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The method of infinite descent in stable
homotopy theory II

Hirofumi Nakai and Douglas C. Ravenel

ABSTRACT. This paper is a continuation of [Rav02] of the same title, which
we will refer hereafter to as [I], which intends to clarify and expand the results
in the last chapter of [Rav86] (“the green book”). In particular, we give the
stable homotopy groups of p-local spectra T'(m);, for m > 0. Thisisa part ofa
program to compute the p-components of 7z, (S°) through dimension 2p*(p —
1) for p > 2. We will refer to the results from [I] freely as if they were in the
first four sections of this paper, which begins with section 5.
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1. Introduction

In [Rav04] the second author described a method for computing the Adams-
Novikov E,-term for spheres and used it to determine the stable homotopy
groups through dimension 108 for p = 3 and 999 for p = 5. The latter computa-
tion was a substantial improvement over prior knowledge, and neither has been
improved upon since. It is generally agreed among homotopy theorists that it
is not worthwhile to try to improve our knowledge of stable homotopy groups
by a few stems, but that the prospect of increasing the known range by a factor
of p would be worth pursuing. This possibility may be within reach now, due
to a better understanding of the methods of [Rav04, Chapter 7] and improved
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computer technology. This paper should be regarded as laying the foundation
for a program to compute 7, (S°), p) through roughly dimension 2 p*(p—1),i.e.,
324 for p = 3 and 5,000 for p = 5.

It is unlikely that either author will take up this computational project any
time soon. The purpose of the present paper is to document what we believe to
be the most promising method of extending the computation of [Rav04, Chap-
ter 7] in hopes that some more energetic mathematicians will use it in the fu-
ture.

The paper [Rav02], which we will refer to here as [I], is published in a con-
ference proceedings volume which is not available online. However a digital
copy can be found on the second author’s home page, for which a link is given
in the bibliography of the present paper

1.1. Summary of [I]. The method referred to in the title involves the connec-
tive p-local ring spectra T'(m) satisfying

BP.(T(m)) = BP,[t,, ..., t,,] C BP,(BP)

and the natural map T(m) — BP which is an equivalence below dimension
|t,41]. In particular, we have T(0) = S?p) and T(c0) = BP.

For a Hopf algebroid (A, T') and I'-comodule M, we will often drop the first
variable of Ext for short, i.e., Extr(A, M) will be denoted by Extr(M). If we
define the quotient module I'(k) by

I'(m + 1) = BP,(BP)/(ty, ..., t,,) = BP, [}, 15, ...],

where t; = t,,,;, then the pair (BP,,['(m + 1)) forms a Hopf algebroid, whose
structure maps are inherited from (BP,, BP.(BP)). Note that I'(1) = BP.(BP).
By the change-of-rings isomorphism [Rav04, Theorem A1.3.12], the Adams-
Novikov E,-term for T(m) is reduced to Ext;i(m H)(BP*). We will also use the
notation

l/)\l. = Um_H' and A(m) = Z(p)[vl, . Um].

It is not difficult to find the structure of Exti(m +1)(BP*) in low dimensions.
We know by Proposition 3.6 for n = 0, that

EX}, 41, (BP,) = A(m).

The group Extl{(m +1) (BP,) is described in Theorem 3.16. Excluding the case
m = 0 and p = 2 (which is handled in [Rav04, Theorem 5.2.6]), it is the A(m)-
module generated by the set
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where «a is the connecting homomorphism for the short exact sequence

0 — BP, M° N! 0
l ||
p'BP,  BP./(p™)

as in (1.6). We also define
=a > for j >0, with iz\l,o =a.

The structure of Extl"i(m H)(BP*) below dimension p?|0;| was determined in

Theorem 4.5. We make use of the 4-term exact sequence

0 — BP, — M° M! N? 0
[ |
v 'BP,/(p®)  BP,/(p™,v{),

which leads to a double connecting homomorphism

B 1 Exty,, (N?) - Ext(,  (BP,).

T'(m+1)
We define
. o) A
B =8 p—; for j>0, with b;,=8.

Theorem 4.5 says that below dimension p?|0;|, the groups Ext?{i +1) (BP,)
for s > 0 have the form

A(m + 1)/, ® E(hy ) ® P(b1o) ® {6+ j 21},

where I, is the ideal (p, vy, ..., U,_1) as usual. We have constructed the short
exact sequence of I'(m + 1)-comodules

0—BP, D0 “LE.  —0 form>0 (1.1)

where the map i; induces an isomorphism of Ext’ (cf. Theorems 3.7 and 3.11),

and ng 41 isaweak injective ['(m+1)-comodule. Hence we have isomorphisms

Ext!

r(m+1)(E1 ) = Extit] )(BP*) fort > 0.

m+1 T(m+1

D(’)”Jr1 is the sub-A(m)-algebra of p~'BP, generated by certain elements i\mﬂ
for i > 0 congruent to 0;/p modulo decomposables. To describe them we need
to recall Hazewinkel’s formula [Haz77] relating polynomial generators v; €
BP, to the coefficients ¢; of the formal group law, namely

pti= , €l (1.2)

0<j<i
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This recursive formula expands to
p+1 p P’ 1+p+p?
v, U] v; UV,  LyUp v,
— 3=ttt ———,
p p p p

U1
t1=—, t,=—=

Y pr P p T p?
We need to define reduced log coefficients 2 r obtained from the ¢, by sub-

tracting the terms which are monomials in the v; for j < m. Thus form =1

2

we have
~ 0y ~ 0, vl Oy
tr=—"", tr=— 2 2’
p p p p
The analog of Hazewinkel’s formula for these elements is
0 ifi<o
p?\i = ) P R (1.3)
Z fjvi_j + Z fi_jvj ifi > 0.
0<j<i 0<j<min(i,m+1)
We use these to define our generators /Ti recursively for i > 0 by
ti= D, ¢ AL (1.4)
0<j<i
We may also assume the existence of the short exact sequence
j2 2
—0. (1.5)

5
1
Dy B

1
0— Em+1
where Drln 41 is weak injective: it is specifically constructed in Lemma 4.1 for
m = 0and p odd, with the map i, inducing an isomorphism in Ext’. Form > 0,
it is shown that v 'E}, .| is weak injective with
0 -1l \ ~ =1 Fgtl
BXtr ()07 Eppiy) 2 01 EXtr, 0y (BP,)
thus we may regard D, . asv;'E, | at worst (cf. Lemma 3.18).
It is desirable to define Drln 4+ for m > 0 to make its Ext’ as small as possible.
If we assume that the map i, induces an isomorphism in Ext’, then we have

isomorphisms
t 2 ~ t+2
EXtF(m+1)(Em+1) ~ EXtF(m+1)(BP*) fort > 0.

We constructed such isomorphisms ! and computed the Ext groups below di-
mension p?|v,,,;| by producing Eﬁq 4+ satisfying some desirable conditions and

1Unfortunately, i, induces an isomorphism in Ext® only below dimension PV form >0

See Remark 3.3.



THE METHOD OF INFINITE DESCENT II 235

the weak injective D;Q +1 s the induced extension (cf. Corollary 4.3):

1 i2 1 j2 2
0 Em+1 Dm+1 Em+1 0

o

1 ~1p1 1
0—E, ,—V E,  ——E,  /(°)—0.

Since there is no Adams-Novikov differential and no nontrivial group exten-
sion in this range (except in the case m = 0 and p = 2), this also determines
7. (T(m)) in the same range. This was the goal of [I].

1.2. Introduction to II. To descend from T(m + 1) to T(m), we can consider
some interpolating spectra T(m) ;) introduced in Lemma 1.15. Each T(m)y; is
the T(m)-module spectrum satisfying

BP,(T(m);)) = BP(T(m)){t},,, |0 < ¢ < p'}

and the natural map T(m)(;y — T(m+1) is an equivalence in dimensions below
P'ltm1]. In particular, we have T(m) gy = T(m) and T(m)() = T(m + 1).
The Adams-Novikov E,-term for T(m); is

E) = Ext;’;*(BP)(BP*(T(m)(i)))

and it is reduced to ®
S,% i
EXtI‘(m+1)(Tm )

by Lemma 1.15, where T E,? is the BP,-module generated by
{t’ ., 10<¢<pik.

Then, we have the 3-term resolution of TE,? by tensoring the short exact se-
quence (1.1) with T,S?, and the associated spectral sequence {Ef’t, d,},>1 con-
verges to Exty,, H)(Tf,? ) with
) Ext?(mﬂ)(T%Z ®pp, D,,) fors=0,
B = 1Exty, . (Tw ®pp, E,,,) fors=1, (1.6)
0 otherwise.

The only nontrivial differential is d; : E?’O - Ei ¥ induced by j; (1.1), and the
spectral sequence collapses from E,-term. Thus we have

Proposition 1.7. The Adams-Novikov E,-term for T(m);) is

kerd; fors =0,
Ext;(mﬂ)(T’(q?) =~ ycokerd, fors =1,
EXti“ZriHl)(Tg? ®gp, Ey, ) fors>2.

Note that the groups for s = 0 and 1 were determined in [Nak08, Proposition 2.5,
Theorem 4.1 and §5] (See also Proposition 2.6).
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Once we know about T(m);) for some i, we can descend the value of i by
using the small descent spectral sequence (Theorem 1.21), whose E;-term is

E(Npi1,) @ P(bpgr ) .. (T(m)ig1))

1’21‘ m+1_1 2,2 i+1 m+1_1
where h,,,,; € E| PP ) and bmi1,; € Ej Prp ) are permanent cy-

cyles. Note that we know 7,.(T(1)(3)) below dimension p3|t,| by Theorem 4.5
without any use of spectral sequences, since the dimension is smaller than
p?|t;] and T(1)3y = T(2) in that range. This allows us to compute 7. (T(1))
from the information of 7,(T(1)()). Since T(0)4) = T(1) below dimension
p*|v; |, this also makes possible to have 7,(S°) in the same range.

In this paper we assume that m > 0 unless otherwise noted. The main re-
sults are the determination of the Adams-Novikov E,-terms for T'(m);) below
dimension p|v,,,3| in Theorem 6.14. In this range there is still no room for
Adams-Novikov differentials, so the homotopy and Ext calculations coincide?.
Itis only when we pass from T'(m)(;) to T(m) that we encounter Adams-Novikov
differentials below dimension p?|v,,,|. For m = 0, the first of these is the Toda
differential d,,_1(8,/,) = alﬁf of [Tod67] and [Tod68], and the relevant cal-
culations were the subject of [Rav04, Chapter 7]. An analogous differential for
m > 0 was also established in [Rav], and we will discuss it somewhere else in
the future.

2. A variant of Cartan-Eilenberg spectral sequence

Assume that M is a I'(m)-comodule for some m. Once we know the structure
of Ext;(m)(M ), there is an inductive step reducing the value of m. Set

A(m) = Zplvy, - s0,] and  G(m) = A(m)|t,,].

The pair (A(m), G(m)) is a Hopf algebroid. Then we have an extension of Hopf
algebroids (cf. Proposition 1.2)

(A(m),G(m)) — (BP,,T(m)) — (BP,,I'(m + 1))
and the associated Cartan-Eilenberg spectral sequence
ExtGo (Extr (M) = Exty, (M).

A T(m + 1)-comodule M is naturally a I'(m + 2)-comodule, and we will denote
Ext(r)(m +2)(M ) by M for short. In particular, we have

=) ;

T, = A(m+ 14, 10 < ¢ < pil.
Then the Cartan-Eilenberg E,-term converging to Extii(m H)(T,(q? ®gp, Erln L) is

s s s/ s 0] 1
B3 = Exty 1) (BXty 0 (Tod ®sp, Epy )

2Form = 0, the second author determined the structure of Ext;az)(Tél)) in [Rav04, Theorem
7.5.1] for p > 2 below dimension (p* + p)|v,|.
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’ —() "
~ S S 1
= BXC) 1T @ amet) EXEipy ) (EL 1) @.1)

- SO o 1"_ X X
with differentials d, : £5* — EX ™" ! Since the case s’ = s” = 0 is not
interesting, we will assume that s’ + s’/ > 1.

For simplicity, we will hereafter omit the subscript in ® (41, and we will

SH
denote Extr(m +2

. . " "
isomorphisms Extsr(m +2)(E;11 ) & U}S71 :11 and

)(BP*) by Uf;l/ 41 Since ng +1 10 (1.1) is weak injective, we have

s s / —() 1
B 2 Exty,)(Tm @ Us ) fors” > 1. (2.2)

Note that the structure of U;}k1 41 can be read from Theorem 4.5. This will be
discussed again in Corollary 4.1.

~ o —1
To describe E; 0 we need a resolution of Epg = Extg(m +2)(Erln +1)- The ob-

vious one is obtained by applying Extg(m +2)(—) to (1.5). In practice, there is a
“smaller resolution”.

Now we recall some notations used in [I]. For a fixed positive integer m, we
will set 0; = v,,4; and f; = t,,,,;, and define

N

[
N 2 P Py N )
5i/61,eo = e ’ :Bi/el = ﬁi/el,l’ Bi = 5i/1’
1
~N ~N

B, = _2 Y _ Ay ~
Bise, = o Bi=B,, and 7=

i/eg i
Then we have

Proposition 2.3. Let B, be the A(m + 1)-module generated by ,[/3\1’ i fori>o.

Then B, is a sub G(m + 1)-comodule ofE}nH/(vf") and it is invariant over
I'(m + 2). Its Poincaré series is

k+1 k

xP (A —yP)

g(Bm+1) = gm+1(t) Z i
k20 (1 = xP)(1 — x5

wherey = thul x = ¢lol X, = tl%2l and

m+1

1
gm+1(t) = H 1—y, where yi = tlvil.
i=1 L

Proof. This is [NR09, Theorem 2.4]. To clarify that ; are inE, . /(v$°), note

m
that an element in N? lies in Erln 41/ (@7°) if and only if it has trivial image in
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(M° /Dgl +1)/(©7°). This can be shown using the commutative diagram 3

1 11 1 00
0 EYT—I Ul Em+1 Em+1/(vl ) 0
0 N1 M! N? 0

| | |

0—— M°/D) ., — vy (M°/D) ) —— (M°/D)) )/ () — 0

where M’ and N' are usual chromatic comodules. Define w € DY , | by

w= (- prHAF — " (2.4)
Then we have 0, = p(1, + 4,w) and
_ P, + Aw) _ P, + w)

i 1
ipv; iv

ar
Bi/i i
1

which is clearly in (M° /D?n +1)/(U7°) as desired. O

Let W,,,; be the G(m + 1)-comodule* defined by the induced extension in
the following commutative diagram (cf. [NR09, (1.4)]):

I
l Wm+1 Bm+1 0

I

—1 —1
0——Ep — Ul_lEm+1 - Em+1/(vfo) —0

—1
00— Em+1

In fact, we can describe W, ; explicitly. Recall that

o
2,
Ext;(mH)(BP*) ~ A(m+1) 55 li> oz.
Applying Extr,,2) to (1.1) we have the short exact sequence

~ —1 o)
0 — A(m)[4]/A(m +1) — E,yy — U, .| — 0.

: —1
Then, a lift of 5} /ip € U}, .| t0 Ep,4; is given by

612 — (v w)!

ip where w is as in (2.4).

i

3For m = 0 and p > 2, E} /(u%) is isomorphic to N2.
4For m = 0 and p > 2, we may simply set W, = Extg(z)(Di) (cf. [Rav04, (7.2.17)]), since the
map E} — D} induces an isomorphism in Exty,,.
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and a lift of B\l' ;i € B,41 to W41 is given by

. 17y
b= 3 (; _1)—@ U;j 2]

, —1
So, W41 is the subcomodule of M! obtained by adjoining v b (i > 0)tO E .

The following properties of W,,,; can be read from [NR09, Theorem 2.4].

Proposition 2.5. W, isweak injectiveand themap : E,,.; = W, induces
an isomorphism in Ext’: we have ExtOG(mH)(WmH) = U}LH.

—1
Now we have a 3-term resolution of E,,,

—1

0— Epiq — Wini = Byyy1 — 0.
Let C** denote the cochain complex obtained by applying ExtsG(m +1)(T£,{) ®—)
to the sequence

-0 Lo(jl)* ‘0
m+1 Wm+1 Bm+1

and let H**(C) be the associated cohomology group. Then we have

Proposition 2.6. Forn = 0 and 1, H"°(C) is isomorphic to the Adams-Novikov
E,-term Ext;(m +1)(T£,i)).

—(i)
Proof. Since W, is weak injective over G(m + 1), T, ® W, is also weak
injective by Lemma 1.14 and C* = 0 for s > 1. We have the commutative
diagram

C0,0 CI,O CZ,O
~0,0 L« 1,0 P+ 2,0 ~1,0
0 E, C C E, 0 (exact)

and isomorphisms C*5~1 ~ E;’O for s > 2. The map (j;), coincides with the

differential d; : Ef’o - Ei’o of the resolution spectral sequence of (1.6), so we
have

H(C) = ker(j;), = kerd,,
HY(C) = ker p,./im(jy). = E°/im(j,), = cokerd,. O

The structure of H™?(C) for n = 0,1 was determined in [Nak08]. We can
also read the following result from the above proof.
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Proposition 2.7. For the Cartan-Eilenberg spectral sequence of (2.1) we have

ker p, fors' =0,

E;/’O ~ Jcokerp, (=H?*°(C)) fors' =1,

’_ —()
EXtgoneny(Tm ® Buar) fors' > 2.

Combining this with (2.2), we have the chart of Cartan-Eilenberg E,-terms
as in Table 1.

TABLE 1. The Cartan-Eilenberg E,-term of (2.1). Here all Ext
groups are over G(m + 1).

—() —() )
s"=2|Ext"(T,, U2 ,,) Ext'(T, ®U>,) Ext’(T, U,

—() —() —()
s"=1|Ext"(T,, ® U2,,) Ext'(T, ®U2,,) Ext’(T, ®U?,))
" 1=
s"=0 ker p, coker p,, Ext (T, ® By41)
s =0 =1 s'=2

Note that the case s’ = s’ = 0is not interesting here, as we stated before. For
coker p,., we need to recall some results from the other papers. For a G(m + 1)-
comodule M, denote the subgroup ﬂan ; ker7, of M by L;(M). Then, the map

=)
(c® 1y : Lj(M) — Extgy,,, Ty ® M)

is an isomorphism between A(m + 1)-modules by Lemma 1.12. Thus, to obtain
the structure of E;’O, we may alternatively examine the map

Px * Li(Wypp1) — Lij(Bpy1)-
The following can be read from [Nak08, Corollary 4.3].

Lemma 2.8. The coker p,, is isomorphic to the quotient
Li(Bmin) [ (AGm + D), 10 <i < pi ).

The structure of L;(B,,;) is determined in [NR09] for all m and j. In partic-
ular, the following is the results for j = 2.

Lemma 2.9 ([NR09, Theorem 6.1]). Below dimension p*|05|, Ly(B,,11) is the
A(m + 1)-module generated by

{Al.’/t |i21,0<tSmin(i,p)}u{ﬁapbrb/t|p<t§p2,a>0and03b<p}.
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2 2
In particular, below dimension |L’)‘§ * / vf |, the comodule B,,,; is 2-free and
Ly(B,,41) is the A(m + 1)-module generated by

{ ! minty | 1> O}U{ﬁi/t Ip<t<p?<i<p? +p}. (2.10)

2
m+1

3. Extending the range of E

In Theorem 4.5 we determined the structure of Ext;i(m +1)(BP*) below dimen-

sion p?|0;|. Here we extend this range to p|03|. This is the dimension where

the subcomodule E? .| of E} | /(v$°) starts to behave badly for m > 0.

By Lemma 4.2 the Poincaré series of Erzn ., below dimension p|0;| is at least

2
xX(1-y) . x? (1 — yPth)

8m+2(t) , (3.1)
A=x)A=%)  (1—x")1—x3)
where
1 N
Zmi2(t) = H Tl x; = tloil, and y = tlul,
I<ism4z L — 1Y

The first term corresponds to the module described in Theorem 4.5, and the
second term presumably corresponds to

BP. /(p,01){Bp/j pra-j 10 < j < p}.
We see that
OP j—2—k
) UZ p pJ ~p—k 0
Bp/ip+2-j = P = Z Kk 4w EE;+1/(01 )

pP+2—J'v{ 0<k<j k v{_

(where w is as in (2.4)) for j > 2, but ﬁp/l,pﬂ & E;Hl/(v;”). We get around
this problem by replacing B\ p/1,p+1 With

m+1
AN l/)\p l/)\ Uzl/)\p Up 1
Boppn = i~ 3t — € B}y /(0)
p/Lp+l 7 pp+l 2 p+2 2902 m+1/\"1 /-
b7ty puy pv] p°v;

Then, our extension of Theorem 4.5 for m > 0 is the following.
Theorem 3.2. Let Efn 1 be the A(m + 2)-module generated by the set
Biscli+12 j+IdUlBy/iprami 1 225 < PJULB, 1 pia )

Below dimension p|0,|, it has the Poincaré series specified in (3.1), it is a sub
I'(m + 1)-comodule ofErlnH/(vl‘”), and its Ext group is isomorphic to

A(m +1)/T, ® E(hy 0) ® P(b10) ® B, By | 1 21,2 <k < pl.

In particular Ext’ maps monomorphically to Extl%(m +1)(BP*) in that range.
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Proof. Define a decreasing filtration on BP, /(p®, v°) by 05/ p° v] € F"ifand
only if a — b — ¢ > n. Then, each element of the first set belongs to F~! and the
submodule generated by the set is a subcomodule. We also see that the reduced

expansion of ,BP /j,p+2—j 18 in F ! though ﬁp /j ] p+2—j itself is belonging to F2

and the reduced expansion of [3 p/1p+1 is in F~2. Thus the module generated by
the assigned set is a comodule as desired.

The Ext group can be computed similarly to the proof of Theorem 4.5. [
Remark 3.3. From (1.5), we have the long exact sequence:

(2)* (.]2)*
) —2 Ext°(DY, ) —22 Bxt*(E2 ) )

51

(i2)«
LExt Y(EL L),

where all Ext groups are over I'(m +1). As we have seen in Lemma 4.1, the map
(i), induces an isomorphism in Ext® for m = 0. However, for m > 0, we have
a non-trivial element

N pm+1 ~ 1
pvlﬁp/l,pJr1 =-v, 0j/pv; €kerd.
This is actually the first such element and the map (i,),. is still isomorphic and
Extl(l(m +1)(Efn ,1) is isomorphic to Exti(m +1)(BP.) below its dimension, p|0;|.

0 —— Ext’(B!

4. Quillen operations of some elements

Recall that the Quillen operation 7; : M — sl M for G(m + 1)-comodule
M is defined by

P = 28 @F(x) + -+
J

In the following sections we will need the action of some ,Q’}Jillen operations on
M = U}, ., to compute the Cartan-Eilenberg E,-terms E;* (s” > 1) of Table 1.
A translation of Theorem 3.2 to the present context is the following.
Corollary 4.1. Below dimension p|03|, we have an isomorphism
U:,:rzl =E (flz,o) ®P (52,0) U2,

where Ufn 41 Is isomorphic to the A(m + 1) /I,-module generated by

oo 4
.. = 8051 o _ s0s1
U ;=066 T po; ,up/k—55(pv)|0<l<p]>02<k<p

(4.2)
and &° and 8 are the connecting homomorphisms for the short exact sequences

0—-BP, - M’ N!'50 and 0->N'->M' - N?2-0
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respectively. The bidegrees of elements are |ﬁ2’0| =(1,[t,]) and |Z)\2’0| = (2, |/t\§|).
In particular, we have
2a+e ~ Ra—1 7€ 2 _
U =b2,0 ®hz’0®UmJrl fora>1lande=0,1.
So, it is sufficient to know the Quillen operations on Ufn e Instead, we here

compute the Quillen operation on Extg(m +2)(Erln +1/ (V7)) after pulling back el-

ements of (4.2) by the composition of connecting homomorphisms:

Ext® (Bl J(®) = Extl, (B )12 (4.3)
X T(m+2)\ " m+1 vl X T(m+2)N"m+1 ~ m+1° :

The corresponding elements will be denoted by @l jand @F Jk-

Remark 4.4. The choice of @l j is not unique: the definition of @, ;j has ambi-
guity up to elements of ker §1. In particular, the comodule B,,,; is involved in
ker 6! and we may tack any element of B,,,,; to 6; i

Recall the recursive formula (3.10) for the ?, i» which are independent of m:
g\l = 1\1, lg;z == 22 + flif’ ?3 == ;{3 + 511\5 + fzi\fz. (45)

On the other hand, the expression of 0; in terms of /Ti depends on m. For small
values of i, we have

0
Lemma4.6. InD, , form > 0, we have

01 = piy,

pm+1/\

0, =ph+Q- Pp_l)vv?f —-v; Ay,

0y = pAs — ppz—lvzifz +¢ mod (v,), where ¢ = vz;l\fz - ggmﬂ;l\l E: ; ;’
Proof. By (3.9) we have
Pg\l =0y,
pt,=0,+ 5165 + AlﬁfMH,
~p? m+2’?\2 (m=1),

m+ ~
2+v§ t, (m>2).

The result follows from (4.5) and the relations between ¢; and v;. O
Define the element £ in D .| by
0 (m=1),
g = Uzl/)\é) - m+1

vaf 1 (m>=2).
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1

m+1
Lemma 4.7. For m > 1, we have vfg’ = ¢ mod (p?, vf )inE, ..

~ m+1
Proof. Note that 0 = v;47 mod (p, v? Y. Form > 2

Py _ 2p p p™tla _  p  pop _
v ¢ =0(114))P — v v, 1 =00, —vju, A4 =§
pm

+1). The case m = 1 is similarly proved. O
1 yp

mod (p?,v
Proposition 4.8. Define ép, jfor j > 0by

~p
PN Uy gp

PJ = 2| pl.pv, 1+p?
b puy p!.pvl

D

(4.9)

Then it is in Ext®

rms+2) B /(07)) and satisfies 5051(5p,j) =1y

Proof. By Lemma 4.7 we see that

. . ~ 2 . .
500 0pA—pP oA + 9P BP0
p!'pvl p!'pvl p!.pvi-’-pz p!.pvi+p2

mod E}n +1/(U7°). Direct calculations show that Q) p,j 18 invariant over ['(m + 2).

i
Since v, ” '£p/p? isin ker &1, the second statement follows. O

Proposition 4.10. Define 5, jfor0 <i < pand j > 0by(4.9) and the downward

induction on i:
A~ _ _1/\ A .
ei,j =U, rp2(6i+1’j) fOVO <1<p.

Then they are in Extg(m”)(ErlnH/(vf")) and satisfy 5051(@,1-) =1

. . . 0 .
Proof. The first statement is obvious since EXtr, +2)(E}n 41/ (V7)) is a subco-

module of E; +1/@). Since the second term of (4.9) is in ker 5! and each
Quillen operation commutes with the connecting homomorphism, the second
statement follows. O

The following lemma on Quillen operations is useful.
Lemma 4.11. The k-fold iteration of 7,; is congruent to k! 7y ,; modulo p/.

Proof. Since ryr, = (**')ry,,, the k-fold iteration of 7 is equal to
N

(kp)t.

where the coefficient is congruent to k! modulo p/. O

Then we have
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Proposition 4.12. Quillen operations on é\l, jfor0<j< p? — p are given by
?p2(91,j) =0 and ?p(el,j) = jvzﬁj+p—1/p

up to unit scalar multiplication.

Proof. By Lemma 4.11 i"\pz(é\l, j)isaunit multiple of v, P +1?p3 @ p,j)» and we can
check ?p3(§p, i) = 0. Similarly, ?p(é\l, j)isa unit multiple of v, b +1?p3_pz+p(§ i)
which can be computed by direct calculation.

Proposition 4.13. We have

k/\
A~ ~k 2 V) 9'_]{7' .
6= D, 7 ® Zkl' L mod ().
0<k<i :
Proof. Roughly speaking, this follows from k!i’\kpz(é\i’j) = v'z‘éi_k’j since

?pz(é\iﬂ, D= vzéi, j- More precisely, it is enough to consider d)(vg _ié\i, j) mod

(vé)) using the equality vf_iéi,j =(p—i) f"\(p_i)pz(é\p’j). O
Proposition 4.14. Define é\p /k (0 <k < p)by

2 m+2
~p PP P A
5 0, v, 0, v, 0,
p/k = % T 24k
pvy  puv? p

Ullc+1 ’
Thenitisin Extg(m+2)(Erln+l/(vl°°))Aand satisfies 5051(§p/k) = T, . Moreover, it
is G(m + 1)-invariant: we have 7;(6, ;) = 0 for all j > 1.

Proof. By Lemma 4.6, modulo E}L RVACS.

P A~n3 2. ~An3 m+2 A~
PP PP p P3P p P
5 - vid, +0,4; v, - Up A4 v, v
p/k = k - 2
p>+k k+1
bvy bv; 2N
2
PP 2 \p"2 7P
_ U1 4, (PP - A4 —
=124 - =0
pUy puy
form =1, and
An2 ~n3 m+2 ~ 2. ~Apn3 m+2 A~
PP pap> _  p"Hiap p . ..P*3P prtt o ap
5 = vid, tu A —uy A vy up A v, Y _ o
p/k = k - 2 =
p>+k k+1
pvy pY; pv;

for m > 2. The second statement follows since all terms in & p/k €xcept for the

leading term are in ker §'. The last statement follows from direct calculations.
O
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5. The homotopy groups of T(m),,

In this section we determine the homotopy groups of T'(m) ), below dimen-
sions p|03| by analyzing the Cartan-Eilenberg E,-term of Table 1 for j = 2. By
Lemma 2.8 and 2.9 we have

2 2
Proposition 5.1. Below dimension |l?§ i / vf |, the Cartan-Eilenberg E,-term

of Table 1 for j = 2 satisfies E;/’O = 0 fors’ > 2, and E;’O is isomorphic to the
A(m + 1)-module generated by

(B, 11220 <t <minG—1,p}U{B | p <t <p?}

2 2
Note that |l?§ +1/vf | is larger than p|03| if m > 0.

Thus our remaining task is to determine the structure of

~ o ’ —(2) ”
s's" s +1
E,” 2Extgu, )Tm ® Ul fors” >1.

. . . . . ~s'1 . . .
Since this is a certain suspension of E; (i.e., tensored object with some power

of 32,0 and i‘t\z’o), it suffices to treat the case E;/’l. Below dimension p|0;], de-
fine the v,-torsion free A(m + 1)-submodule U° of v;'U? , | by adjoining the
elements

o'l 10<i<p,j>0tufv,’l,|2<k<p}

to Urzn +1- Note that UY is a comodule since the congruence in Proposition 4.13
is modulo v; and the ignored elements have non-negative v,-exponent after

applying vy !, We also define the quotient comodule U by the following short
exact sequence:

0—>Uﬁi+1—>U°—>U1—>O (5.2)

The Quillen operations on v, P ) € U? are trivial by Proposition 4.14. The
behavior of Quillen operations on v "1’21-, j € U? follows from Proposition 4.10,
and it is demonstrated in (5.3) for p = 5, where each diagonal arrow repre-
sents the action of 7, up to unit scalar multiplication and the elements in the



THE METHOD OF INFINITE DESCENT II 247

rightmost column are out of our range except for j = 0.

~ ~ ~ ~

Uyj o U,j Us,j Us,j Us,j

Uy Uyj Uy Ugj Uy Uz Uy lyj Uy Usj

oA PN PN PN
Uy Upj Uy Uz Uyl Uy Us (5.3)

aavA
aavA
avavA

3 3 —_3A
Uy Uz j Uy U UyTUs

/
/

Uy Ugj Uy Usj

Uz_sil\s’j
Proposition 5.4. U° is 2-free, and we have an isomorphism of A(m+1)-modules

e e De .
ExtOG(mH)(Tm QU = A(m + 1) ® {v; 'y j, v, P, | j > 0,2 <k < p}.

0
G(m+1

Ly(U%) = () kerF,.
t>p?

—(2)
Proof. By Lemma 1.12, Ext )(Tm ® UY) is additively isomorphic to

In (5.3) the only possible elements with trivial action of 7. are v, ;. Note
that

Fe(vy 'y ;) = 8981 (v; 17 (61,)))
and Uz_l?g(é\l’j) = 0 for ¢ # 1, p? because

m+1

~

o) t1)

. . 2

~ e~ > _ P

s 005 | 0,(05 +0pt] — 0,
puy puy

Indeed, we have 7, (v, ' ;) = 0 even for ¢ = 1 or p? because

WH—l_l ~

6] and Uz_l?pz(é\l,j) = 3\]

are in ker'. Thus all Quillen operations on vy o, j are trivial. Note that

v, rl(GlJ) =0,

—(2)
it is also shown that there is a bijection between ExtOG(m +1)(Tm ® U and
0
ExtG(m+1)(U0).
The diagram (5.3) also suggests the equality of Poincaré series
g(Ext’(U?))

g where x = /0l
- X

gU° =
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and we have

=D Lo _ oy, L3P _ g(ExCUY)
g(Tm ®U)_g(U) 1—x - 1—x

= g(Ext’(U®)) - g(G(m + 1)/I)

—(2)
= g(Ext’(T,, ® U%) - g(G(m +1)/I)
which means that U° is 2-free. O

Proposition 5.5. U! is 2-free, and we have an isomorphism of A(m+1)-modules

=~ ~ . ;
Extg ey Tm ® U = A(m +1)/I; @ (i /v, | i 2 1, > 0}.
Proof. The analogous diagram to (5.3) for p = 5 is as follows:

ﬁl,j/vz ﬁz,j/vz a3,j/Uz ﬁ4,j/U2 as,j/UZ

ﬁz’j/vg ﬁ&j/U% il\4,j/U§ il\s,j/vg

Uy ;/vy Uy /vy Us;/v)
N N
ﬁ4,j/v;‘ ﬁs,j/U;1
ﬁs’j/vg
In this case Ext’ is generated by the elements in the top row. The 2-freeness of
U! is similarly shown to U°. O
Proposition 5.6. Below dimension p|0s|, the Cartan-Eilenberg E,-term of Ta-
ble 1 for j = 2 satisfies
~d ~ ~ / —(2)
Stl
E) "™ = E(hy) @ P(byo) ® ExtgmenTm ® Uppyr)

and

~§’,1 = Eth(mH)(T;? ® Uﬁq+1)
Am+1)/L, @ (i1, U, | i 20,2<k < p} fors' =0,
21 AMm+2)/L; QY. | € > 2} fors' =1,
0 fors' >2
where 7, = &2 (ﬁm / vz) and &2 is the connecting homomorphism associated to
(5.2). The operators behave as if they had bidegree 1/1\2’0 € E(z)’l and 52’0 € Eg’z.
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Proof. By Proposition 5.4 and 5.5, we have the 4-term exact sequence’

- —(2) —(2) _
0 — Ey" — ExtgpyyTm ® U®) — Ext, (T ® U — By — 0

and E;,’l = 0 for s’ > 2. Since the image of the middle map is

Am+1)/L, @ {ily /vy | j 20} = A(m +2)/I; @ {il; o /v,}

we obtain the result. O

By Proposition 5.1 and 5.6, Table 1 is reduced to the following one:

TABLE 2. The Cartan-Eilenberg E,-term of (2.1) for j = 2.

—(2) —(2)
s" =2 |BExt"(T,, ® U2 ) Ext'(T,, ® U3, )) 0
—(2) —(2)
s"=1|Ext’(T,, ® U2,)) Ext'(T,, ® U2,)) 0
s"=0 ker p, described in Proposition 5.1 0
s =0 s'=1 s'=2

Proposition 5.7. Below dimension p|03|, the Cartan-Eilenberg spectral sequence
of Table 1 for j = 2 collapses, and we have the short exact sequence

0— B — Ext (1) — B — 0

which splits for s > 1, but not for s"” = 0.

Proof. The spectral sequence collapses since we have only two columns in Ta-
ble 2. The middle groups is isomorphic to Exti,(:qil)(Tgi) ®Er1n +1)» and the short
exact sequences follow by inspection of Table 2. For s” > 1, it splits because

r= 4 . . . P 4 . . ..
EM s U,-torsion while Eg’s s v,-torsion free by Proposition 5.6. For s” = 0,

2
for example, an element

0,1

~ 0 —(2) 5 o
U € EXtG(m+1)(Tm U, ) =k,

is killed by v;, however, its lift

Py /p
0s1/A y_ sosi| U3 Lab, 2 )
86! B10) = %' | 3 - | Ext ey (T2)
1

is not killed by v;. Thus, it does not split. (|

>The case m = 0 was described in [Rav04, Lemma 7.3.5].
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Theorem 5.8. Below dimension p|03|, the Adams-Novikov spectral sequence for
T(m)(y) collapses.

Proof. We have computed the Adams-Novikov E;‘ = Ex tF(m H)(T(z)) forn >
2 and the shortest possible differential is dypy E** - EP™*. The first

2 2
element in the target is h2 Ob ul 0 € E2p Tl , and its total degree

2,0
z(pm+4 + pm+2 _ p2 _ p) -3
is larger than p|03]. O

6. The homotopy groups of T(m),,

In this section we determine the homotopy groups of T'(m) ;) below dimen-
sions p|03|. To determine the Cartan-Eilenberg E,-term of Table 1 for j = 1,
we use the algebraic small descent spectral sequence of Theorem 1.17: For a
G(m + 1)-comodule M and non negative integer i, there is a spectral sequence

converging to Extg(m+1)(T ® A(m+1) M) with

~ ~ —(i+1)
Ey' = E(hyj) @ P(byj) ® Bxty )T~ ®ameny M)

with El,j € Ei’o, Bl,j € Ef’o, and d, : E¥' — E*"'7" In particular, d,
is induced by the action on M of rp; for s even and r(,_;),; for s odd. Note
that r(,_1, is congruent to the (p — 1)-fold iteration of rp; up to unit scalar
multiplication.

—172
The case M = U, ., is easy.

Proposition 6.1. Below dimension p|0;|, the algebraic small descent spectral
sequence for Um 41 collapses from the E,-term, and

Ex tg;’,‘1+1)(T ® U2, )= E(h,)®P(b) ® ExtG(mH)(T ‘o U2 2.

Proof. Since the action of 7, on U,fq 41 Is trivial by Corollary 4.1, the E;-term

coincides with the E,-term. The differentials d, : E;’l - E;+2,o are also trivial

since the source is v,-torsion while the target is v,-torsion free. By Proposi-
tion 5.6 the small descent spectral sequence has only two rows, and so d, = 0
forr > 3. O

Hereafter we will denote iy ; by #; for short. Since

5" ~ Bxt

—(1) "
5 G(m+1)(TWl QUS T fors” >1,

m+1

the following is a translation of Proposition 6.1.

Corollary 6.2. Below dimension p|0s|, the Cartan-Eilenberg E,-term of Table 1

setbs’ 1 ~ sets'
Ez EXtG(m+1)(T ® U +1)



THE METHOD OF INFINITE DESCENT II 251

is isomorphic to
A(m + 1)/, ® [, i |12 0,2 < k < p

E(il\z,o, 1/1\1,1) ® P(bAz,o, 81,1) &® S
Am +2)/I; @ {7, | € > 2}

where the bidegree of elements are i € ES’I andy € E; ! and the operators behave
as if they had the bidegree h,, € Eg’l, by € Eg’z, hi, e E;’O and by ; € E~§’0.

The algebraic small descent spectral sequence for M = B, ; was treated in

2 2
[NRO09], which we summarize here. Below dimension |1’f§ i / vf | it collapses
from E,-term since B, is 2-free by Lemma 2.9, so we need to compute only

—(2)
d;. On the elements of Ext?}(m +1)(Tm ® By,41) (2.10), we have
?P(ﬁi,/el) = 51’—1/81—1, ?p(ﬁpi/el) =0 and ?pz—p(ﬁl{/p) = 6i—p+1/1

up to unit scalar multiplication (cf. [NR09, Proposition B.2]). It may be helpful
to demonstrate the behavior of d; for p = 3. The following diagrams describes
d; related to the first set of (2.10):

(6.3)

33/1 33/2 B33

~,

Corresponding to the diagonal containing ﬁ; Pt
by

the subgroup of E; generated

E(l/’l\1,1) ® P(B\l,l) ® {é\;/l’ S A;/p}

reduces to simply {BA; "
diagonal containing ,@p ,1- On the other hand, corresponding to the diagonal

} on passage to E,. The similar argument is true for the

containing ﬁ\l’ N (2 <i < p) is the subgroup generated by

E(],/;l,l) ® P(B\l,l) ® {@/19 L) A;J/p_“_l}
which is reduced to P(bALl) ® {B\l_' it I//z\l,l [/3\; /p_i+1}. The similar argument is true
for the diagonal containing BAP Ji (2 £i < p); the subgroup generated by

E(hy1) ® P(b1.1) ® {Bp)is s Bap—i/p}
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reduces to P(Em) ®{B\ b/is I/’l\l,l B\z p—i/p}- In particular, the subgroups correspond-
ing to El’) /1 and ﬁ p/p Survive to E, entirely.

Remark 6.4. In the diagram (6.3) we can read off the existence of certain Massey
products. For example, if we have a relation 7,(b) = a, then we have the Massey
product (Em, il\l’l, a), as we will explain in Appendix A. In general, if we have
a sequence

~ ~ ~

p p p .

a— aq_; — - — q (0<i<p) (6.5)
then we would have the Massey product (I//z\l,l, s il\lyl, a,) with i-factors of fl1,1
whose representative has the leading term?f ® a;. In this paper we denote this
Massey product by y;(a;), although it is denoted by pia; in [Rav04, Definition
7.4.12].

Note that the entire configuration is I’Jf -periodic. The diagram containing

,67 p2/1 corresponding to the right one of (6.3) is combined with the diagram for
the second set of (2.10):

3\11/3 3\11/9
?BA /%A
Bioss 10/9 (6.6)
LA e
Bosr Bos7 Boys Boso

Then, the summand corresponding to B\pz k(1 <k< p? — p + 1) reduces to
{B\pz /k}» and the summand corresponding to ,é\pz /p2—¢ (0 < ¢ < p —2) reduces

to P(by,1) ® By et a1 Bpose e}
By these observations we have the following result:

2 2
Proposition 6.7 (NRO09, Proposition 7.3]). Below dimensions |l?§ + / vf |, the
Cartan-Eilenberg E,-term of Table 1

, . —()
By = Bxtg ey Tm ® Bs)

has the following A(m + 1)/I,-basis:

PO @ (B, Bpp} ® B 11 <k < p>—p+1}
)

~

P(ﬁﬁ) ® {Al hy1 B

i/r p/p—i+1’ﬁp/i, h1,1‘32p—i/p [2<i< p}

P(Em) ®
{;sz/pZ—t’ahl,lﬁp2+t’/p2 | 0<?< p- 2}
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subject to the caveat that l/)\zék Je = [/)’\ k+1/e- The bigrading of elements are (omitting

unnecessary subscripts) B\ S E;’O and the operators ﬁm and 31,1 behave as if they
had the bidegrees given in Corollary 6.2.

2 2
Note that the range of dimensions (i.e., |1’i§ *+ / vf |) exceeds p|03| for m > 0.

Now we have determined the Cartan-Eilenberg E,-term for j = 1. In the fol-
lowings we will see that the spectral sequence has a rich pattern of differentials,
which is essentially independent of m.

For the differential

7 . 51 s =1 2 s +2,0 s'+1 =D
dy : By = Bxtg (T @ UZ ) — By 70 = Bxtgl (T ® By
we may ignore the v,-torsion part of the source (i.e.,y-elements) since the target

is v,-torsion free. For the other part, we have the following result®.

Lemma 6.8. The Cartan-Eilenberg spectral sequence of Table 1 for j = 1 has the
following differentials:

(1 dz(ﬁl) = ivzﬁl,l,é.\Hp_l/pfOV i#0 mod p.
cen T TN A 1 ~ A .
(ii) dy(hy 1) = (p - 1)vzb1,1ﬁi+1/2forl = —1 mod p.

All differentials commute with multiplication by 31,1-

Proof. We are considering the Cartan-Eilenberg spectral sequence for T,SP ®

E}L +1» and its Ext® for s’ > 0isa quotient of (isomorphic to for s’ > 1) Ext’ ™}

for TS) ® Erln +1/(V7?), so we can work in the cobar complex over G(m + 1) for
the latter comodule. .
The differential (i) follows from 7, (#;) = iv,;4 p—1,p given by Proposition 4.12.
We also have 7., (#1;) = ( i l)vzﬁiﬂ /> and the differential (ii) by Lemma 4.11.
p—
O

Now the diagram (6.3)) for p = 3 is reviewed as follows. In each case the
graph now has 2p + 1 instead of 2p components, three of which are maximal:
ar

! !
3/1 3/2 3/3

Bin

In fact, each d; in the small descent spectral sequence behaves as it were the
Cartan-Eilenberg d,. Note that the bigrading of elements in the small descent

6The result for m = 0 was described in [Rav04, Lemma 7.3.12].
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spectral sequence are B e EY*, 0 € EX* and 7 € E>°, and each operator has
the same bigrading as that for Cartan-Eilenberg spectral sequence. In general,
the small descent d, correspond to the Cartan-Eilenberg d,,; for r > 1. See

Table 3.

TABLE 3. Bigradings of elements. Some subscripts have been omitted.

Cartan-Eilenberg spectral sequence for j = 1

S” =3 27017

S” = 2 2,01/2

| ~ | ~ | A~ A
/, AN AN
S =1 u | | , | hl l,lu
w [T e~ i
s7=0 * B ! 118 1 118
=0 §=1 s'=2 s'=3

" =4 bagil | huabaol | b1abagl | uabiabaod |
s"=3 Az,oﬁ : A1,1i1\2, 7 : A1,1i1\2, i : A1 1/\1,1;1\2, 7
***** - - - - -t - T 71
s'=2| @ ;Ena ;B“a; hy by 20
B maB | buB | mabuf |
=1 % | 1 1
ss=0 s =1 s'=2 s'=3

-1

—(1)
Remark 6.10. In (6.9) the “virtual” element v} #; lives in ExtOG(m +1)(Tm ®

. 0 . .
U?) but not in ExtG(m+1)(Tm ® Ufn+1). This means that h1,1blf71.31+p—1/p is not
actually trivial but v,-torsion, and that it is chromatically renamed L’)’Zb’fl?l.
This is a feature of the cases m > 0 and it does not happen for m = 0. For

example, in the chromatic spectral sequence we have

1

vlo0s ot 5,0
RPN 2 V293 2 DyU3 A~
de(vz u) =d, - el = U1

bu; pvf bu1U;

m+1_1/\/\
l/)\p/t\p [ (5151 PNERPN
and  d(v7'fy) = — 2L — 2 =—h,1B
i\ “1 pvp pU; = 1,1Pp/p-
1

The second term in d; is the product of ¥; with an invariant element x. It is
ignored because we are working in T'(m)(y); it is the coboundary of 1 x.
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It is also observed that bk+1 Bip,> is renamed 0, 0P~ h1 1b1 ,71- For example, we
have

11~ ~2p—1 ~p—1~~2p

-5 5 _ 4l v, 05 U3 0, b U3ty o E
Uy hyatpy) = de | 1] T T Yy a7
bu; pu pu10;
1
oPer P
and  d;(v;'hy 1, 1) = -1 ® 0 + o =b1afp)a
1

The following result concerns higher Cartan-Eilenberg differentials, and we
will prove it in the next section.

Theorem 6.11. The Cartan-Eilenberg spectral sequence of Table 1 for j = 1 has
the following differentials and no others in our range of dimensions:

(1) ds(ﬁz oﬁ) = 0231 1/?{4_1 Jfori#0 mod p.
(i) ds(k DX @) = vyhy by 1h20b261"1 LforiZ0mod p,k >1ande =0
orl.
(iii) d2k+3(h1 1”12 obz Ou ) = Uk+1h1 1karl
k<p-1
(iv) d2k+2(h1 1b2 o) = kabk 51+1/k+2 fori=—-1modpandl <k <
—1(thecasek =0is Lemma 6.8(ii)).
) dzp_l(hl 1bp a u;) = p lbf,lﬁi_pﬂforl’ = —1 mod p.

2,0 20

H_1/k+1fori =—-1modpand0 <

All differentials commute with multiplication by 31,1.

Since each source of the stated differentials lies in E,"* or £, it cannot be the
target of another differential. Moreover, each differential has maximal length
for the bidegree of its source. Thus, the source should be a permanent cycle if
a differential is trivial.

Remark 6.12. We can define a decreasing filtration on B,,.; and U, by

Ilﬁl/Jll—l—J—L @l =i+[i/pl, and [|pll=Ilvill = |lv,l| = 1.

Then the source and target of each differential listed in Theorem 6.11 have the
same filtration. A similar filtration for m = 0 is discussed in [Rav04, Lemma
7.4.6]. In (6.9) all elements along the same diagonal (e.g., f5,, ,Bg /2 B33 and

vy 141, in filtration 0) have the same filtration.

Remark 6.13. Again, we obtained the differentials of the form d,(x) = v;y,
each of which doesn’t kill y but makes y into a vg—torsion element, as we have
already seen in Remark 6.10. For example, the differential in (i) means that

31,1 ﬁl’ 41 is killed by v; in the chromatic cobar complex we have

d(vy hz oth) = —b1,15,+1 + 612 20715
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50 +05h;, 71 is the new name for by ;5. . Similarly, hl,lbl,lh;’ob’;’glﬁi_l is re-

i ™ N AN .o =~ =~ 2 . _1/\ ~ AN see
named l?lzhioblz‘,oyl by (ii), and h1,1b1,1,3;) is renamed l’)f hy 1h, 071 by (iii).

There are some patterns of differentails associated with each component of

(6.9), which we now demonstrate for p = 3. For example, for BAZ we have the
following diagram:

51,1/32 51,152 ]’/1\1,1 73\1,152 5?,1,32 }/1\1,1 B?,lﬁz

a1

3/2 h’l,lﬁ:},/z d3 bl,lﬁg)/z h’l,lbl,lﬁS/z d’} b1,163/2 h’l,lbl,lﬁ

/

X1 h1,1x1 b1,1x1 i h1,1b1,1x1 ds

g

X3 h1,1x2

where x; = v k l/’l\z,oi)\’;alﬁk, and the boxed elements are permanent in the Cartan-
Eilenberg spectral sequence. The underlined elements indeed survive, how-
ever, each of these changes into v,-torsion element (cf. Remark 6.10 and 6.13).
Itis also observed that hl,lﬁg/z, by1B,and h ; bl,lﬁg/z correspond to the Massey

products 1(B,), 1 (12(B2)) and pa(py(ux(B2)) respectively (see Remark 6.4).
Similarly, for 85,3 we have the following diagram:

5A3/3 E1,15A3/3 51,153/3 21,131,152/3 Ef,lgsm

7 ?/
ds

I hiay by hi1biay1 /4,

%) I/’l\l,lyz
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_ —k/\k—l/\ ~ Ea) . A A ~
where y, = v, bz’0 uy and hy ;833 is renamed 0,¥;, and for 85/, we also have

the following diagram:

B3z MiBsys  briBsy

V

Bas3 hiBass /a,
Ptk

e

z hy1z

where z = Uz_li\tz, and we have El,l‘é\4/3 = /12(,@3/2).

Finally, we have the following result:
Theorem 6.14. Below dimension p|0;|, the Cartan-Eilenberg E ., -term of Table 1
for j = 1is the direct sum of the followings:
(1) the Aim+1)/I, ® P(ﬁf)-module generated by

{ﬁ{, B\,z’ ,B\Ilﬁ ;é\p/lﬂ ;é\p/Z; 1’71,1//3\;}
@

P(El,l) ® {il\l,lgl,)/p_iﬂagp/j |[2<i<p-13<j< P}
©®
R R P(b11) ® {ilo}
E(hy) ® P(byp) ® o ;
{’/’1\1,151\1' IOSiSp—Z}

(i) the A(m +1)/I; ® P(0)-module generated by
E(}Alm) ® {65_1771}

N A S v, A1,122 o/1>
E(hy0) @ P(b11,b20) @ | {037, 12<i<p-2} / lg_lb1,1b2,o?1,
N2 b1
{0271}
where the second summand is only for p > 5;
(iii) the A(m + 1)/I,-module generated by

{Epz/k | 1SkSP2—P+1}
@
(BB 105 <p—2)
P(b11) ® <) ;and
E(il\l,l’ I/’l\z,o) ® P(gz,o) ® {ﬁp/k |2<k< P}
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|t —s | Element |

46 B

98| B
42| By
146 | B3
150 B

a1
A3

154 T
189 0o
193 | hy,fB) B
197 | hy B,
201 | Iy
202 B,
205 | Tyl
240 | Drhy 011
241 Oop
252 | hy1hy oty
253 | hy, iy
254 B
284 | by,Bys
288 | 05hy 171
292 | B5hyoth

FIGURE 1. The elements of Ext®’
and t — s < 426.

[t—s] Element | [t—s] Element |
296 by 17 355 |  hy1byoly
297 V2 357 hy 11l
298 | By 358 B,

302 Be 2 359 | hy byl
304 | hy1hy ot 361 hy T3
306 éé 382 | 03by1hy 011

Bs 383 |  O3bii7h
308 b, ,Aoﬁo 394 | 0yh,0by 071
310 Us 395 6\%52,0?1
331 Aﬁz/lzl,l?l l/’l\l’li’l\Z,OJ//\Z
335 h1,1b1,15;/2 396 l/fghz,o)’/\l
339 | 027y a7y 031,17,
343 | 0071 397 07
344 | hyiPs 400 | Dyhy 0>
345 o' 401 037,
347 73\1’1]/’;2’01/1\0 406 | hy 1 hy obs ot
348 h 07> 407 | hyybyofhy
349 iz\l’lﬁg/z 408 | hy1hy il

5,7, 409 |y,
353 | hypL 410 Bs

(iv) the A(m + 2)/I3-module generated by

Now we have computed Extﬁ(m +1)(Tf,?) for n
Novikov differential in this range because the first element in filtration > 2p+1
is 1’)\25{ Il?l, which is not killed by d,,_;. Thus, the Adams-Novikov spectral se-
quence for T(m)y collapses and Theorem 6.14 gives us the stable homotopy
groups of T(m)q). The elements for (p, m) = (3,1) are listed in Figure 1 and

E(hy1, Ro0) @ P(by1,b20) ® {70 1 ¢ 2 2},

Remark 6.15. Theorem 6.11 (iii) and (iv) mean that some elements in the sec-
ond summand of Theorem 6.14 (i) have higher v,-torsion. They should be re-
named chromatically so as to be realized explicitly that they are v,-torsion.

depicted in Figure 2.

sp,8p)BP(T(D ) for p =3,

> 2. There is no Adams-
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"(9%q -dsax) '2q Aq uonedrdnnu ay) st om} 8y} jo uonnsodurod ay [, ‘((— Oty ‘Ofy) “dsar) (— Ty Ty)
uorjerado jonpoid Lassey oy pue (Ofy -dsax) 'y £q uonesrdnnur ayedrput (saurf anfq ‘dser) saul pay e
‘Ta pue d £q uonesrdi[nu 9)eJIPUI SAUI] [BIUOZIIOY PUE [RI1}IA JI0YS *
"Ta Aq paY[IY SIUSUIS[D 9)BIIPUI SaIeNDS pUE ‘S)USWTS 931 UOISI0}-4a J)BIIPUI SIOP PI[OS *
“uoIsuaWIp 9zt 03 dn suorsuduip ut € = d 10§ (U(1).1)*dD P xg 7 TANDIL

1

00¥ 00¢ 00T 00T

-02q pue 97y 0) poje[eI SUO IB[IWIS S} PUE
AR.H,:\N LN:\N Cons .H»HQV —
(x ,3: Cone ;;53& — xﬁ.ﬁ

uone[aI Ay} asn Apjuanbaiy om a10H




260 HIROFUMI NAKAI AND DOUGLAS C. RAVENEL

7. The proof of Theorem 6.11

In this section we give a detailed proof’ of Theorem 6.11 for m > 0. As is
stated in the proof of Lemma 6.8, our spectral sequence is a quotient of the
Cartan-Eilenberg spectral sequence and it is enough to prove each differential

by computing in Cr(mH)(T,(Yll) ® N?).

Lemma 7.1. For m > 0, we have a cocycle E;o = p‘l(vfgl,l + d(?;)) in the

cobar complex over I'(m + 1), which projects to 32,0 in that over T'(m + 2).

Proof. Recall that we are using the symbols bAL jand 32’0 for their cobar repre-
sentatives, namely

~ _ 41 _pitt +1_p
by =pa(@")=- ¥ p(f, et

0<t<pitl
and  byy=p ' B ®1+107 -, ®1+1®H)P)
=- 3 p—l(ij)?g R mod (7).

0<t<p

Then the result follows from d(#) = @ ® 1+ 1@ % — (B, ® 1+ v,b 0 +1®
,)P). O

By Lemma 1.4 and Lemma 7.1, it follows that the product of any permanent
cycle with b, is again a permanent cycle. This implies that each element in

Am+1)/1, ® E(l//l\l,l, Ez,o) ® P(i)\l,la Z)\z,o) ® {ﬁp/k |2 <k < p}
&)
A(m +2)/15 Q E(hy 1, hy0) ® P(by1,by0) ® 72, 73}

is a permanent cycle, unlike the case m = 0.

Lemma 7.2. Let t5 be the conjugation of t;. Then we have

_ _ SN
o~ ~ ~ A =1

AG) =T @ L+ 1®% — vibyg — vaby, +11 @0 Jorm
0 form > 2.

The difference between t3 and —t; has trivial image in T(m + 2).
= A~ A 2 = ~ .
Proof. By definition, t; = —t; + t11+p for m = 1and t; = —t5 for m > 2. Since

~ ~ ~ ~ t t form=1
Af) =5 1+1Q® T3+ v1byg + vyby g + 1® 6
0 form > 2

we have the result. O

"The case m = 0 was treated in [Rav04, §7.4].
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66,
Proof of Theorem 6.11 (i). We may use pz_v instead of 7i; because these have
1
the same &'6%-image (4.3) into U2, |. For i > 0, we have

~ 6[21/)\3 ~ ApZ pm l-/)\l
d t2®1®pT =t2®(02t1 -V, t1)®1®_
1

buy
m+1 . m+1 .
SN S VUG
d 2® 1® =t2®t1®1® ’
buy pu1
~~p? Uzﬁé ~ 2 RPN Uzﬁé
AL @19 —=|=—(6L07 +7 @f 1Q —2,
(21® ®pvl) LW +7 ®%)® ®
2 v, 0 5 V0L 0,051
AV 919 ———— =" @L®1Q® —+b,; ®1Q —=—.
(i+ 1Dp?v, pY; (i + py,

The sum of the preimages on the left represents IfAzz,OiZ,-; summing on the right
gives the result. U

Proof of Theorem 6.11 (ii). We glve the proof for k = 1 and € = 1. The gen-
eral case follows by replacing b2 o by b 20 (Lemma 7.1) and tensoring all equa-

tions on the left with the cocycle (b2 O)k L
We have 7(3;) = 0 + z mod IP""', where I = (p,vy,...) and z = v, ¥ + pi,.
By this and Lemma 7.2 we have
d(bry®1® 1) =Dy o ® d(1® ;)
l/)~l+p—k

= by ® v, Q1 —2——
0<;<p k ) (l+p)PUp+1

~+p—1
UP

- _ £ — ..
= b20®vz (i+pt; @1 ®(‘+p)pv + -,

A~+p-1
0, p

P
d|-®v, —(l+p)t ®1 ®W

A+p—1
U p

(l+p)pvp+1

N1
Uy

(Hp)pvl
p

= —(Ulbzo + Uzbl D®u| =+ P)/t\p ®1IR

~ i —1 2
~he-uirpie (T ) e1e
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~i+p-1
2

("P)pvy

A+p—1

~ . ~D Uz

— b Uy [—(i+p)t; ®1® prTTS—— + -
("Ppvy

= by ®v,| -+ P ®1®

l/)‘l—l

.o~ 2 2
+lU2t3®/t\f®?f ®1®_7
by

and

. 0210
d(-Here1e 2—
puy

0-10; 2 oot
2 _iheTeunl @19 —.
Pty 251
The sum of the preimages on the left represents Ez,oﬁi, and the terms on the
right add up to

=—ivyh; ®TT®1®

Nel~ g i+p-1
N 000710 (i + po2o,?
b1 ®1® |-
L1=5 pu; i+p) P
(""P)pvy
p
07105 0,

=i ®TT®1Q® - —
> pYy i+p—1 UP+1
oy

The inspection of E,-terms described in Corollary 6.2 shows that the element
represents —iv,hy 1 by 11— as claimed. O

To derive (iii), (iv) and (v) from (i) and (ii), we use Massey product argu-
ments. Oberve Figure 3 for p = 5, in which each diagonal is similar to (6.5)
and the arrows labeled d, are related to Cartan-Eilenberg differentials given in
Lemma 6.8 and (ii); for example, the differential 33(52,01/24) = 0251,151,1% is
denoted

Py ~ 3 Py ~
by otly — Uyby 1 Us.

Proof of Theorem 6.11 (iii). For k = 0 this is a direct consequence of (i) via
multiplication by iz\l,l. We will illustrate with the casei = p—1and k < 2, and
the other cases are similarly shown. For k = 1, we have the sequence analogous
to that of Remark 6.4:

b2,0up—1 - UZbl,lup—Z - Uzbl,IBZp—3/p —_— Uzbl,lﬁp/3-
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\\

U255/2 A Bs/2 57/2 :58/2 59/2 gﬁo/z

S

% bl 1:35/3 02;86/3 R 57/3

~

03%,155/4 R 0531,156/4 R 0257/4 63/4
* &

Ugé\ilﬁs/s ~U;B\i156/5 ; 0531,157/5 ; 0258/5 _ 59/5 510/5

>
>

=
e
=
©
Tb
i
S

/
%
/4

Bs/3 Boy3 310/3

//
VY

/J>

59/4 ﬁA 10/4

%>

d
U
474~ 373 o~ 2972 T~ o
Uzb1,1“0 ) Uzbu“l : vzbl,luZ o Ubquy Uy
3 3 3 3
NI ry A~ ~ o~ ~
Uzbl,l 20U1 vzbu 20Uy Usbyaboolis byl

y;
>/:Jv
)/

212 12 o 7~ 2 =

2b1,1b2,0 2 by 1b2,0 3. b2,0”4
& N

=~ AN /\3 AN

02b1,1b2,0u3 - b2,0u4
3

4 A

by otha

FIGURE 3. Differentials for the case p = 5.

This allows us to identify vzhl 1b1 1lp_2, up to unit scalar multiplication, with
the Massey product ,up_l(vzbl’lﬁp ,3)- 1t then follows that the differential on
hy ohy1(byott,—1) is the value ofhz,ohl,l,up_l(vgbl,lﬁpﬁ). Now h, ohy 1 (resp. by 1)
is the image of 3, (resp. 8,,/p) under a suitable reduction map, so we have

ds(a,l’/’l\z,ogz,oﬁp—ﬂ = i/l\Z,OI//l\l,lf'{p—l(Uggl,lﬁpB) = Uggl,lﬁzﬂp—l(ﬁpﬁ)
= vgb\l,l#p—l([g\z)gpﬁ by Lemma A.8
~ ~ _3/\ _3 A~
= Ugbl,llup—l(ﬁz)vf ﬁp/p = Ugi)\ilvf /"p—l(ﬁz)

=0, le(,é\p_l) by Example A.9
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as claimed. For k = 2, we have the sequence8

7 7

B2 8y~ 0,8y 1Bty s 0252 By s - 03B2 By sy T e P 03B
2,04p—1 V201,102, 0Up—2 Y 11”p—3 Uyb7 1 Bap-a/p Yy 115p/4

By the similar argument to the case k = 1, we have
d;(hy 112,053 1) = Moo -1 (0357 B a) = 0357 Battp1 (Bpya)
=0, 11,up 1(/32)5;)/4 by Lemma A.8
= UZbl 1’up 1(52)0 ﬁp/p = Uﬁ’\i 1 f “u (,32)

v2 11 ,u3(6 p—2) by Example A.9

as claimed. O
Proof of Theorem 6.11 (iv) and (v). We have the sequence

ds dy -~ ey 15k P k“b

bko/\P 1= T Ulzcbllcl Up-1-k — Vs 11‘82P 2-k/p T " —v 11ﬁp/k+2
for1<k<p-1,and
~p— d d —1~p—
D AR N
for k = p — 1. Thus we have
7k A~ _ Iup l(v +1b1 16p/k+2) fork < pb— 1
dr(bz’oup—l) p—17p—1~
Mp—1(0; b11 ) fork=p-1
up to unit scalar multiplication. Since h1 1Hp—1(x) = 31 1x we have
. ok k+1bk+15p/k+2 fork<p—1
dr(h b p D= p lb f
11 (7 ork=p—1
as claimed. O

Appendix A. Massey products

Here we recall the definition and properties of Massey products very briefly
(cf. [Rav04, A1.4]) and prove some results used in this paper. Let C be a dif-
ferential graded algebra, which makes H*(C) a graded algebra. For x € C or
x € H*(C), let X = (—1)'*98®y where deg(x) denotes the total degree: the

sum of its internal and cohomogical degrees of x. Then we have d(x) = —d(x),
(xy) = —=xy, and d(xy) = d(x)y — xd(y).

Let o € H*(C) (k = 1,2,...) be a finite collection of elements and with
representative cocycles a,_;, € C. When a;a, = 0 and a,a; = 0, there are
cochains a,, and a, 3 such that d(ay,) = ay1a;, and d(a;3) = a;,a,3, and
we have a cocycle by 3 = a,a,3 + @p1a; 3. The corresponding class in H*(C)

8Note that we may assume that p > 5since0 <k < p — 1.
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represents the Massey product (a;, r,, a3), which is the coset comprising all
cohomology classes represented by such b, ; for all possible choices of @; ;. Two
choices of a, or a 3 differ by a cocycle. The indeterminacy of (a;, a,, a3) is
the set

a HI%%I(C) + HIM®!(C)a;.
If the triple product contains zero, then one such choice yields a b, ; which is
the coboundary of a cochain aj ;.

If we have two 3-fold Massey products (a;, ,, a3) and {a,, as, &, ) containing
zero, then the a;_,; and a;_,; can be chosen so that there are cochains a3
and a, 4 with d(ay ;) = by3 and d(a, 4) = by 4, and the 4-fold Massey product
(ay, 0, a3, a4) represented by the cocycle by, = ap3a34 + Qo204 + G101 4-
More generally, if we have cocycles b; ;. and cochains a; ) satisfying

bix= D, Geapx fori<j<k<i+n (A1)
j<t<k
and d(a;jy) = bj for 0 < k — j < n, then we have the n-fold Massey products
(Ait15 - » Xiyp) TEpresented by b; ;.. The cochains a;; chosen above are called
the defining system for the Massey product.

If two products {(ay, ..., ¢,_1) and {ay, ..., &, ) are strictly defined (meaning all
the lower order products in sight have trivial indeterminacy), then we have

1Ay ey ) = {0y eer, Ay YUy
In fact, we can relax the hypothesis of strict definition in the following way.

Lemma A.2. Suppose that (&, ..., a,_1) and {a,, ... ,a, ) are defined and have
representatives x and y respectively with the common defining system a; j (0 <
i < j < n). Then, the cocycle xa,,_; ,, is cohomologous to a1 y.

Proof. If both x and y contain zero, then we would have cochains a; , and
ay -1 satisfying d(ag,,—;) = x and d(a,,) = y. Hence we could define the
cocycle by, (A.1). In that case we would have

d(bO,n) = d(mal,n) + d(aO,n—lan—l,n) + d(BO,n)
= —0p1Y + X1, + d(by,) =0

where
bO,n = 2 Qo,idipn-
1<i<n—-1
Evenif x and y do not contain zero, so we don’t have cochains a; , and a, ,,_;, we
can still define b, ,. A routine calculation gives the desired value of d(b, ,). [

We also have Massey products in the spectral sequence associated with a fil-
tered differential graded algebra or a filtered differential graded module over a
filtered differential graded algebra. Though our Cartan-Eilenberg spectral se-
quence is not associated with such a filtration, we can get around this as follows.
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LetT,, = ®L>o T, be a bigraded comodule algebra with i being the second

grading and the algebra structure given by the pairings T, ® TJ - Tlﬂ

Recall that for a Hopf algebroid (A,T) and a comodule algebra M the cup
product in the cobar complex C = Cp(M) is given by

71 ® - ®ys®@m)U (Y541 ® - ®¥syt ® mz)
=11® - ®r,®m i ® - @ myy @ m™m,
where y; € T'(m + 1) and m; € M, and mgl) ® - Q mitﬂ) is the iterated

coproduct on m;. The coboundary operator is a derivation with respect to this
product and C is a filtered differential graded algebra; we have

d(xuy) =dx)Uy + (—1)%e®x U d(y).

Now we have consider the two quadrigraded Cartan-Eilenberg spectral se-
quences:

Extom+1)(EXtroms)(Tn)) = Extpimin)(Th), (A.3)
which is associated with a filtration on C = Cry,11)(T,), and

EXtG(m+1)(EXtF(m+2)(T ®Em+1)) — EXtr(m+1)(T ®Em+1) (A4)

which is associated with a filtration on C’ = Cr4.1)(Tp, ® E! me1)- We may re-
gard the Cartan-Eilenberg spectral sequence of (2.1) as a quotient of the degree
p' — 1 component of (A.4).

Since C’ is a left differential module over C, (A.4) is a module over (A.3).
Then we can make a similar product (ay, ..., a;) with o; € H*(C) (1 < i < j)
anda; € H *(C") under certain conditions. In particular, we will be interested
in Massey products of the form

M (y) = (il\l,la s I//l\l,l,y> and M,’((x) = (x, ’/’1\1,1’ s I/’l\1,1> (A.5)

with k factors le,l. For1 < k < p, w(y) is defined only if 0 € w_,(y). If
Mi(up— () is defined for some k, then it contains 51,1 Y.

Remark A.6. flm S Ext;(m +1)(Tﬁl_l) is represented in the cobar complex by

x=-d@)=((®1+187) -197¥="®1  mod (p),

which means that ]/’1\1’1 becomes trivial when we pass to Ext%(m +1)(T,€l). Simi-
larly, we have

xux:d(xu?f)=d<2( JE et l)

i>0

Thus h1 1V hl 1 € EXtr(m +1)(TZ‘D ) maps trivially to Extr(m +1)(TZ‘D 1)
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Lemma A.7. Let x; = x as above and define x; inductively on i by
X = (iUt} - uxy)/i  (A<i<p)
Then x; is in Cr(mH)(TE,il_l)(p _1)) and it satisfies
X = (—1)”1?? ® 1/i! mod (p) and  d(x;) = Z xj U X j.
0<j<i

Proof. We will prove these statements by induction. For the first statement,

let us assume that x; € Cr(mﬂ)(TE,i_l)(p _1)). This means that it has the form

c’t‘iﬂ?—l ® %(11'—1)(1?—1) D(p—-1D-1
have

modulo Cr(mﬂ)(Tf,i— ) for some scalar ¢, and so we

Xip1 = (G U =T} UX;)/(i +1)

= C(t\i+p—1 ® ?ii—l)(p—l)+p _/ti+p—1 ® /igi—l)(p—l)+p)/(i +1)=0

modulo Cr(mH)(TiElp = ). For the congruence, we see that
G+ Dlxpyy = 105 U =P U xp) = (—1)H ((t*lp VU TP UGEr ® 1))
= (=1)*! (?llp ®?f _ft<ll+1)p Q1 _?llp ®/t\f) _ (_1)i+2/t‘§l+1)l) Q1.
For the derivation formula, we see that
(i + Dd(xi41) — x; U X — X U X;
= d(xl') U/t\f —/t\f U d(xl')

P _ 4P
Z ijxi_j ut, —t; U Z ijxl-_j
0<j<i 0<j<i

D 7P ™ _ 4P
Z (XjU(Xi_j Utl _tl le-_j)+(x]~Ut1 _tl ij)Uxi_j)

0<j<i
= Z ((i+1—j)XjUXi+1_j+(j+1)Xj+1 le'_j)

0<j<i
=(l+1) Z ijxiH_j. |

1<j<i
The following result follows easily from Lemma A.7.

2

‘we1) are represented by

Lemma A.8. Suppose that o, 3 € Extrgy, (Tl ® E
cocycles a, and by, and that there are cochains

h+(i-1)(p— .
a;,b; € Cr(m+1)(Tm+(l DD & E2. ) forl<i<k

satisfying
d(ai) = Z ai_j U Xj and d(bl) = Z xJ' U bi—ji

0<j<i 0<j<i
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where x; are as in Lemma A.7. Then the Massey products

h+k(p—1) 2
®E,)

. (), i (B) € Extripms)(Thy
are defined and are represented by the cocycles
Y, G—iUx and Y, x;Ubpp.
O<i<k+1 O<i<k+1

Moreover, we have oy () = ,u,’{(&),@ using these representatives.

Here are two examples of such products.
Example A.9. For 0 < k < p and ¢ > 0, the Massey product ,uk(,B ) is
defined and it is represented by

pt—k+1

(pt — k) 5,
k—
Z xX; U (=1) l( £ — ‘6€+1—i/k+1—i'

0<i<k+1

We have an equality U1Mk(5p€+1 W)= ,uk_l(ﬁé)“z_k)/(k —1—pt)fork > 1.

Example A.10. For 0 < k < p and ¢ > 0, the Massey product ,uk(,é\pf /p+2—I)

is defined and it is represented by
1A~ i+l (pf + k)' ~
XL U0 ek p+ D, X U(-1) 20pl 1 k — DiPpeHk-i/pra-i

1<i<k+1
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