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weak Triebel-Lizorkin spaces

Yanli Mo and Jingshi Xu

ABSTRACT. We introduce matrix-weighted weak Triebel-Lizorkin spaces and
establish the equivalence between the corresponding weak discrete sequence
spaces. In the scalar unweighted case, we first prove the boundedness of
almost diagonal operators on the weak discrete Triebel-Lizorkin space and
then extend this result to the matrix-weighted setting. Furthermore, we pro-
vide a characterization of these spaces in terms of molecules. Additionally,
we demonstrate the equivalence between the continuous function spaces de-
fined via a sequence of reducing operators and those defined directly by ma-
trix weights. These results ultimately establish a complete connection be-
tween matrix-weighted weak Triebel-Lizorkin spaces and their discrete or se-
quence space analogues. Within this framework, we develop several charac-
terizations of matrix-weighted weak Triebel-Lizorkin spaces: First, using the
doubling property of matrix weights and the Fefferman-Stein inequality, we
obtain the characterization of matrix-weighted weak Triebel-Lizorkin spaces
in terms of the Peetre maximal function. Second, combining the Peetre max-
imal function with the Fefferman-Stein inequality, we derive the Lusin area
function characterization of matrix-weighted weak Triebel-Lizorkin spaces.
Third, we utilize reducing operators and the Fefferman-Stein inequality to
provide the Littlewood-Paley g; -function characterization of matrix-weighted
weak Triebel-Lizorkin spaces. Finally, as an application, the boundedness of
the classical Calderén-Zygmund operator on these spaces is obtained.
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1. Introduction

Lizorkin [22, 23] and Triebel [32] have independently studied what is now
known as Triebel-Lizorkin space since the 1970s. Besov spaces first appeared in
the 1960s, introduced by the Soviet mathematician Oleg Vladimirovich Besov.
Many classical function spaces such as Lebesgue spaces, Hardy spaces, Sobolev
spaces, Lipschitz spaces, etc., are special cases of (homogeneous) Besov spaces
or (homogeneous) Triebel-Lizorkin spaces (see [33] for details). More theories
and applications of these two types of spaces can be found in [11, 13]. In [17],
Danging He considered the characterization of the square function of weak
Hardy spaces. In [16], Grafakos and Danqging He discussed various character-
izations of maximal functions for these spaces and presented an interpolation
theorem for HP* from the initial strong HP° and HP! estimates (py < p < p1),
as well as they introduced the weak Triebel- Lizorkin spaces. Obviously, the
usual Triebel-Lizorkin spaces are subsets of weak Triebel-Lizorkin spaces. In
[36], Xianjie Yan, Dachun Yang, Wen Yuan, and Cigiang Zhuo introduced vari-
able weak Hardy spaces and obtained the characterizations of atoms, molecules,
Lusin area functions, Littlewood-Paley g-functions, or g;-functions of variable
weak Hardy spaces. Wenchang Li and Jingshi Xu [20] obtained the equivalent
quasi-norms of the Peetre maximal functions for weak Triebel-Lizorkin spaces,
as well as atomic decompositions. After that, they established vector-valued
estimates for variable exponent weak Lebesgue spaces in [21], and then intro-
duced weak Triebel-Lizorkin spaces with variable integrability, summability,
and smoothness. They provided equivalent quasi-norms for these spaces using
Peetre maximal functions and obtained the boundedness of the ¢-transform
and their atomic and molecular decompositions on these spaces.

On the other hand, the theory of scalar A, weights originated from Muck-
enhoupt [24] and Hunt, Muckenhoupt, and Wheeden [19]. It has now been
extended to matrix weights. Matrix weights were developed in the 1990s, and
scalar methods cannot be directly applied in matrix-weighted spaces. In 1997,
in order to address some meaningful problems related to multivariate station-
ary stochastic processes and Toeplitz operators (see [31]), Treil and Volberg [30]
introduced Muckenhoupt A, matrix weights and extended the Hunt-Mucken-
houpt-Wheeden theorem to the vector-valued case. Subsequently, Nazarov and
Treil [25] introduced Muckenhoupt A, matrix weights, extended the theory
from p = 2to1 < p < oo, and obtained the boundedness of the Hilbert
transform on the matrix-weighted Lebesgue space LP(W). Volberg [34] pro-
vided an alternative proof using methods from classical Littlewood-Paley the-
ory. In 2016, Cruz-Uribe et al. [7] applied the theory of A, matrix weights on
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Euclidean spaces to study degenerate Sobolev spaces. For more research on
matrix-weighted function spaces and their applications, see [6, 8, 9, 10].

In recent years, Frazier and Roudenko [15] introduced the homogeneous
Triebel-Lizorkin spaces with matrix weights, denoted by F Z’q(W), wherea € R,
p € (0,), and q € (0, ], through the discrete Littlewood-Paley g-function.
Frazier and Roudenko [15] proved that for any given p € (1, ), LP(W) =
F g’z(W); andforanyk € N, F ’;’Z(W) coincides with the matrix-weighted Sobolev
space Lf (W). Frazier and Roudenko [15] also demonstrated that a vector-valued
function f belongs to Fg’q(W) if and only if its g-transform coefficients belong

to the sequence space f'g’q(W). As an application of the above results, Fra-
zier and Roudenko [15] obtained the boundedness of Calderén-Zygmund op-
erators on Fg’q(W). Qi Wang, Dachun Yang, and Yangyang Zhang et al. [35]

provided several real-variable characterizations of FZ’q (W). As an application,
they proved the boundedness of Fourier multipliers on this space under the
generalized Hormander condition.

In addition, Dachun Yang et al. [37, 38] introduced Besov-type spaces B:,’L

and Triebel-Lizorkin-type spaces F,;, with a new Morrey parameter 7 € [0, o)
and developed the real-variable theory for these spaces. They also demonstrated
that when 7 = 0, these spaces not only include the well-known Besov and
Triebel-Lizorkin spaces B;,q and F;q, but also encompass other function spaces
such as Morrey spaces and Q spaces. In recent years, for any A € {B,F},s € R,
7 € [0,00), p € (0,0), g € (0, 0], and Muckenhoupt A, matrix weight W,
Bu Fan et al. [1, 2, 3] introduced the matrix-weighted Besov-Triebel-Lizorkin-
type spaces A;L(W) on R" and developed their real-variable theory, includ-
ing p-transform characterizations, molecular and wavelet characterizations, as
well as the boundedness of pseudo-differential operators, trace operators, and
Calderon-Zygmund operators. In particular, A;”%(W) coincides with the matrix-

weighted Besov-Triebel-Lizorkin space A;,q(W). Recently, for any A € {B, F},
s €R, 7 €[0,00), p € (0,0), g € (0, 0], and any matrix A, , weight W, Bu
Fan et al. [4] studied the matrix-weighted Besov-Triebel-Lizorkin-type spaces
A;,Tq (W)on R". Subsequently, inspired by the invariance of integrability indices
in Triebel-Lizorkin spaces, Dachun Yang et al. [5] introduced the generalized
matrix-weighted Besov-Triebel-Lizorkin-type spaces A, (W) on R” with broad
generality, where A € {B,F},s € R, p € (0,), g € (0,0], v is a growth
function, and W is a matrix A, ,, weight. They developed the real-variable
theory for these spaces. Building on [5], they established the boundedness of
pseudo-differential operators, trace operators, and Calderén-Zygmund opera-
tors on the space Aj;" (W) in [39]. Moreover, the space A, (W) includes the
matrix-weighted Besov-Triebel-Lizorkin-type spaces Ai,’fq(W), and in particu-
lar, the matrix-weighted Besov-Triebel-Lizorkin spaces A;’q(W). However, the
weak Triebel-Lizorkin spaces with matrix weights have not yet been studied
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in the literature. Based on this gap, this paper will introduce the weak Triebel-
Lizorkin spaces with matrix weights and provide real-variable characterizations
of these spaces.

The organization of this paper is as follows:

In Section 2 we begin by providing definitions of fundamental concepts and
establishing notational conventions. In Section 3 we recall properties of classi-
cal scalar A, weights and the A, matrix weight class. In Section 4 we intro-
duce the definition of homogeneous matrix-weighted weak Triebel-Lizorkin
spaces FZ”EO(W) and F;;‘;Zo({AQ}), along with their discrete norms ||5]| 59 (Agh
and ”§||ff,,’go(W)‘ Here,a € R,0 < p < 00,0 < g < oo, W is an A, matrix
weight, and {A,} is its associated sequence of reducing operators. This section
presents several key lemmas essential for proving the main results of the pa-
per and establishes the norm equivalence |5]| £2 (Ao ™ 1IS]] £2 wy: In Section
5 we prove the boundedness of scalar, unweighted almost diagonal operators
on the scalar, unweighted weak discrete Triebel-Lizorkin space fggo Subse-
quently, this result is extended to establish the boundedness of almost diago-
nal operators on the weighted space f,% ({Ao}). Section 6 is molecular and
atomic characterizations of these spaces. In Section 7 we prove the equivalence
of the spaces F %, ({Ao}) and F /&, (W). In Section 8 we characterize the space
F;;ZO(W) using the Peetre maximal function, the Lusin area function, and the
Littlewood-Paley g;-function. Finally, in Section 9 we establish the bounded-
ness of classical convolution-type Calderén-Zygmund operators on the matrix-
weighted weak Triebel-Lizorkin spaces.

2. Preliminaries

To state the following results, we first introduce some notation. Let f < g
mean f < Cg for some positive constant C. Let f ~ gdenote f Sgandg < f.
LetN :={1,2,..}, Z, :=NU{0},and Z} := (Z,)". For any measurable set
E C R", let |E| be its measure. Define f, f(x)dx := % [ f(x)dx. Define
g(x) := g(—x). Let B(x,r) :={y € R" : |x—y| < r}, B := B(xg,rg),
and aB := B(xg,arg). For p € [1,0], let p’ denote its conjugate exponent,
ie,1/p+1/p’ = 1. For a measurable set E C R", let 1 be its characteristic
function. For any j € Z, define ¢;(x) := 2/"¢(2/x). Define the dyadic cubes
Qjk 1= Hle[z—fki,z—f(k,. +1), D :={Qj : j € Zk e Z" and D; :=
{Q € D : £(Q) = 27/}, where £(Q) denotes the side length of the dyadic cube
Q. For Q = Qjy, define

Po(x) 1= 2"2p(21x — k) = Q7 2p((x — x9)/¢(Q)),
where x, = 27k denotes the lower-left corner of the dyadic cube Q. Similarly,
define ¢Q(x). For a vector-valued function f , define

(f,8) 1= ((f1, &) oo » (s .
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S(R™) denotes the space of Schwartz functions on R". §'(R") is its topologi-
cal dual space.

So(R™) ;= {cp € S(R") . p(x)x¥dx =0, y € Zﬁ},

Rn
it is a subspace of S(R"). 8.,(R") denotes the topological dual space of 8., (R").
P(R") denotes the set of all polynomials on R". Then 8, (R") = §'(R")/P(R").
Foranym € N,

(SbRM)™ 1= {f 1= (f1, e, [ 1 i € {1, m}, fi € Sho(RM}.

For any ¢ € S(R"), ¢ denotes its Fourier transform, and for any £ € R", it is
defined as follows:

$(8) := (2™ / o(x)e-*Edx.

n

For any f € 8'(R"), (f, ) := (f,$). For any f € S(R"), f denotes its inverse
Fourier transform, and it is defined as follows:

f@) = @uy 2 | f(§)e¥de.
Rn

For any ¢ € S(R"), denote suppp := {x € R" : p(x) # 0}. Let f and g be
measurable functions on R"”. The convolution of f and g is defined by (f *

&)(X) = [, f(x —Dg()de. Define g; = f 1= (@) * fr,s @) * fi).
The Lebesgue space LP(R") is defined as the set of all measurable functions
S on R" such that || f]|.»rn) < co, where

1

(Jre F@IPdx)” . p € (0,00),

esssup cpn [f(X)], p = 0.

1fllzeny *=

Let 0 < p < o0, denote the weak Lebesgue space by LP>*°(R"), which is the set
of Lebesgue measurable functions f on R" satisfying

1
1S llLpeoqmny == iupﬂl{x ER™ 1 |f(x)| > A}|P < oo.
>0

For brevity, we shall henceforth abbreviate the weak-LP space LP-*°(R") as LP**.

Remark 2.1. For0 < A < o, by definition it follows that, ||| f|4||.pe = || f||?

LPAx”

Let p € (0,], g € (0,00], the space LP-°(£9) is defined as the set of all
complex-valued measurable function sequences {f ;}jcz on R" satisfy

< 00.

6 = W = [ Y
jez

L
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3. Muckenhoupt matrix weights

Let LIIOC(IR”) be the set of all locally integrable functions on R" (functions

that are integrable on every compact subset). Given a function f € Llloc(R”),
the Hardy-Littlewood maximal operator M is defined as

1
Mf(x) :=sup —

=38l
where the supremum is taken over all cubes Q centered at x with sides parallel

to the coordinate axes.
Next, we first review the concept of the classical A,(R")-weights.

/ FO)ldy, Vx € RY,
Q

Definition 3.1. Let 1 < p < oo and w be a positive measurable function on R".

If
sgp(ﬁ/()w(x)dx)(ﬁ/{)w(x)l_l" dx)p_1 < o0,

where the supremum is taken over all cubes Q, then  is called an A, weight func-
tion, denoted by w € Ap, or we say that w satisfies the Ap condition. If

Maw(x) < Cow(x)

for almost every x, then w is called an A; weight function, denoted by w € A;.
Here, M is the Hardy-Littlewood maximal operator and A, (R") denotes the set
U A4,[®R".
1<p<c0
Let m € N, and let A be an m X m complex-valued matrix. A is said to be
positive definite if for any Z € C™\ {0}, (4Z, Z) > 0. A is said to be non-negative
definite if for any Z € C™\{0}, (4Z,Z) > 0. M(C™) is denotes the set of all mxm
non-negative definite complex-valued matrix throughout this paper.
Regarding the matrix A as a bounded linear operator on C"™, we denote its
operator norm by ||A]|,

) |AZ]|
IA]| ;= sup —-—,
zecm\{o} |Z]

5 . m 1/2
whereZ = (zq,...,2,) € C™ and |Z| := ( >, |zj|2) . For any non-negative
j=1

definite matrices A, B € M(C™), we have ||AB|| = ||BA||. The norm here is the
same as the one defined above (see Lemma 2.3 in [3]).

Definition 3.2. Let m € N, and let A be a positive definite m X m complex-
valued matrix, satisfying that there exists an invertible m X m complex-valued
matrix P and a diagonal matrix diag(d,, ..., 4,,), where {44, ..., 4,,} C R, such
that A = P diag(dy, ..., 4,,)P~L. Then for any a € R, A% is defined as

A% = Pdiag(A{, ..., AP
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Remark 3.3. From the knowledge of algebra, it is known that the definition of A%
is independent of the diagonalization decomposition form. See Proposition 1.1 in
[18].

Next, we review the concept of matrix weights.

Definition 3.4. Let m € N. A matrix-valued function W . R" — M(C™)
is called a matrix weight if each entry of W is a locally integrable function and
W(x) is invertible for almost every x € R".

The concept of A, matrix weights is derived from the p.1226, (1.1) in [14]
and Definition 3.2 in [27].

Definition 3.5. Let m € N, p € (0, 00). A matrix weight W is called an A,-
matrix weight, denoted by W € A,(R",C™), if

(i) when p € (0,1], there exists a positive constant C such that for any cube
QCR",

1 1 p

ess sup][ ”WE(x)W_;(y) dx < C;

yeQ Jq

(ii) when p € (1, o), there exists a positive constant C such that for any cube

QCcR",
]é ]é Hwi(x)w‘iw

The expression |[W/P(x)W~1/P(y)|| in the above formula refers to the matrix
(operator) norm. The definition below is derived from the p.1230 in [14].

P
dy| dx<C.

Definition 3.6. Let p € (0, o). We say that a matrixweight W is a doubling ma-
trixweight of order p ifforall j € C™, the scalar measures wy(x) := [W/P(x)y|P
are uniformly doubling: that is, there exists C > 0 such that for all cubes Q C R"
andally € C™,

/ wy(x)dx < C/ wy(x)dx, (3.1)
2Q Q

where 2Q is the cube concentric with Q, having twice the side length of Q.
If C = 2F is the smallest constant for which (3.1) holds, then we say that § is the
doubling exponent of W.

The following lemma is obtained from Lemma 2.1 in [14] when 0 < p < 1,
and from Lemma 5.3 in [34] and p. 196 in [29] when p > 1.

Lemma 3.7. Let p € (0,00). If W € A,(R",C™), then W is a doubling matrix
weight of order p.

The following definition is Definition 2.14 in [35].
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Definition 3.8. Let m € N, p € (0, ), and W be a matrix weight from R"
to M(C™). A sequence of positive definite m X m matrices {Ag}gep is called a
sequence of reducing operators of order p for W if there exist positive constants C,
and C, such that forany z € C" and Q € D,

1
1 P
C1lA40Z| < <][ |Wp(x)Z|de) < CylApZl.
Q

The following definition is Definition 2.1 in [15].

Definition 3.9. Let {Ap}oen be a sequence of positive definite matrices, f €
(0,0), p € (0,00), and r € (0, ).
(i) If there exists a positive constant C such that for any Q,P € D,

[ g
_ (P)\" (6@ 1Xq — x|
AnAZLP < C max (—) <—) 1+ ’
|| Q4p “ { £(Q) ¢(P) max{¢(P), ¢(Q)}
then we say that the sequence {Ag}oeo is strongly doubling of order (8, p).

(ii) If there exists a positive constant C such that forany k,¢ € Z" and j € Z,
-1
”AijAth,” <CA+ k- fl)r,

then we say that the sequence {A,}oep is weakly doubling of order r.

Remark 3.10. By the definition above, if the sequence {Ap}qgeop is strongly dou-

bling of order (8, p), then by the arbitrariness of P and Q, taking ¢(P) = €¢(Q) =

27/, we have ||AijA5?f|| < CQ + |k — ¢])P/P, that is, {Ag}gep is also weakly
J

doubling of orderr := 3 /p.

The following lemma explains the connection between doubling weights W
and doubling sequences {Ag}oen-
Lemma 3.11. (Lemma 2.2 in [15]) Let p € (0,00), W € A,(R",C™), and
{Ag}oen be a sequence of reducing operators of order p for W. Then, {Ag}oen
is weakly doubling of order B/ p, where f3 is the doubling exponent of W.

Lemma 3.12. (Lemmas 3.2 and 3.3in [15]) Let W € A,(R",C™), and {Ag}oep
be a sequence of reducing operators of order p for W. Then there exists § > 0 such
that

(i) p € (0,1],

1
sup esssup [[AogW #(x)]| < oo.
QeD  xeQ

(ii) p € (1, 00),

1
sup 1 [|[AgW »(x)|[?dx < o0, 7 < p’ + 8.
QeD JQ

(iii) p € (0, ),

sup][ [We(x)Ag'|["dx < o0, 1 < p + 6.
QeDJQ
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(iv) p € (0, 00),

1
sup sup  |[Wr(x)A;|7dx < o0, n < p+6.
Q€D JQ PED:xePCQ
4. Definition of weakly homogeneous matrix-weighted
Triebel-Lizorkin spaces

To introduce the weakly homogeneous matrix-weighted Triebel-Lizorkin
spaces, we need the following definition.

Definition 4.1. Let the function ¢ : R" — C satisfy the following conditions:
(T1) p € S(R™);

(T2)supp ¢ C{§ : 1/2<|§] <2}
(T3)|4(§)] = C >0, 3/5<[§] <5/3.
Then g is called admissible, denoted by ¢ € A.

For simplicity, in the following content, let ® denote the collection of
sequences {g;};jcz, generated by all ¢ satisfying (T1), (T2), and (T3). Here,
p;() 1=2"p(2)-).

Definition 4.2. Letm € N, « € R, p € (0,), g € (0,00], and let W be

a matrix weight from R" to M(C™). Suppose {p;}jcz, € ®. Then the weakly
homogeneous matrix-weighted Triebel-Lizorkin space is defined as

Fsd W) = {f € (S@®)™ ¢ [|filgzagr) < o,
where X
[ iewip(p; « Plafe
j€ez
The usual modification is made when q = .

R
I llees wy 2=
Lpe

Definition 4.3. Letm € N, a € R, p € (0,0), g € (0, ], {Ap}gep be a
sequence of m X m non-negative definite matrices. Suppose{¢;}jcz, € ®. Then
the weak-{Aq} Triebel-Lizorkin space is defined as

Fot(Agh :={F € (Su@®)™ & [Ifllpzaqagy < o}
where

{2 2 (@Flage; « f|lo)q}a

I llEsa qagp *=
j€z7 Qe

P

The usual modification is made when q = co.

Definition 4.4. Leta € R, p € (0,»), g € (0, ], then the scalar, un-
weighted weak discrete Triebel-Lizorkin space f Z:Zo is the set of all complex-valued
sequences s = {Sqo}oep such that

1/
(@I 112sgl19)7}
Q

< 0.
Lp->

lIsll fza =
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Motivated by the definition of the scalar, unweighted weak discrete Triebel-
Lizorkin space f 4, we provide the definitions of the matrix-weighted weak
discrete Triebel-Lizorkin space and the weak discrete {A,}-Triebel-Lizorkin
space, where A, is a reducing operator for W.

Definition 4.5. Leta € R, p € (0, 0), g € (0, 00], and W be a matrix weight
from R"™ to M(C™), and let {Ap}oep be a sequence of m X m non-negative definite

matrices. The matrix-weighted weak discrete Triebel-Lizorkin space fz:go(W) is
the set of all sequences § = {So}oep such that

< o0.

Lpoo

S —ot/n— S 1/q
122, = |( X Qi1 /rsping)
Qed

Theweak discrete {A}-Triebel-Lizorkin space f ;‘;20 ({Ag}) is the set of all sequences
§ = {So}oep such that

S —a/ne - 1/q
1811724 aqp = H( > (1QI7/12Ag55]10)7) < 0.
QeD

L

The following Lemmas 4.6 and 4.7 respectively correspond to (2.8) and (2.9)
in [15].

Lemma 4.6. Let {p;}jc7, € ®. Suppose that {Ag}oep is a sequence of positive
definite matrices that is weakly doubling of order r € (0, 00). Then, for any given
A € (0,1], R € (0, ), there exists a positive constant C depending on A and R

such that forany j € Z, k € 7", andf e (8, (RM))™,
sup |Aq,(#; * A <C Y A+ [k —£)ARD

X€Qjk ¢ezn
xzj"/ 1Aq,, 9; * f(s)|4ds.
Qje

Lemma 4.7. Let M be the Hardy-Littlewood maximal operator, and let n > n.
Then there exists a positive constant C such that for any j € Z and any complex-
valued measurable function h on R",

DD+ lk—¢ym2n / |h(s)|ds1g, < CM(R).
kezn tezn Qje
The following lemma is Corollary 3.8 of the reference [15].

Lemma4.8. Let0 < p < 0,0 < g < 00, and W € Ap(R",C™). Let {Ag}oen
be a sequence of reducing operators of order p for W. Forany j € Z, x € R", and
f €L, (R, define

vi(0) 1= 3 WP (DA [1(x);
QeD;
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and
E() = Y ( f f(y)dy> 1.
QeD; \VQ
Then there exists a positive constant C such that for any sequence of measurable
Junctions {f j}jcz on R",
Iy i E;(f Djezlloeay < CIRE;(f D jezllioceq)-
Based on the above results, we have the following Lemma 4.9.

Lemma4.9. Let0 < p < 00,0 < g < 00, and W € Ap(R",C™). Let {Ag}oen
bea sequence of reducing operators of order p for W. Forany j € Z, x € R", and
fe L o(R™), define

yi() = 2 WP ()AL ILg(x);

QeD;
and
E() = Y (f f(y)dy> 1.
QeD; \VQ

Then there exists a positive constant C such that for any sequence of measurable
Junctions {f j}jcz on R",

Iy ;Ei(f D} jezllLosceay < CIRE;(f D} jezllLp=(ea)-

Proof For 0 < p < oo, 0<g< oo Fix q, and choose 0 < p; < p <p2< .
Let F = {E; (fj)} and |F| = |{E; (f])}||€q, at height « > 0, sphtF defining

F _F1|F|>a, Fo FllFls ,and F = F + Fe Itis easy to verify that
> Dz(A), A>a,
F >3 =1F
1Pl > 23] {Dﬁ(@, ea
and
0, A>a
Fe > 2} = ’
{IF%| > 2} = { Da(l) - Dae), A<a

where Dz(A) = [{|F| > 4}|. Therefore,

EAIE = py / AP-1D; ()dA
0

a o0
pl( /O AP (A)dA + / /lpl‘lDﬁa(/l)d/I)

a

(o4 (o]
pl( /0 AP1D2(a)dA + / AP-1Dg(2)dA)
a

apl - ©
< pi(Dp(@ "= + 1FII[f, [ AP1PdR)
b1 o
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- aplp - aplp
< o (ENE e S = I
(IFNE == = MFI e —)

aPr=P|[|F|||? - (4.1)

- p-p

Similarly, the same computation applied to Fe gives
IIFII = p2 [ A2 DR (2
0
a )
=p [ aDpaz+ [ 2pDa ()
0 a

= pz/o APZ_I(Dﬁ(/l) —Dlg(oc))d/l

N ab2—p ab2
< |F||7pe —— — Dp(e)—
P2(I1F N5 — = Dp(@)—~)
b2 — 2P
= ——= gb2P |F| - —D*(OC)OCPZ
Dhop IE L P
1% — 2P
< —=—aP27P|||F]||5 p.co- 4.2)
oD IEI L

Then by Lemma 4.8, (4.1), (4.2), we have
5 Mo > A
sz omadl, > 3| [l

<Cpq (%)pl /R ||{7’J‘Ei(fj)1|ﬁ|>a} .

<

> i}
¢4 2

dx

t4

+ sz,q (%)pz /Rn ||{7jEj(fj)1|ﬁ|5a}

2 P
- Cpl,q (I) LP1
+Chg (%)pz H”{VjEj(fj)lIﬂSa}
< CPl,q </El>p1 |{Ej(fj)1|ﬁ|>oc} 2’1
+ sz,q (%)pz H||{Ej(fj)1|ﬁ|5a}

2 P p 5
<c, (= pip|||F||P
— T P1q (/1> p_pla ”l ”le,oo

)2)
dx
¢4

141

|{VJEJ(f el

(Al

tq||Lp2

t4

P2

9]||Lp2

p-p ||| F||IP
aP27P|[F|||] peo

2 P> p2
+Cpu ()
P9\A) pa-p
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p P> o R P

< (525 + 5 ) 2 ) Cp ) A IFN
_1

settingaa = Ay, y = (%)pz_pl . Then, there exists a constant C > 0, such that

p2:q
for any sequence of measurable functions {f;};cz on R",

Y iEj(f DHlppeoceay < CIRE(f Y Lpeo(eay- U

The following lemma is the Fefferman-Stein vector-valued maximal inequal-
ity in weak Lebesgue spaces. Its proof can be found in Proposition 4 of reference
[17].

Lemma 4.10. Let p € (1, ), and g € (1, o). Then, there exists a positive con-
stant C such that for any sequence of measurable functions {f j};cz on R",

(> (M(fj))q}% (> |f,-|‘1}é

jez jez

<C

Lpe

Lpe

The following lemma is extremely useful. It states that for § € (0, 1), if for

each cube Q, E; C Q, and |Ep| > §|Q|, then 15, can replace 1, in the space

0L,q
p,x*

Lemma 4.11. Leta € R, p € (0,0), g € (0,00], § € (0,1). Suppose for any
dyadic cube Q € D, E; C Q is a measurable set and |Eg| > 6|Q|. Then for any
sequence s = {Sp}oen:

”SHf'f,’jZo ~ ||(Z (1Q17*/"|sq |IEQ)q)
Q

1/q

Lpe’
where TEQ = |Eq |_1/21EQ.

Proof. Since 1 0 < §1/ 214, it follows that

~ 1/q
l|(2(|Q|‘“/”ISQ|1EQ)q) H < Clisllga,-
Q Lp-

Furthermore, for all 4 > 0, 1, < 5‘1/‘4(3\/[(12‘0))1/‘4, where M is the Hardy-

Littlewood maximal operator. Choose A € (0, 1) small enough so that p/A >
1, q/A > 1, by the Fefferman-Stein vector-valued maximal inequality in weak
Lebesgue spaces, we have

1/A

(oot

Islljea < 671/

Lp/A,oo

< 5—1/A

(Z (|Q|—a/n|SQ|IEq)q>1/q

Q

Lp-eo



1208 YANLI MO AND JINGSHI XU

Combining these results, we obtain
- 1/q
Isllgz ~ [[( 22 (1QI=*/"IslTx,)")
Q

Theorem 4.12. Letax € R, p € (0,00), g € (0,00], and W € A,(R",C™).
Suppose{Ag}oep is a sequence of reducing operators of order p for W. Then there
exists a constant C such that for any sequence s = {§Q}Q€@,

O

e

||S||fZ’20({AQ}) ~ ||S||f;’Z°(W)'
Proof. (i) Next, we begin by proving: ||s||faq w) S ||s||faq {Ag)" For j € Z,
define y;(x) and E;(f) as in Lemma 4.9. For §= {SQ}QeD, define

= Z |Q|_a/n_1/2|AQ§Q|1Q~
QeD;

Note that on each Q € Dy, f is constant. Thus, E;(f;) = f;. Let

— Z |Q|—a/n—1/2|W1/p§’QllQ_
QeD;

Then we have

< QZD |Q|_a/n_1/2”W_1/pA51”|AQ§Q|1Q =v,fj =v;E;(f-
€2j

From this and Lemma 4.9, we deduce that
||S||f°“7 av) = IK8}lIpeceay < IV E;(f DM ILpoceay S IRE;(f HILpoocray
= ||{fj}||LP'°°(€q) = ||S||f';’:go({AQ})-

(ii) To prove that ||5]| 59 qagh ~ IIS]| f24 v it remains to show

||S||f;;’o({AQ}) S ||S||f°‘q (W)

Below, we consider two cases for p:
Case 1: 0 < p < 1. By (i) of Lemma 3.12,

|AgSollg < |[AgW VP [W/PS,|1, < CIWYPS, 1, ae.,
which implies ||S||faq {Agh S ||s||faq w)-
Case2: p > 1. Select n=1in (11) of Lemma 3.12 to obtain

sup][ |AoW~Y/P(x)dx < C.
QeD JQ

For any Q € D, define the set
={x€Q: [[AqWwP(x)|| < 2¢},

based on this, Chebyshev’s inequality yields

AoW-V/p
IQ\EQIS/ 1A (x)lld

= 5 f Maw el < gl
Q\Eq
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Therefore, we have |[Eg| > 1/2|Q|, and for this we can apply Lemma 4.11 and
the inequality |AoSo| < [[AQW ~V/P|[|[W/PS,],

1/q
- _ _ > q
1l 2, agp ~ ”( 2. (1QI7/m121 A0 |1, ) )
QedD

<l

~ ||§||f'g;go(W)- U

Lo

1/q
_ _ N q
X (1QIm 2w P 1))
QeD

Lpeo

5. Boundedness of almost diagonal matrices

First, recall the definition of scalar, unweighted almost diagonal operators
(see equation (3.1) in [12]).

Definition 5.1. Leta € R, p € (0,0), g € (0, c0]. A matrix A = {agp}op is
called almost diagonal if there exists € > 0 such that the matrix satisfies

3(51}13 lagp|/wop(€) < oo, (5.1

denotedas A € ad;’q(e), where

o(©) = (@) (1 . lxq — xpl

¢(P) max(¢(P), £(Q))

X min (<@>(n+e)/2 <@>("+€)/Z+n/ min(1, p, q)—n)
¢(P) ’ :

)—n/ min(1, p, q)—e¢

4())

For the needs of subsequent proofs, we will also require a weighted version
of almost diagonal matrices. This differs from the above definition of almost
diagonality because it involves the doubling exponent 5. The definition was
first introduced in [28].

Definition 5.2. Leta € R, p € (0,0), g € (0,00], and 8 > n. A matrix
B = {bgp}o e is called almost diagonal if there exists C > 0 such that for all
Q, Pe D,

|bop| < Cawgp,

denoted by B € adg’q(ﬁ). Here,

R
~ |xq = xp N e@)\" (c@)\®
‘”QP‘(“max(f(Q),aP))) mm§<%> %H 52

for some

a,>—-a—n/2+(f—n)/p+n/min(l, p,q),
a,>a+n/2+n/p,
R > n/min(1, p,q) + B/p.
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Remark 5.3. The matrixB = {bop}q pe p acts on a sequence .i = {So}oep via com-
ponentwise matrix multiplication: BS = t = {to}gep, where tg = 3, _,, bopSp.

We now first consider the boundedness of scalar almost diagonal operators
on the scalar, unweighted weak discrete Triebel-Lizorkin space f Z:go.

Lemma 54. [leta € R, 0 < p < 00, 0 < g £ o. Then on the scalar, un-
weighted weak discrete Triebel-Lizorkin space fj,‘;f;, almost diagonal operators
are bounded.

Proof. Without loss of generality, we may assume a = 0, since this case im-
plies the general case. LetJ = min(l, p,q) — §, where § > 0 is sufficiently
small. Suppose B = {bgp}q pep is an almost diagonal operator on fggo We
first decompose the matrix B = {byp}q pep as follows:

(BS)Q = Z bQPSP = Z bQPSP + Z bQPSP = (BOS)Q + (31S)Q.
p t(P)<t(Q) £(P>(Q)

If£(Q) =27" and x € Q, thenby B € adg’q(e) and Lemma A.2 in [12], we
obtain

Z bopsp S Z Z 2H—0H+E)/2(] 2K |xq — xPl)_n/J_e|Sp|

¢(P)>¢(Q) U<v €(P)=2-+
1/J
SZZW‘”)(”*EW{M( )y |sp|flp)<x>} .
u<v t(P)=2"#
Therefore,

1

q

SN (|Q|‘§|<Bls>q|1q)q

veZ ¢(Q)=2v
1
( 1 q] q
o _v)2e 7
2 DIND I EEDIE N 7 () YR TG (%)
vEZ £(Q)=2"Y u<v t(P)=2"#

Q| =

q

S5 5 o3 o)

MEZ v=u+1 t(P)=2"+

\

Combining this with the Fefferman-Stein vector-valued maximal inequality in
LP* we immediately arrive at the following conclusion,
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1Bsll jos

1
- -

s > (|Q|‘§|(Bls>q|1q)qq

VEZ €(Q)=2"Y
L Lpeo
1
( 1\4q) ¢
I LS d
ST 2 2225 (e Y tsl)e)
UEZ v=u+1 t(P)=2"+
Lp.oo
1
( a
_1 q
SN X (1P Isplnp) = lIsl joa .
UEZ £(P)=2—H P
\ L

We now estimate Bjs. For x € Q, since B € ad;’q(e), we have

Z bQPSpS Z Z =)(n+e)/2+n/I—n)
¢(P)<t @ >0 €(P)=2-+

X (1+2%|xg — xp|) 7"~ sp],

thus, by Lemma A.3 in [12], we obtain

1

q

D (|Q|‘§|<Bos)o|1o)q

veEZ £(Q)=2"Y

A

Z( D |Q|—§Z D SO 45 =)

veZ " ¢£(Q)=2"v u>v €(P)=27#

1

q

n q
X(l + Zvl.XQ - xPl)_7_€|Sp|1Q>

v—un 1 n+e n
- Z(Z > 2(Tw|p|‘52(”‘“)(7+7‘")
veZ *u>v ¢(P)=2#
n q ]
X 3+ 2lg - Ity
£(Q)=2"v
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A
™M
™M
™M
[\ 9]
~
]
1
Nf\
c
=
g
3

1 q\q
J
X<M( Z |SP|JIP>1P>
£(P)=2-+
1 H € n
1> |P|‘5<Z 2HGHD
UEZ €(P)=27F v=—00
L
1 9] q
J
X(M< D |SP|11P>1P>
¢(Py=2-#
1
1 q}q
_! 7
S Z Z |P| 2<M< Z |SP|]1P>1P>

UEZ £(P)=2—H £(P)=2-

From this, and then applying the Fefferman-Stein vector-valued maximal in-
equality on the space LP*°, we conclude that

[1Bosll s,

q

s = (|Q|‘§|<Bos)Q|1Q)q

VEZ £(Q)=2-"

\ Lpe

1
q)q

A

DI IET ) |sp|f1p)1p)5

UEZ £(P)=2—H £(P)=2-H
\

Lpe

sy X (|P|‘§|sp|1p)q}"

UEZ £(P)=2—H

= ||S|| 09 -
e lIsll joa.

In summary, the almost diagonal operator B is bounded on the space fzgo (]

Next, in the weighted case, consider the boundedness of almost diagonal ma-
trices on the space fzgo ({Ag).
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Theorem 5.5. Leta € R, p € (0,), g € (0, oo]. Suppose the sequence of non-
negative definite matrices {Ag}oeop is strongly doubling of order (3, p) for some

Bf>0.IfBe ad;’q(ﬁ), then B is bounded on the space f;:go({AQ}).

Proof. For § € fy % ({Ag}), define I = BS, B = {bgp}o pen- Define a scalar
sequence t4 = {4 g}oep Witht, o = |AQIB|, and similarly s, = {s4 o}pep With
Sa.0 = |AgSol. Then

10l p2 agn = NlEalljza and 18] joa a3 = lisall joa
where f;go is the scalar, unweighted weak discrete Triebel-Lizorkin space de-
fined earlier. Let G = {}’QP} = {a)QPHAQA;l”}, and from this, along with
- - o,
to = Xipep borsp, B € ad, 9(8), we have

tag = |Aglol = |A4g Z bgpSp| < Z |bgpl|Agspl
PeD PeD

S Z wopllAgAp (Il Apsp| = Z YoPSa,p-
Ped pPed
That is, t4 0 S (G(54))q- Since {Ag}oep is strongly doubling of order (8, p),
then yp satisfies the scalar unweighted almost diagonal condition (5.1), which
meaning G is a scalar unweighted almost diagonal operator. Therefore, by
Lemma 5.4, it follows that G is bounded on ' . Thus,

||t||f;‘;go({AQ}) = ||tA||fg:gc S ”G(SA)”fZ:ZO S ||SA||f§§,’go = ||§||f;‘;go({AQ})-
Thus, B is bounded on the space /% ({Aq}). a

6. Molecular characterization
Below, we recall the definitions of smooth molecules and atoms.

Definition 6.1. LetN € Z . If

(1) supp aq < 3Q,

(i) [ x"ag(x)dx =0, |y| <N,

(iii) |D? ag(x)| < ¢, €(Q)="/2, |y| > 0.

then the function a, € D(R") is called a smooth N-atom.

Definition 6.2. Let0 < d <1, M > 0,and N, K € Z,ifthereexiste > 0, C > 0,
such that forall Q € D,
(i) [ x"mg(x)dx =0, |y| <N,

. L [x—xq|
<C 1+—
(i) Imq()] < ClQl™ (1 + X

>

>— max(M,N+1+n+e)

1l e\ M
(i) ID'mqol < clQi™> (14 224) i <k,
)it ly| =K,

1_Irl_s
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Ix—z—xo|\
4T 0
X sup ([14+—rn—— ,
jzl<lx—y| ( ¢(@Q) )

then {mg}oep is called a family of smooth (N, K, M, &)-molecules.

Obviously, a smooth atom is a molecule.
The following lemma is the discrete version of the Calderén reproducing
formula (see Lemma 2.1 in [38]).

Lemma 6.3. Let ¢ € A, and definet) = qo/(zjEZ 165 |2), then € A, and forall

& #0, Zjez ¢j(§)¢j(§) = 1. Under this condition, assuming further that both

supp @, supp ¥ are compact and bounded away from the origin. Consequently,
forany f € 8L (R"),

f=227" (@ = Tk (x —277k) = Z<f oMo

jez kezn
converges in 8. (R™).
Theorem 6.4. Letax € R, p € (0, ), q € (0, o0]. Assume that the sequence of
non-negative definite matrices {Ag}oep is strongly doubling of order (8, p). Let
0<6<1,M>0,andN, K € Z,satisfy N > —a+(f—n)/p+n/ min(1, p,q)—
n-1,K+d>a+n/p, M > n/min(l, p,q) + B/p. Suppose {mp}oep is a
family of smooth (N, K, M, §)-molecules, s = {Sp}oep € fg:go({AQ}), and f =
ZQeD SoMg € (Se(R™M)™, then f = ZQel) Somg € F;:Zo({AQ}) and

@) 11l qagy S 11129 gagp-

In particular, lfSQ = (f ®o)s f € (8L (RM)™ ¢ € A, then

(b) ||f||F°’q L(Agh ~ ||{<f §0Q>}QED||f“q ({AQh-
Proof. First, we prove the conclusion (a). For Q € D, let
Q= |Q|1/2|AQ§0J' * Z S_};mPl-

PeD
Then X
N a_1 )y
Wlksaqagn = | & X (1017 2g10) ]’
JEZ QeD )
Notice that forany P, Q € D, x € Q,
[x — xp| |xo — xp|

+ ~1+ :
max{¢(P), £(Q)} max{¢(P), ¢(Q)}
Therefore, by Lemma 2.8 in [15] and (5.2), and for x € Q, |Q|1/2|goj * mp(x)| S
wop- Thus,

1
8olo < Z |Ql>[p;j * mp||Agsp|lg S Z wopllAgA5 || Apsp 1o
PeD PeD
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Define G and s4 as in Theorem 5.5, then by the above,
golp S Z YorSaprlo S (G(sa))olo-
PeD
And by Lemma 5.4, we know that G is bounded on the scalar, unweighted space

J pe» hence
111529 qagy S 166N p2a S NIsalljze = ||§||f';“,;20({AQ})-
We next prove the conclusion (b). For any ¢ € A, let 3 = g@/(zjez |qu]-|2),
by Lemma 6.3, for any f € S, (R"), f = ZQGD(f, Po)bo converges in 8, (R™).

Accordingly, for any vector-valued function f = (f1 s )T € (8L (RM)™,

we naturally have f = 30/ (f, ®o)¥o = Zpenp SoPg € (Sh(R™)™, and
for any possible N, K, M, &, {{o}oep is a family of smooth (N, K, M, 6)-
molecules. Then by conclusion (a), we immediately have

1 lE2e qagn S IS podleenll 2 qagy- O

7. Equivalence of the spaces F; % ({A,}) and F 2 (W)

Lemma 7.1. Let ¢ € A. Define p(x) = ¢(—x). Suppose that the sequence of
non-negative definite matrices {Ag}oep is weakly doubling of any order r > 0.
Thenjor a €R, p e (0,), qe (0,00], there exists a constant C such that for
any f € (S(R™)™,

1

{Z Z (2]'06 sup |Ap; *f(x)llQ)q};

< CIF s s
jez Qep x€Q et

Lp:>»

and

|<F. o

" < ClIF g 14 -
0 qagn = CIM et acy

Proof. Choose a sufficiently small A € (0, 1) such that p/A > 1and q/A > 1.
For any R > 0, by Lemma 4.6

2, (@ suplAqp; + fl1)7 = 3] 2% sup |Ag, 9, + f(0)I1q, ()

QeD Q kezn x€Q i
q
5| DD A+ [k — ¢y ART2n / 121%Aq,, @ * f(s)|Ads1q, |”.
kezn tezn Qje

Accordingly, also A € (0, 1), and by the arbitrariness of R > 0 and r > 0, choose
R sufficiently large and r sufficiently small such that A(R—r) > n, then applying

Lemma 4.7 with h = ZQGD(ZjalAngj * f|1Q)A,

> i "
Z (@7 sup | Ao, * fllg) < (M( Z (zjaIAQGDj * f|1Q)A ))q )

QeD Q QeD
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Since p/A > 1and q/A > 1, by Lemma 4.10,

1

{ Z Z (27 Sgp |Agep; * J?|1Q)q}q

JEZ QeD

Lpe
1
i -
SIS (0 T @1agp » Fitgr)) ]
JEZ Qed Lp-®
=l 2 (M( Y @71 Age; * fllq)A))A}q
jEZ QGD Lp/A,oo
1
. - q e
S 20 2 (2%1Age; * fl1g) }q = IFllg qagn-
jEZQED Lp:

Furthermore, |ij|_1/2(f, Po,) = @) * f(ijk), therefore

1
- _ 2 q|la
67800 s g = I 2 2 (@10 * Foxine)]
fisaaoy |2 & .
1
. - q
S {Z Z (2% sup |Age; * f(x)|1g) }q
JEZ QeD xeQ peo
S Iz agy- O

Theorem 7.2. Letm € N,a € R,0< p < 00,0 < q < 00, W € A,(R",C™),
{Aq}oen be a sequence of p-order reducing operators for W, and {p}jcz, € ®.

Then for any f € (8L, (R™)™, we have

1Pl vy ~ 1729 gagpy
where the positive constant of equivalence is independent of f
Proof. First, we prove

I lles qagn S 112wy

Let ¢ € A be the test function defined in both F/d, ({Ao}) and F)'L (W). Set
@(x) = p(—x). First, we prove

IS Polloenll 2 qagy S I 1lk2e av)- (7.1)
i) When 0 < p < 1, by part (i) of Lemma 3.12, we have

A, @) * FOIA < [[Ag, WY/P[WYPg; + FOIA S [WY/Pp; + FOI4 ac.
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Furthermore, since W € A,(R",C™), the sequence {A} is weakly doubling of
order r > 0. Therefore, for any A € (0,1), R > 0, by Lemma 4.6, we have

SuP |4q, ;i s fOOIN S Y U+ lk—e)AR ’)2’”/ (WY/Pg; 5 f(x)|Adx.
Q

xeQ tezn it

Thus,
. > . - AL
Y, i%sup [Age; * fllg)T = D) 2190 sup |Ag,¢; * f(X)|"41g, (x)
QeD Q kezn XEQjk
1 q
<‘ DD A+ [k —e)ARS r>zm/ 129 Wr g, * f(x)[4dx1g |
kezr tezr Qje !

Accordingly, also A € (0, 1), and by the arbitrariness of R > 0,7 > 0, we choose
R sufficiently large and r sufficiently small such that» = A(R —r) > n holds.

Then, setting h = |2/9W/Pg; « f|4 in Lemma 4.7, we have

a
. - A
> (2 supldgp, = fl1g) < (e (12w /eg, » i) )"
QeD Q
Therefore,
1
{2 3 @ suplage; « firo)'|
JjEZQeD Do
) 1
1 2 1
. — - A
< IS Z (]V[(|21°‘quoj *f|A>> .
jez
\ Ip.co
1
) ANA
1 1 1
. - - A
= || Z <M<|2J“ngpj *f|A>) .
jez
/ Lp/Aco
1
. 1
s|{Zpwee - Y
jez Lpeo

= ||f||F"‘"1 w)-

Here, the last 1nequa11ty follows from p/A > 1, and q/A > 1, using Lemma
4.10. Since |Qj| 71/ (f, Po,) = P * f(ka) we have
1

{Z >, (2% Aqp; *f(xQ)llQ)q}E

IK(f Pahaenllf=s qagy =
JEZ QeD

Lpeo
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1

|2 3 @ suplage; » o)

JjEZ QeD

<

Lpe
S ||f||F1°;;go(W)-
Since W € Ap(R",C™), the sequence {Ag}oep is strongly doubling of order
(B, p)- Then, replacing ¢ with ¢ € A in Theorem 6.4, we have
||f||F“q L{Ah S S S, Polqenll 29 qagy-

Hence, for p € (0,1], we have ||f||Faq 1 (A S ||f||Faq(W)

ii) When 1 < p < oo, by the proof of Theorem 3.5 in reference [15], we have
sup |Ag,, ) * FeolA < D1+ |k — ¢ AR- V>2J"/ |Wi/Pg; flAtdx.
xeqQ tezn Qje

Replacmg A with At and using the same method as in the case 0 < p < 1, we

can similarly prove

I lE2a qagp S I1F 122 owy-
Next, we prove || f]| 2 (w) SIS 22 (AQh" Define

hi(x) = 24 WP (x)p; % F(x)l,
and

= 2 1QI/(sup l4gp; * f0) Jlo. € Z
QeD

Each k ; is constant on cubes Q € D. Then,
By < 2 1QIEMIWYP AT | Agw; * flg <7k
QeD
Here, y;(x) = ZQ <D |w/ P(x)A51||1Q, defined identically to that in Lemma
4.9. From this and by Lemma 4.9,
”fHFZ:ZO(W) = ”{hj}”LPvW(M) < ||{J’jkj}||LP,oo(fq) = ||{VjEj(k')}||Lpeo(£q)

S IEj(kjHILeeeay = Ik poceay S ||f||F“" < ({A)’
where the last step follows from Lemma 7.1. O

Since the definitions of the spaces Fj'd,(Ag) and F'd (W) directly involve
@, they appear to depend on the choice of ¢. However, the following lemma
shows that this is not the case. It demonstrates that the definitions of both
spaces F' 4 (Ag) and F; ' (W) are independent of the choice of ¢ € A.
Theorem 7.3. Let0 < p < 0,0 < g < o0,a € R, W € Ap(R”,Cm), and

{Ao}oep be a sequence of p-order reducing operators for W. Then for any f €
(8o (R™)™ and o1, ¢ € A, we have

- - - -
11129 qaghowy ~ IF 22 qagrpen AR I lless o gwy ~ I llEss v g
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Proof. For o), € A, denote the space defined by ) as FL ({44}, o)
and the space defined by ¢® as F’2 ({AQ} go(z)) Define § = {So}oep bY 5o =
( f Po 1>) and define { = {tQ}Q€D by tQ = f go ) Accordingly, choose {b\ =
o/ Yz |cp(1)|2 and T = @/ Yz |cp(2)|2 Then ¥, 7 € A, and for all £ # 0,
we have L L

2 AEP© =1 and Y SPOFE =1.

jez jez
From this, using Lemma 6.3, for f € (8L, (R™)™, we have f ZQ(f ¢(1))¢Q,

with convergence in (8., (R™))™.
Moreover, note that for all £ # 0,

by @@)@(5) = @(5)@(5) =1.
JjEZ Jjez

From this, by replacing f ¢, and ¥ in f ZQ( f ¢(1)>¢Q with go(z) ¥, and
qbﬂ), respectlvely, we obtain

(2) Z ( §0(2)

PeD
Furthermore, since cpg) € 8,, where
8y :=1{g € 8 : for all multi-indices a, D*$(0) = 0},

then ¢(2) Zpe 2)<¢(2) ¢P)~(1) converges in 8.
Therefore, for f € (8L (R™)m,

lo=(fro) =(F, @D 808y = 2 (@5, Be)ip.

PeD PeD

Set bop = (gog), ¥p) and the matrix B = {bop}o,pen- Also, {{p}pep is a family
of smooth (N, K, M, §)-molecules for all possible N, K, M, 5. Accordingly, by
Lemma 2.8 in reference [15], we have

bop = (¢ ¥p) = 1Q1V267 % Yp(xg) < CIQIV22%M 200y < Cargp,

that is, the matrix B = {bgp}g pep is almost diagonal, B € ad“’q(ﬁ) Then by

Theorem 5.5, B is bounded on the space f*, o oo({AQ}) From this and Lemma 7.1,
it follows that

||t||f“q ({Agh = ||BS||f” {Agh = C||S||f“q {Agh = C||f||F“‘1({AQ},¢<1>)-
Replacing ¢ with ¢ in Theorem 6.4, we have

£l qagre@) < CllE 22 qagh-
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Combining the above, we obtain

||f||F;‘;go({AQ},(p<z>) < C||f||pg;go({AQ},¢<1>)-
By interchanging ¢® and ¢, we obtain the equivalence of || f I S ((Agho®)

and [|f1lge qaopee)-
Moreover, by Theorem 7.2, we have

- - - >
I lzza v gy ~ I llE2 qaghomy A0 I IlEes o g ~ I IlE2e qaghee):-
Therefore,
- -
171l v gy ~ 11123 v oy O

Corollary 7.4. Letax € R,0 < p < 00,0 < q < 00, W € Ap(R",C™), and
{Ag}oenp be a sequence of p-order reducing operators for W. Set § = {so}oep

where §Q 1= (f, ®q)- Then for any ¢ € A and f € (8,,(R™))™, we have
I 12 qagp ~ ||§||ijZo({AQ})-
Proof. Replacing ¢ with ¢ in Lemma 7.1 and using Theorem 7.3, we obtain
s Pl e qagh < CF N2 qagra ~ IFllE2 qaghe)-

Combining this with Theorem 6.4, we have
||f||F;‘jZo({AQ}) ~ IS, §0Q>}||fg‘;gc({AQ})~
Since 5, = ( f ,®o) and ¢ € A, it follows immediately that
I 12 agh ~ ||§||fg;go({AQ})- O

Combining the above results with Theorem 7.2 and Theorem 4.12, we obtain
the following equivalent norms:

1Al wy ~ I = qagp ~ 1812 qagp ~ IS e ),

establishing complete equivalences between the matrix-weighted weak Triebel-
Lizorkin spaces and their sequence space counterparts.

8. Characterizations via maximal functions: Peetre, Lusin, and
9;
In this section, the matrix-weighted weak Triebel-Lizorkin space F Z:ZO(W) is
characterized using the Peetre maximal function, the Lusin area function, and
the Littlewood-Paley g;-function.

Similar to the classical Peetre maximal function in [26], the concept of the
matrix-weighted Peetre maximal function is introduced in [35]. Let p € (0, o),
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me N, W € AyR",C™), ¢ € S,(R"), and f € (S,(R™)™. For any given
j € Zand a € (0, ), x € R", define

) IWYP(x)(@; * F)B)]
S WD) N L !
@5 a0 = U e =y

Theorem 8.1. Leta € R, 0 < p < 00,0 < qg < o0, W € Ap(IR”,Cm), a €
(n/ min{l, p, g}+B/p, oo), where 3 is the doubling exponent of W. Let{p}jcz, €

@ Then f € Fyd (W) ifand only if f € (S (R™)™ and ||f] % < o0 where
P,

1/q

1A o= (1S 259 )

g 1=
Fpe(W) jez
Lp
When q = oo, the usual modification is made. Moreover, for any f € (8L (RM)™,
- . o - *
Wil ~ W oy
where the positive equivalence constants are independent of f.

Proof. By the definition of (go;.‘ f )EIW’p )(x), we have

1
W (g, + P < @ NP0,
which immediately implies
1Filega.0m S 171

*
Fyd w)

171y Wl (8.1)

p,

Therefore, to prove || ]7 | ~ f | 24 (w)» it suffices to show

Let {Ag}oep be the sequence of p-th order reducing operators for W, and for
any f € (8, (R™)™, let

" . [Ag(p; * HYIT e
s agp = l { 2, 2, 2 sup 1 2Jj aq Q} . (82)
p,0o\2Q JEZ QeD; yeR” ( + | : _yl) Lp:oo
where j € Z. To prove (8.1), we first prove that for any f € (8L, (R™M)™,
Fl* <N Fll e
s o S Wz iacp (8.3)

By (3.10) in reference [35], for any given A € (0,1],any j € Z, k € Z", f €
(86 (R™)™, and x € Qjy,

up |Aq, (95 * NI
yern (14 2J|x —y|)eA
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S T asle-enHenzn [ jag s Hldz 64

tezn Qje

wherer :=f/panda € [r,©). Let A € (0, 1] satisfy q/A > 1, from this, (8.4),
and the disjointness of the dyadic cubes Q. for any k € Z", we have

R q
[4o(e; * HB)

2% gup L—— """ 13 ()
Qezﬂj yeRn A +2/]-=y]e Q

L A q/A
A, (pj = )
. Q
- 5, ] L0 DL,
kezr yern (1+27]-—=y[)@

keznr ¢ezn

I

Since a € (n/ min{l, p, q}+r, ), we have min{1, p, g}(a —r) > n, therefore,
we can choose A € (0, 1] such that A(a —r) > n, p/A > 1,and q/A > 1. Thus,
by Lemma 4.7 and the Fefferman-Stein vector-valued maximal inequality in
weak Lebesgue spaces, for any f € (8L,(R"))™, we obtain

£1x
1o
r q\ 14
. |[Ao(p; * W)
= <Z Z 2J% sup AL

i Q
JEZ QeD; yER™n (1 + 2]| ' _yl)a

\

= { > 2 (W= ey A@myin

A q/A
'2jaAQj€(¢j * f)(z)| leij(')I .

jt

Lp-

Alg 1/A

S Z (M( Z (271 Ag(e; *f)|1Q)A)>q/A§

JEZ Q€D; Lp/ Ao
S A1l qagh-
Next, for any f € (8L, (R™)™ define

1/q

o Ao(p; = )|

= 2/%4 sup sup . 1 . (8.5)
Fpi(Ag) Jé Qéj seq yern (14 2]z — y[)yea

I

Lpe
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By (8.3) and Theorem 7.2, for any f € (8L, (R™)™ we have
”fH*ocq < (agh ¥ ”f“FZ:ZQ({AQ}) ~ ||f||F;:ZQ(W)' (8.6)

Therefore, to prove (8.1), it suffices to show that for any f € (8L (RM)™,

* < ** *
e iy S I oy S W (8.7)

We first prove the left-hand side of the above inequality. For any j € Z and
x € R", let

e PG x PO
]’lj(X) =2/ ys:[an (1+2j|x_y|)a

@ * D)
k() = ~an 409,
) Qéj'Q' EZE;W 1+ 2]z — y|e

El

Q(x),

and

yi(0) 1= ) IWYP(0)AG 119(0).
QeD;

Obviously, for any j € Z and x € R",
O WYP)AG Ag(e; x NI
hj(x) = Z 2/% sup Q. !
Qep;  YER" (1 +2/|x—yl)e

|d%*ﬁ@n

15(x)

< Qé) 20| W/P(x)Ay 1|| L T 1o(x)
< 7,0k (). (8.8)
Note that on any given dyadic cube Q € D s k ;j is a constant, i.e.,
Ej(k;) = k;j, (8.9)

then by (8.8) and (8.9) and Lemma 4.9, for any f € (8. (R™)™ we have
”f”;z,’ge(W) = ||{h'j}j€ZHLP>°°(€Q) = H{ijj(k')}JGZ”me(fq)
S ||{Ej(kj)}jez||Lp,w(€q) ||{k }]GZ”LPm(M) ”f”*aq({A D

Thus, the first inequality in (8.7) holds. Next, we will prove that the second in-
equality in (8.7) also holds. For any x, z € Qj; and y € Qj;, there is a geometric
relation 1+ 2/|x —y| ~ 1+ |s—k| ~ 1+ 2/|z—y|. From this, for any a € (0, c0),
je€EZ, ke 7", and x € Qjk, we have

|[Ag,.(@; * /W) 1Aq, (@) * /W]
sup sup ~ sup , :
Z€Qj yERN 1 +2/|z—-y]e yeERR (1 +2/|x —y|)e

(8.10)
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Therefore, for any f € (8L, (R™))™ we have

FlI%x ~IIFII% . 8.11
25 e ~ 1T (8.11)
Combining (8.10) and (8.11), we can obtain that (8.7) holds, i.e.,
I S IAK .
17 gy S W0
Moreover, by (8.6), we have
FlI* < £ -,
17 s o S Wil

That s, (8.1) is proved. Then for any f € (8., (R™)™,
171eg oy ~ Wi v
Therefore, Theorem 8.1 is proved. O

Theorem 8.2. Leta € R, 0 < p < 00,0 < g < 00, W € Ap(IR", c™).

Suppose {p;}jcz, € ®. Then f € FZ:ZO(W) if and only iff € (8L,(R™)™ and
7 <

“f”FZ,’Zo(W) < o0, Where

1/q

sy = [ 2259 900, PNy
pee i Jeea
Lp-®

When q = oo, the usual modification is made. Moreover, for any f € (8L (RM)™,
il ~ W e oy
where the positive equivalence constants are independent of f
Proof. By Theorem 8.1, to prove
il ~ 1715z g
it is equivalent to proving
211x PRI
17 s gy~ 15
We first prove that for any f € (8L (RM)™,
17150y S W1 (8.12)
From the fact that for any y € B(0,27/), 1 + 2/|y| ~ 1, and the definition of

(go;ff)gw’p), we infer that for any given q € (0, ), a € (0,»), and any j € Z,
x € R",

Fo W s POy = £ WG, e+ iy
B(x,27)) B(0,27)
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S sup  [WYP(x)(g; * F)(x +y)|

y€B(0,277)
up [WYP(x)(p; % f)(x +y)|
yEB(0,2) (1 +2/|y[)ea
2 (W, q
S(@Ha" )
which implies that (8.12) holds. Next, we prove that for any f € (8L, (R"))™,
7 * < 7 o
170 gy S 1 (8.13)
By (8.7), to prove (8.13), it suffices to show that for any f € (8L (RM)™,
FlI* S N 8.14
s o S W o (8.14)

For any given A € (0, 1] satisfying q/A > 1 and p/A > 1, we choose a suffi-
ciently large a € (0, o) such that A(a —r) > n, wherer := /p, and §8 is the
doubling index of W. Then by (3.21) in [35], for any j € Z, k € Z", x € Qjy,
we have

Ag, (#5 % PO

sup - < 1+ k- f|)—A(a—r)2jn
yern (14 27]x —y[)e4 fén
X Z / ][ NAQ (@) * (s + z)|Adsdz.  (8.15)
{IGZ" :=|t|mS1} Qj(f_H) B(O,Zﬁf)

We now prove (8.14) by considering two cases for p.
When p € (0,1]. By 10,000 = ZQeﬂj(lole(m)), we have

/Qj(€+t)

= Z 210‘][ Ag(e; * s + z)|4ds1o(z)dz
Qji¢+1) QED; B(0,277)

zfa][ 1A 0 (@) * s+ 2)[Adsdz
BO2-))

= / g;(z)dz, (8.16)
Q

Jj(€+t)

where for any z € R",

gj(z) := Z 2j“][ Ag(p; * s + 2)|4ds1g(2).
oep,  JBO2)

For any given x € Qjy, let B, 1= B(xXy ¢ s, k¢ ) be the smallest ball containing
x and Qj¢4p)- Thenry e, ~ 27/(1 + |k — ¢ —t]). Also, since ||, < 1, we have

Freo ~ 2791+ |k = 2)).
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From this and (8.16), for any x € Q k> WE obtain

J

. i )
> ]1[9(0 2-7) 1AQ 01y (@5 * f)s + 2)|"dsdz

J(€+t)

< / gj(2)dz S 27"(1 + |k — €1)"M(g;)(x). (8.17)
B

X

By (8.15) and (8.17), assuming A(a — r) > n, for any x € R",

g, (2 * H)IA

2/« p . 1o(x
oep, vern (1+2/]x —y[)ed ©
S D) A+ [k = €)~A@IRM(g)(x) S M(g))(). (8.18)
tezn

From (8.18), for any x € R",
q

5 Lo qp P DO

. Jagq q
- 1o(x)p S 279927 4 (M(g;))A. (8.19)
op, | vemr A +2/x—yDe ? !
By (8.19), the Fefferman-Stein vector-valued maximal inequality in weak
Lebesgue spaces with p/A > 1 and q/A > 1, Holder’s inequality, and part

(i) of Lemma 3.12, for any f € (8L, (R™))™,

1l
E . . A 1/A
S 2 zfaqz‘T(M(gj))Z}q
JjEZ Lp/Aw
1
ST e Fepi]
jez Lo
q -
= Z Z 2}'0“1(][ ‘ Ag(pj *f)(x+z)|A dz)AlQ}q
JEZ QeD; B(0,27) Lo
1
< (Z Z 21“‘1][ | |AQ(cpj s f)(x+z)’qdle)q
JEZ QeD; B(0,27) Lo
1 1 1
< (Z Z 2j“q][ | ||AQW_;||q‘W;(goj * f)(x +z)|qdle)q
JEZ QeD; B(0,277) P
SIS

Fpdw)’

Thus, when p € (0, 1], (8.14) holds.



THEORY OF MATRIX-WEIGHTED WEAK TRIEBEL-LIZORKIN SPACES 1227

When p € (1, 00). For any x € Qj, by (3.27) in [35], we have

[Aq,. (@) * NI 2
Qjk .J _ < Z 1+ k- f|)_A(a_r)2Jn(1 p,)
yERR (1 + 2J|x - yl)a tezn {tezn:=|t| <1}

Up Ui

Note that for any M > n,

o p'-A
p/

- A \p-a
We(z)(p; * f)(s+z)' ds) dz} . (8.20)

J(€+t)

sup ), A+lk—¢D™M=sup > A+lk—¢P™
kezZ" pczn kez" y_eezn

=Y a+lep™MsL (8.21)
tezn

For any given x € R", let B, := B(xy ¢, Tk¢,) be the smallest ball containing
x and Q(¢), With the same assumptions as in the case p € (0,1]. Thenry ¢, ~
27J(1 4 |k — ¢]). By (3.28) in [35], we have

1Ag, (9 * )|

sup . 1o (x
,EZ:" yern (1+2i]x —y[)ea %

<pel(£,.,

Note that p(p’ — A)/(Ap’) = (A+ (1 — A)p)/A > 1, choosing a sufficiently
small A € (0, 1), then we have (p’ —A)q/(Ap’) > 1, q/A > 1. For brevity, here-

afterweset T;, 1= WVP(x)(¢; * f)(x + z), so that, by (8.22); the Fefferman-
Stein vector-valued maximal inequality in weak Lebesgue spaces and Hdélder’s

inequality, for any f € (8., (R™)™, we deduce that

K (r'-A)q
—_ Ap’

> A pl-A
Wl/p(-)(qoj*f)(-+z)' dz) )(x)} . (8.22)

[¥ills

Frddagh

('-A)g 1
i -

Y Ar' )a
Vs o((f e ) "
jez B(0,277)
p'-A

o '-Aq _Ap Ap!

A VA Ap' ) (p'-A)q
dz) )

L

A

Lpweo

S IECANES
jez B(0,27)

p(p'=A)
Tpa %
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Jjaq ) A o
Z 2 A |T J’Z‘ dz
B(0,277)

jez

1/q

A

Lpe

1/q

)
s 21'“‘1(][ |Tj,z‘qdz)
B(0,2-))

jez

L
~ ”f”F;,’go(W)'
Thus, (8.14) holds for p € (0, o).

Therefore, (8.13) holds. Combining with (8.12) and Theorem 8.1. Theorem
8.2 is proved. O

Theorem 8.3. Letax € R,0 < p < 00,0 < g < o0, W € Ap(R”,Cm),
and A € (1/ min{l, p,q} + B/(np), o), where 3 is the doubling exponent of W.
Suppose {p;}jcz, € ®. Then fe E L (W) if and only if f € (S.o(R™)™ and
”f”;Zﬁo(W) < oo, where
R 1/q
[WYP()(p; + H)IT

., = 21'0“121'"/ ,
”f”Fp,’go(W) ];Z n (1 + 2]| . _y|)/1nq

Lp

When q = oo the usual modification is made. Moreover, for any f € (8L,(R™M)™,
1 lezs oy ~ 1 e o

where the positive equivalence constants are independent of f

Proof. We first prove that for any f € (8L (RM)™,
IFilega o S 11eg o (8.23)

In fact, for any x € R", y € B(x,27/), by geometric observation, we have
14 2/|x — y| ~ 1, this implies that for any x € R", and f € (8,,(R™)",

W20, * HI
(x,277) 1+ 2/|x — y|)tna

fo e« Holsdy ~ 2 [
B(x,27J) B

e
Syh/nW%p@ﬁfmmd
o+ 2T]x =yl

>

. - o < - ° - .
which means || f ||14.ﬂ;:go w3 IIf “FS,’ZO wy By Theorem 8.2, we have || f ”Fp,go w)
~ IfIIS . Therefore, (8.23) holds. Thus, to prove Theorem 8.3, it remains

~0,q
Fp,oo(W)
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-
to prove that for any f € (8., (R™))™,
- -
17150 gy S 52 (8.24)

Let{Aq}oep be the p-th order reducing operators for W. For any f € (8,(RM))™,
define

17
- |Agle; * I
T= Z Z pjaqpijn sup/ < ! ! 0 dyl, . (8.25)
Jj€Z QED; zeQ Jrn (1 +2/]z — y|)*d
Lp
To prove (8.24), we first prove that for any f € (8L (RM)™,
A1 S A (8.26)

Fyd (w) Fod ((Ag)

For any given p € (0, ), q € (0, o], and any x € R", j € Z, let

yi(x) 1= 3 IWYP()AG 1),
QeD;

>, 1/q
o [WYP(x)(p; = PN
hy) :=2M21n/q[/n (1+2j|xJ—Y|)/1nq dy] :

= /q
£ = 3 QI [Sup 400, ¢ OIS dy] .
QeD; zeQ Jrn (1 4 27|z — y)*na
Then, by (3.37) in [35], for any j € Z, and x € R",
hi(x) < 7,00 f (0. (8.27)
Note that f; is a constanE on any given Q € D, i.e., E;(f;) = f;. According to
this, the definitions of || f “;Z,’ffo - and h;(x), (8.27), Lemma 4.9, and (8.25), for

any f € (S,,(RM)™,
115 gy = Wiz nesceny < IS ES(F ez Inescen
D,

S KBS U DYjezlinmieny ~ I hezllomen ~ W lGaa o o
P,

Therefore, for any f € (8L, (R™)™ (8.26) holds.
Next, we prove that for any f € (8L, (R"))",

- ° < - -
171z o S Wil o (8.28)
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By the proof of Theorem 3.14 in [35], for any x € R",

o 1Ao(e; * PN

JEZ QeD; Z€Q
S /A
S 3 (0 3 (120t *f)llq)A)(X)>q
jez QeD;

Thus, for A € (0, min{p, q}), using the Fefferman-Stein vector-valued maximal
inequality in weak Lebesgue spaces and Theorem 7.2, for any f € (8., (R™))",

q/Ae
% (ot 3 (2405, < Fne)”)) %

jez QeD;

- ° <
1 gy < {
Lpoo
1/A

. - A
~ {M( >, (127%4q9; * filo) )}
QeD; JEZ || p/ac(paray
Sl gy ~ 175 vy

which further shows that (8.28) holds. By (8.26) and (8.28), we obtain (8.24).
Combining (8.24) and (8.23), for any f € (8, (R™))™, we have ||f]| 49wy ™~

| f ||;a,q wy thus completing the proof of Theorem 8.3. O
P,

9. Calderon-Zygmund operators

In this section, we prove that classical convolution Calderén-Zygmund op-
erators (CZOs) are bounded on FZ:EO(W). We need to recall the definition of
smooth atoms (see Definition 6.1) and the definition of classical convolution
Calderon-Zygmund operators (see Definition 9.5). Then we use the general cri-
terion for the boundedness of operators: if an operator T maps smooth atoms
into smooth molecules, then T is bounded on FZ:EO(W).

Before starting, we first need to discuss the extension problem of a given op-
erator T : S,(R") — S, (RM)toT : F;:go(W) - F;”go(W). Let the matrix
B := {bgp}g pen- For any sequence s := {so}oen, define Bs := {(Bs)g}oens
where (Bs)g 1= X, bopSp-

For Proposition 3.18 in Reference [3], taking 7 = 0, and combining with
the fact that the classical matrix-weighted Triebel-Lizorkin space FZ’q(W) C

F;‘;ZO(W), the following corollary is easily obtained.

Corollary 9.1. Leta € R, p € (0,0), g € (0, 0], and W € Ap(R",C™). Then
(S (RM)™ C F;’q (W). Moreover, there existan M € Z , and a positive constant

,00
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C such that for any f € (S (RM)™,

1l ny < CIflls, =€ sup  sup |(67F)0o|@ + x|y,

yEZY ly|<M xeRn

Lemma9 2. Letp € A,andT € L(84(R"), 8,,(R")), and define a finite matrix
1= {(Typ, PoMo.ren- Then T maps Sy = {f, Polgen : f € SR} 10
S%m/ = {f,voloen : f € 8L(R™)}, and satisfies ZIA“oS¢ = 5,0T on 8., (R™).
Proof. Let f € S, (R"). Forp € A, lety = qb/(zjezlgﬁjlz), then ¢ €
A. By Lemma 6.3, we have f = }’,_ (f,¢p)Pp converges in 8, (R"). Since
T € L(8x(R"), 8x(R™)), it follows that Tf = 3, (f,pp)Tthp converges in

84 (R™). Through ¢, € 8, (R"), we further obtain the conclusion that the con-
vergence in 8, (R") implies

(Tf,00) = D, {TPp, @) [ Pp)-

PeD
Since {(f, pp)}pep is an arbitrary element in S, ,, it is evident that
T: Spe = C?,
where
={s: s={sglgen C C},
is well-defined. The fact that Tf € 8. (R") also indicates that T: Spe0 =
Sp,c0r and ZIA"oS¢ = SgoT. ]

The - transform is defined as the mapplng of each f € (8L, (R™))™ to the se-
quence S, f ={(S, f )o}oen, Where (S, f )o = ([, o) The inverse g-transform
is defined as the mapping of the sequence 5 := {Sp}oep C C™ to T¢§' =

20eD So¥o in (Sh(R™)™.

Lemma93. Leta ER,0<p<00,0<g=< 00, WeEAR"C"),p€Aand
)= 90/(zjez [ 12) € A. Assume T € L(S,(R"), 8L, (R")), and SupposeT

{T¥p, Po)topen has an extension 7 € L(fp go({AQ})) ThenT := TonoS is
an extension of T and T € L(Fp,oo(W)).

Proof. For the operator S, by replacing ¢ and ¢ in (7.1), we have
||S¢f||f;:go({AQ}) < Cliflless ow 50

which means that S, : F;‘;So (W,®) — f;:go({AQ}) is bounded. For the operator
Ty, by the conclusion (b) of Theorem 6.4 and Theorem 7.2, we have

/122 oy < CIKS Polloenll 24 qagp
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moreover, for § = {SQ}QED, where s S = <f qu) and for ¢ € A, lety =
¢/ (X jez 18] ) by Lemma 6.3 we have f = ZQGD<f oMo, thus

||T¢§1|F;;ZO(W) < C“S”f;:go({AQ})’

which means that Ty : f e({Agh) — Fyd (W) is bounded. Therefore, com-

bining T e L(fs oo 4 «({Ag}), it further shows thatT € [,(F “:ZO(W)). Since % isan
extension of T, by Lemma 9.2, we infer that, for any f € (8 (RM)™,

Tf = TyoToS,f = TyoS,oTf = TF.
From this and the Corollary 9.1, T is an extension of T. O

Corollary 94. letax € R,0 < p < 00,0 < g £ o0, W € AP(R",C’”),
p €A =9/(Tc,16)P) € A and T € LSRR, SLRY). If the
matrix T = {(Ttp, ®o)}o.pen is almost diagonal, then T admits an extension
Te L(FZ:ZO(W)).

Proof. If the matrix T := {(Ttpp, ®o)o.pen is almost diagonal, then by Theo-

rem 5.5, T admits an extension T € £( 1o oo ' «({A40}). Therefore, by Lemma 9.3,
it follows that T admits an extension T € L(F 4 o(W)). (I

Next, we review the definition of the classical Calderén-Zygmund operators.

Definition 9.5. Let L € N. We call T an L-smooth classical Calderon-Zygmund
operator on R™. If T f(x) = lim,_ ¢+ K(y)f(x — y)dy, where the kernel

K satisfies:
M1) |K(x)| < W x € R"\ {0},
(M2) |D"K(x)| < " |n+lr\ ,x € R*"\ {0}and |y| <L,

(M3) fp jxjer, K(X)dX = 0,0 <R; <R, < co.

J Rn\B(0,¢)

Proposition 9.6. Leta € R, p € (0,00), g € (0,00], W € A,(R",C"), T €
L(S(R"),8(R"),0< 8§ <1,N>—-a+(f—n)/p+n/min(1,p,q) —n—1,
K+6>a+n/p M > n/min(l, p,q) + 5/p. Suppose there exists Ny, € Z.,
such that for every smooth Ny-atom ag associated with Q, the function mg =
Tay, satisfies conditions (i), (ii), (iii), (iv) in Definition 6.2, forming a family of
smooth (N, K, M, §)-molecules, where each constant C is independent of Q. Then
the operator T is bounded on F;:ZO(W).

Proof. By Lemma 5.3 in reference [15], we have [(T9p, po)| < cwgp, which
implies that the matrix T := {(Ttp, ®o)o.pen is almost diagonal, i.e., T e
ad,%(B). According to Corollary 9.4, the operator T is bounded on F & (W).

[l
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By the above lemmas, suppose that a, is a smooth Ny-atom with N, € Z,.
For the classical Calder6n-Zygmund operator T, let Tap = mg. To prove that
the Calderén-Zygmund operator T is bounded on F;”go(W), it suffices to show
that m, forms a family of smooth molecules. For this purpose, the following
lemma is further introduced to assist the proof, see Lemma 5.7 in Reference
[15].

Lemma9.7. Let N, € Z,, L € N, and ag be a smooth Ny-atom associated with
Q. Let T be an L-smooth classical Calderén-Zygmund operator on R", and set
Tag = mg. Then mg, satisfies

/meQ(x)dx =0, |y| £ Ny, 9.1)
and
—n—L
DY mg0)] < cloii 5 (14 XXl yli<L (92)
e £Q = '

Theorem 9.8. Leta € R, p € (0,0), g € (0,00], W € A,(R",C™) with
doubling exponent 8. Let L € N satisfy: (I) : L > a+n/p, (I) : L >
—a+ (8 —n)/p+n/min(1l,p,q) —n, (III) : L >n/min(1,p,q) —n+B/p.If
T is an L-smooth classical Calderon-Zygmund operator on R", then the operator
T is bounded on szgo(W).

Proof. Let N, K, and M satisfy the conditions required by Proposition 9.6, and
take 6 = 1, K = L — 1. Let ap be a smooth Ny-atom for Q, and choose N, >
—a + (B —n)/p+n/min(1, p,q) —n — 1. Set Tay = mg. To prove that the
Calderon-Zygmund operator T is bounded on FZ:ZO(W), by Proposition 9.6, it
suffices to show that my, satisfies conditions (i), (ii), (iii), and (iv) of Definition
6.2.

By Lemma 9.7, my, satisfies (9.1), and thus for N = N, m,, satisfies condi-
tion (i) of Definition 6.2. Also, by (III) and (9.2), m,, satisfies condition (iii) of
Definition 6.2, where M = L + n > n/min(1, p,q) + 8/p and |y| < L. For
d=1,K=L-1,and |y| = L, noting thatby (I) wehave K+ 1 =L > a+n/p,
by the mean value theorem, m,, satisfies condition (iv) of Definition 6.2. The
decay of order —M in condition (ii) of Definition 6.2 is obtained from (9.2) with
ly| = 0. According to this, along with (II) and (9.2), m,, satisfies condition (ii)
of Definition 6.2, where N > —a + (8 — n)/p + n/ min(1, p, q).

In summary, m,, satisfies conditions (i), (ii), (iii), and (iv) of Definition 6.2,
and thus is a family of smooth (N, K, M, §)-molecules. O

Remark 9.9. In particular, the Hilbert transform H (for n = 1) and Riesz trans-
forms R; with j = 1,...,n (for n > 2) are classical Calderén-Zygmund operators
that are L-smooth for each value of L. Therefore, foralla € Rand 0 < p < oo,
0 < g < oo, they can be extended to be bounded on F;;EO(W).
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