝑤′
2 ↦ ⟨𝑤1, 𝑤′

1⟩ ⋅ ⟨𝑤2, 𝑤′
2⟩

associated to (ℙ1𝑎⊔ℙ1𝑏; 0𝑎,∞𝑎, 0𝑏,∞𝑏). Here,ℙ1𝑎, ℙ1𝑏 are two identical Riemann
spheres. The sewing is along ∞𝑎 and 0𝑏 using local coordinates 𝜁, 𝜁−1, and
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by choosing suitable open discs 𝑊′ ∋ ∞𝑎,𝑊′′ ∋ 0𝑏 with radius 𝑟, 𝜌 satis-
fying 𝑟𝜌 > 1 such that 𝑊′,𝑊′′ do not intersect 𝜔∙−1𝑘

𝑘
√
𝑧 and 𝜔∙−1𝑘

𝑘
√
𝜉. (Note

that |𝑧| < |𝜉| guarantees the existence of such 𝑊′,𝑊′′.) Since the sewing of
ϕ clearly converges a.l.u. on 𝒟×

𝑟𝜌, by Thm. 9.1, the sewing at 𝑞 = 1 of ≀2𝑘ϕ
(which is (75)) converges a.l.u. (for varying 𝑧) to the 2𝑘-propagation of the
sewing, which is just 𝑓𝜉(𝑧). A similar argument shows that when 0 < |𝜉| < |𝑧|,
⟨𝑌𝑔(𝑢∙, 𝑧)𝑌𝑔(𝑣∙, 𝜉)𝑤,𝑤′⟩ converges a.l.u. (for varying 𝑧) to 𝑓𝜉(𝑧).
Consider 𝑔𝜉 ∈ Conf𝑘(ℂ ⧵ 𝜔∙−1𝑘

𝑘
√
𝜉) defined by

𝑔𝜉(𝑧1, … , 𝑧𝑘) = ≀2𝑘τ𝕎(𝑢1, … , 𝑢𝑘, 𝑣1, … , 𝑣𝑘, 𝑤 ⊗ 𝑤′)
|||||𝑧1,…,𝑧𝑘 , 𝜔∙−1𝑘

𝑘√𝜉
.

The region Ω = {𝑧 ∈ ℂ× ∶ |𝑧𝑘 − 𝜉| < |𝜉|} has 𝑘 connected components
Ω1, … ,Ω𝑘, each one Ω𝑖 contains exactly one element 𝜔𝑖−1𝑘

𝑘
√
𝜉 of 𝜔∙−1𝑘

𝑘
√
𝜉, and

Ω𝑖 ≃ 𝜁𝑘(Ω𝑖) where 𝜁𝑘(Ω𝑖) is the open disc with center 𝜉 and radius |𝜉|. By
Thm. 8.2 and the definition (71), whenever 𝑧𝑖 ∈ Ω𝑖 for each 𝑖, we have (letting
𝑥1, … , 𝑥𝑘 be formal variables)

𝑔𝜉(𝑧1, … , 𝑧𝑘)

= ≀𝑘 τ𝕎(𝑌(𝑢1, 𝑥1)𝑣1, … , 𝑌(𝑢𝑘, 𝑥𝑘)𝑣𝑘, 𝑤 ⊗ 𝑤′)
|||||𝜔∙−1𝑘

𝑘√𝜉

|||||𝑥𝑘=𝑧𝑘𝑘−𝜉
⋯
|||||𝑥1=𝑧𝑘1−𝜉

=⟨𝑌𝑔(𝑌(𝑢1, 𝑥1)𝑣1 ⊗⋯⊗𝑌(𝑢𝑘, 𝑥𝑘)𝑣𝑘, 𝜉)𝑤,𝑤′⟩
|||||𝑥𝑘=𝑧𝑘𝑘−𝜉

⋯
|||||𝑥1=𝑧𝑘1−𝜉

. (76)

where the right hand side converges absolutely and successively for 𝑥𝑘, … , 𝑥1.
Since the simultaneous Laurent series expansion of the holomorphic function
ℎ(𝜘1, … 𝜘𝑘) = 𝑔𝜉(

𝑘
√
𝜉 + 𝜘1, 𝜔𝑘

𝑘
√
𝜉 + 𝜘2, … , 𝜔𝑘−1𝑘

𝑘
√
𝜉 + 𝜘𝑘) in the region 0 < |𝜘𝑖| <

|𝜉| (for all 𝑖) clearly converges a.l.u., and since the coefficients of these series
agree with those before the powers of 𝑥1, … , 𝑥𝑘 on the right hand side of (76)
(by taking Laurent series expansion through contour integrals), we see that (76)
converges absolutely (as a multi-variable series) to 𝑔𝜉(𝑧1, … , 𝑧𝑘) at the desired
points.
Now we assume 0 < |𝑧 − 𝜉| < |𝜉|, assume arg 𝑧 is such that 𝑘

√
𝑧 ∈ Ω1 ∋

𝑘
√
𝜉

(which is true when arg 𝑧 = arg 𝜉), and set (𝑧1, … , 𝑧𝑘) = 𝜔∙−1𝑘
𝑘
√
𝑧. Then we see

that ⟨𝑌𝑔(𝑌(𝑢∙, 𝑧 − 𝜉)𝑣∙, 𝜉)𝑤,𝑤′⟩ converges a.l.u. to 𝑔𝜉(𝜔∙−1𝑘
𝑘
√
𝑧) = 𝑓𝜉(𝑧). This

finishes the verification of the Jacobi identity. □

Remark 10.4. Using Thm. 8.2, it is easy to see that

≀𝑘τ𝕎(𝟏,⋯ ,𝒰𝜚(𝜁)−1𝑣𝑖,⋯ , 𝟏, 𝑤 ⊗ 𝑤′)|𝑧 = ⟨𝑌(𝑣, 𝑧)𝑤,𝑤′⟩.

By (19), 𝒰𝜚(𝜁)𝒰𝜚(𝜁𝑘)−1 = 𝒰(𝜚(𝜁|𝜁𝑘)). Thus, when 𝑣∙ = 𝑣1 ⊗ 𝟏 ⊗⋯⊗ 𝟏, (71)
becomes

⟨𝑌(𝒰(𝜚(𝜁|𝜁𝑘) 𝑘√𝑧)𝑣1,
𝑘
√
𝑧)𝑤,𝑤′⟩.
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By (17), 𝜚(𝜁|𝜁𝑘) 𝑘√𝑧 sends 𝑧
𝑘
1 − 𝑧 to 𝑧1 − 𝑘

√
𝑧 when 𝑧1 is close to 𝑘

√
𝑧. Hence this

transformation equals 𝛿𝑘,𝑧 where

𝛿𝑘,𝑧(𝑡) = (𝑧 + 𝑡)
1
𝑘 − 𝑧

1
𝑘 .

We conclude

𝑌𝑔(𝑣1 ⊗ 𝟏⊗⋯⊗ 𝟏, 𝑧) = 𝑌(𝒰(𝛿𝑘,𝑧)𝑣1,
𝑘
√
𝑧). (77)

This equation uniquely determines the 𝑔-twisted module structure of𝒲, since
𝕍⊗𝑘 is 𝑔-generated by vectors of the form 𝑣1 ⊗ 𝟏⊗⋯⊗ 𝟏.
It is not hard to check that𝒰(𝛿𝑘,𝑧) agreeswith the operator∆𝑘(𝑧) in [BDM02].

Thus, our 𝑔-twisted module (𝒲,𝑌𝑔) agrees with (𝑇𝑘𝑔 (𝕎), 𝑌𝑔) in Theorem 3.9
of [BDM02].

Appendix A. Strong residue theorem for analytic families of
curves

Let 𝔛 = (𝜋 ∶ 𝒞 → ℬ; 𝜍1, … , 𝜍𝑁) be a (holomorphic) family of 𝑁-pointed
compact Riemann surfaces. Recall the definition in Sec. 2. In particular, we
assume each connected component of each fiber 𝒞𝑏 = 𝜋−1(𝑏) contains at least
one of 𝜍1(𝑏), … , 𝜍𝑁(𝑏). We let E be a holomorphic vector bundle on𝒞with finite
rank, and let E ∨ be its dual bundle.
We assume that𝔛 is equippedwith local coordinates 𝜂1, … , 𝜂𝑁 at themarked

points 𝜍1(ℬ), … , 𝜍𝑁(ℬ) respectively. Assume for each 𝑗 that 𝜂𝑗 is defined on a
neighborhood 𝑊𝑗 ⊂ 𝒞 of 𝜍𝑗(ℬ) which intersects only the point 𝜍𝑗(ℬ) among
𝜍1(ℬ), … , 𝜍𝑁(ℬ), and that there is a trivialization

E𝑗|𝑊𝑗
≃ 𝐸𝑗 ⊗ℂ O𝑊𝑗

with dual trivialization

E ∨
𝑗 |𝑊𝑗

≃ 𝐸∨𝑗 ⊗ℂ O𝑊𝑗
,

where 𝐸𝑗 is a finite-dimensional vector space and 𝐸∨𝑗 is its dual space. We iden-
tify E𝑗|𝑊𝑗

and E ∨|𝑊𝑗
with their trivializations.

For each 𝑗, we identify

𝑊𝑗 = (𝜋, 𝜂𝑗)(𝑊𝑗) via (𝜋, 𝜂𝑗).

Then 𝑊𝑗 is a neighborhood of ℬ × {0} in ℬ × ℂ. We let 𝑧 be the standard
coordinate of ℂ. Consider

𝑠𝑗 =
∑

𝑛∈ℤ
𝑒𝑗,𝑛 ⋅ 𝑧𝑛 ∈

(
𝐸𝑗 ⊗ℂ O(ℬ)

)
((𝑧)), (78)

where each 𝑒𝑗,𝑛 ∈ 𝐸𝑗 ⊗ℂ O(ℬ) is 0 when 𝑛 is sufficiently small. Considering
𝑒𝑗,𝑛 as an 𝐸𝑗-valued holomorphic on O(ℬ), we let 𝑒𝑗,𝑛(𝑏) ∈ 𝐸𝑗 be its value at
𝑏 ∈ ℬ. Then 𝑠𝑗(𝑏), the restriction of 𝑠𝑗 to 𝒞𝑏, is represented by

𝑠𝑗(𝑏) =
∑

𝑛
𝑒𝑗,𝑛(𝑏)𝑧𝑛 ∈ 𝐸𝑗((𝑧)).
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Suppose that 𝑠 is a section of E (⋆𝑆𝔛) defined on𝑊𝑗. Then 𝑠|𝑊𝑗
= 𝑠|𝑊𝑗

(𝑏, 𝑧) is
an 𝐸𝑗-valued meromorphic function on𝑊𝑗 with poles at 𝑧 = 0. We say that 𝑠
has series expansion 𝑠𝑗 at 𝜍𝑗(ℬ) if for each 𝑏 ∈ ℬ, the meromorphic function
𝑠|𝑊𝑗

(𝑏, 𝑧) of 𝑧 has Laurent series expansion (78) at 𝑧 = 0.
For each 𝑏 ∈ ℬ, choose 𝜎𝑏 ∈ 𝐻0(𝒞𝑏,E ∨|𝒞𝑏 ⊗ 𝜔𝒞𝑏(⋆𝑆𝔛𝑏

)). Then in𝑊𝑗,𝑏 =
𝑊𝑗 ∩ 𝜋−1(𝐵), 𝜎𝑏 can be regarded as an 𝐸∨𝑗 ⊗ 𝑑𝑧-valued holomorphic function
but with possibly finite poles at 𝑧 = 0. So it has series expansion at 𝑧 = 0:

𝜎𝑏|𝑊𝑗,𝑏
(𝑧) =

∑

𝑛
𝜙𝑗,𝑛𝑧𝑛𝑑𝑧 ∈ 𝐸∨𝑗 ((𝑧))𝑑𝑧

where 𝜙𝑗,𝑛 ∈ 𝐸∨𝑗 . We define the residue pairing

Res𝑗⟨𝑠𝑗, 𝜎𝑏⟩ =Res𝑧=0⟨𝑠𝑗(𝑏), 𝜎𝑏|𝑈𝑗 ,𝑏(𝑧)⟩

=Res𝑧=0(
⟨∑

𝑛
𝑒𝑗,𝑛(𝑏)𝑧𝑛,

∑

𝑛
𝜙𝑗,𝑛𝑧𝑛

⟩
𝑑𝑧). (79)

in which the pairing between 𝐸𝑗 and 𝐸∨𝑗 is denoted by ⟨⋅, ⋅⟩.
We now prove the Strong Residue Theorem for E . Our proof is inspired by

that of [Ueno08, Thm. 1.22].

Theorem A.1. For each 1 ≤ 𝑗 ≤ 𝑁, choose 𝑠𝑗 as in (78). Then the following
statements are equivalent.
(a) There exists 𝑠 ∈ 𝐻0(𝒞,E (⋆𝑆𝔛)) whose series expansion at 𝜍𝑗(ℬ) (for each

1 ≤ 𝑗 ≤ 𝑁) is 𝑠𝑗 .
(b) For each 𝑏 ∈ ℬ, there exists 𝑠𝑏 ∈ 𝐻0(𝒞𝑏,E |𝒞𝑏(⋆𝑆𝔛𝑏

)) whose series expan-
sion at 𝜍𝑗(𝑏) (for each 1 ≤ 𝑗 ≤ 𝑁) is 𝑠𝑗(𝑏).
(c) For any 𝑏 ∈ ℬ and any 𝜎𝑏 ∈ 𝐻0(𝒞𝑏,E ∨|𝒞𝑏 ⊗𝜔𝒞𝑏(⋆𝑆𝔛𝑏

)
)
,

𝑁∑

𝑗=1
Res𝑗⟨𝑠𝑗, 𝜎𝑏⟩ = 0. (80)

Moreover, when these statements hold, there is only one 𝑠 ∈ 𝐻0(𝒞,E (⋆𝑆𝔛)) satis-
fying (a).

Proof. (a) trivially implies (b). That (b) implies (c) follows from Residue theo-
rem (i.e., Stokes theorem): The evaluation between 𝑠𝑏 and 𝜎𝑏 is an element of
𝐻0(𝒞𝑏, 𝜔𝒞𝑏(⋆𝑆𝔛𝑏

)) whose total residue over all poles is 0.
If 𝑠 satisfies (a), then for each 𝑏 ∈ ℬ, 𝑠|𝒞𝑏 is uniquely determined by its

series expansions near 𝜍1(𝑏), … , 𝜍𝑁(𝑏) (since each component of 𝒞𝑏 contains
some 𝜍𝑗(𝑏)). Therefore the sections satisfying (a) is unique.
Now assume (c) is true. We shall prove (a). Suppose that for each 𝑏 ∈ ℬ

we can find a neighborhood 𝑉 ⊂ ℬ such that an 𝑠 satisfying (a) exists for the
family𝔛𝑉 . Then, by the uniqueness proved above, we can glue all these locally
defined 𝑠 to a global one. Thus, we may shrink ℬ to a small neighborhood of a
given 𝑏0 ∈ ℬ when necessary.
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We first note that, by replacing ℬ with a neighborhood of a given 𝑏0 ∈ ℬ,
we may assume 𝜋∗E (−𝑘𝑆𝔛) = 0 for sufficiently large 𝑘. Indeed, choose any
𝑏0 ∈ ℬ. Then by Serre duality,

𝐻0(𝒞𝑏,E |𝒞𝑏(−𝑘𝑆𝔛𝑏
)
)
≃ 𝐻1(𝒞𝑏,E ∨|𝒞𝑏 ⊗𝜔𝒞𝑏(𝑘𝑆𝔛𝑏

)
)
, (81)

which, by Serre vanishing theorem, equals 0 for some 𝑘 = 𝑘0 when 𝑏 = 𝑏0.
Since 𝜋 is open, 𝔛 is a flat family ([GPR, Thm. II.2.13] or [Fis76, Sec. 3.20]).
Thus, we can apply the upper-semicontinuity theorem ([GPR, Thm. III.4.7] or
[BS76, Thm. III.4.12]) to see that (81) vanishes for𝑘 = 𝑘0 and (by shrinkingℬ to
a neighborhood of 𝑏0) any 𝑏 ∈ ℬ. Since the vector space 𝐻0(𝒞𝑏,E |𝒞𝑏(−𝑘𝑆𝔛𝑏

)
)

shrinks as 𝑘 increases, (81) is constantly zero for all 𝑏 ∈ ℬ and 𝑘 ≥ 𝑘0. This
implies 𝜋∗E (−𝑘𝑆𝔛) = 0 for all 𝑘 ≥ 𝑘0 ([GPR, Thm. III.4.7-(d)] or [BS76, Cor.
III.3.5]).
Choose 𝑝 ∈ ℕ such that for each 1 ≤ 𝑗 ≤ 𝑁, the 𝑒𝑗,𝑛 in (78) equals 0 when

𝑛 < −𝑝. For any 𝑘 ≥ 𝑘0, as 𝜋∗E (−𝑘𝑆𝔛) = 0, the short exact sequence

0 → E (−𝑘𝑆𝔛) → E (𝑝𝑆𝔛) → E (𝑝𝑆𝔛)∕E (−𝑘𝑆𝔛) → 0

induces a long one

0 → 𝜋∗E (𝑝𝑆𝔛) → 𝜋∗
(
E (𝑝𝑆𝔛)∕E (−𝑘𝑆𝔛)

) 𝛿
,→ 𝑅1𝜋∗E (−𝑘𝑆𝔛). (82)

For each 1 ≤ 𝑗 ≤ 𝑁, set 𝑠𝑗|𝑘 =
∑

𝑛<𝑘 𝑒𝑗,𝑛 ⋅ 𝑧
𝑛, which can be regarded as a sec-

tion in E (𝑝𝑆𝔛)(𝑊𝑗). Let𝑊0 = 𝒞 ⧵ 𝑆𝔛. Then 𝔘 = {𝑊0,𝑊1, … ,𝑊𝑁} is an open
cover of 𝒞. Define Čech 0-cocycle 𝜓 = (𝜓𝑗)0≤𝑗≤𝑁 ∈ 𝑍0(𝔘,E (𝑝𝑆𝔛)∕E (−𝑘𝑆𝔛))
by setting

𝜓0 = 0, 𝜓𝑗 = 𝑠𝑗|𝑘 (1 ≤ 𝑗 ≤ 𝑁).

Then 𝛿𝜓 =
(
(𝛿𝜓)𝑖,𝑗

)
0≤𝑖,𝑗≤𝑁

∈ 𝑍1(𝔘,E (−𝑘𝑆𝔛)) is described as follows: (𝛿𝜓)0,0 =
0; if 𝑖, 𝑗 > 0 then (𝛿𝜓)𝑖,𝑗 is not defined since𝑊𝑖 ∩ 𝑊𝑗 = ∅; if 1 ≤ 𝑗 ≤ 𝑁 then
(𝛿𝜓)𝑗,0 = −(𝛿𝜓)0,𝑗 equals 𝑠𝑗|𝑘 (considered as a section in E (−𝑘𝑆𝔛)(𝑊𝑗 ∩𝑊0)).
Consider 𝛿𝜓 as a section of 𝑅1𝜋∗E (−𝑘𝑆𝔛). We shall show that 𝛿𝜓 = 0. By

the fact that (81) vanishes and the invariance of Euler characteristic,

dim𝐻1(𝒞𝑏, (E |𝒞𝑏)(−𝑘𝑆𝔛𝑏
)
)

is locally constant over 𝑏 ∈ ℬ, which shows that 𝑅1𝜋∗(𝒞,E (−𝑘𝑆𝔛)) is locally
free and its fiber at 𝑏 is naturally equivalent to 𝐻1(𝒞𝑏, (E |𝒞𝑏)(−𝑘𝑆𝔛𝑏

)
)
. (Cf.

[GPR, Thm. III.4.7] or [BS76, Thm. III.4.12].) Thus, it suffices to show that for
each fiber 𝒞𝑏, the restriction 𝛿𝜓|𝒞𝑏 ∈ 𝐻1(𝒞𝑏,E |𝒞𝑏(−𝑘𝑆𝔛𝑏

)) is zero.
The residue pairing for the Serre duality

𝐻1(𝒞𝑏,E |𝒞𝑏(−𝑘𝑆𝔛)) ≃ 𝐻0(𝒞𝑏,E ∨|𝒞𝑏 ⊗𝜔𝒞𝑏(𝑘𝑆𝔛𝑏
)
)∗
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applied to 𝛿𝜓|𝒞𝑏 and any 𝜎𝑏 ∈ 𝐻0(𝒞𝑏,E ∨|𝒞𝑏 ⊗𝜔𝒞𝑏(𝑘𝑆𝔛𝑏
)
)
, is given by

⟨𝛿𝜓|𝒞𝑏 , 𝜎𝑏⟩ =
𝑁∑

𝑗=1
Res𝑗⟨𝑠𝑗|𝑘, 𝜎𝑏⟩.

Since for each 1 ≤ 𝑗 ≤ 𝑁, ⟨𝑠𝑗 − 𝑠𝑗|𝑘, 𝜎𝑏⟩ has removable singularity at 𝑧 = 0, we
have Res𝑗⟨𝑠𝑗 − 𝑠𝑗|𝑘, 𝜎𝑏⟩ = 0. Therefore,

⟨𝛿𝜓|𝒞𝑏 , 𝜎𝑏⟩ =
𝑁∑

𝑗=1
Res𝑗⟨𝑠𝑗, 𝜎𝑏⟩ = 0.

Thus 𝛿𝜓|𝒞𝑏 = 0 for any 𝑏. This proves that 𝛿𝜓 = 0.
By (82), for each 𝑘 ≥ 𝑘0, there is a unique

𝑠|𝑘 ∈
(
𝜋∗E (𝑝𝑆𝔛)

)
(ℬ) = 𝐻0(𝒞,E (𝑝𝑆𝔛))

which is sent to 𝜓 ∈ 𝜋∗
(
E (𝑝𝑆𝔛)∕E (−𝑘𝑆𝔛)

)
(ℬ). So near 𝜍𝑗(ℬ), 𝑠|𝑘 has series

expansion

𝑠|𝑘 = 𝑠𝑗|𝑘 + ∙𝑧𝑘 + ∙𝑧𝑘+1 +⋯ . (83)

By this uniqueness, we must have 𝑠|𝑘0 = 𝑠|𝑘0+1 = 𝑠|𝑘0+2 = ⋯. Let 𝑠 = 𝑠|𝑘0 .
Then 𝑠 has series expansion 𝑠𝑗 at 𝜍𝑗(ℬ) for each 𝑗. □

We remark that the above proof also applies to locally free sheaves over a
proper flat family of pointed complex curves (with at worst nodal singularities)
such that each 𝑆𝔛𝑏

does not intersect the node of 𝒞𝑏, and that 𝑆𝔛𝑏
intersects

each irreducible component of 𝒞𝑏. This is because the residue pairing for Serre
duality is described in the same way as in the smooth case.
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