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Theta invariants and lattice-point counting
in normed ℤ-modules

Mounir Hajli

Abstract. Euclidean lattices occupy a central position in number theory,
the geometry of numbers, and modern cryptography. In the present article,
the theory of Euclidean lattices is employed to investigate normedℤ-modules
of finite rank. Specifically, let 𝐸 be a normedℤ-module of finite rank. We es-
tablish several inequalities for the lattice-point counting function of 𝐸, along
with related results. Our arguments rely primarily on the analytic properties
of the theta series associated with Euclidean lattices.
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1. Introduction
Euclidean lattices are fundamental objects in number theory and the geome-

try of numbers, as extensively studied in works such as [1, 2, 7, 9, 11, 15, 25]. In
recent decades, they have also gained significant attention in cryptography, see
[17, 18, 19]. Statements that relate the geometric invariants of a Euclidean lat-
tice and its dual lattice are traditionally referred to as transference theorems. In
his seminal work [1], Banaszczyk established remarkable transference inequal-
ities involving the successive minima and the covering radius of Euclidean lat-
tices. His approach relies on the analytical properties of the theta series 𝜃𝐸 asso-
ciated with Euclidean lattices 𝐸, as well as on the Poisson summation formula
(see Sections 2 and 3 for detailed definitions of these concepts). The functions
𝜃𝐸 play a central role in the refined analysis of general Euclidean lattices, as
demonstrated by Banaszczyk’s method.
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Let 𝐸 = (𝐸, ‖ ⋅ ‖) be a normedℤ-module of finite rank 𝑛. We define ℎ̂0(𝐸) as
the real number given by

ℎ̂0(𝐸) = log#{𝑠 ∈ 𝐸 ∣ ‖𝑠‖ ≤ 1}.

This invariant, ℎ̂0(𝐸), plays a pivotal role in Arakelov geometry. It serves as an
arithmetic analogue to the dimension of the space of sections of vector bundles
over algebraic curves. We further define ℎ̂1(𝐸) ∶= ℎ̂0(𝐸

∨
), where 𝐸

∨
denotes

the dual of the normed ℤ-module 𝐸. Additionally, we consider the arithmetic
degree of 𝐸, denoted by d̂eg(𝐸); formore details on these invariants, see Section
2.
Gillet and Soulé [10] established an arithmetic analogue of the geometric

Riemann-Roch theorem for curves. This can be formulated as follows:

− log(6) ⋅ 𝑛 ≤ ℎ̂0(𝐸) − ℎ̂1(𝐸) − d̂eg(𝐸) ≤ log (32) ⋅ 𝑛 + 2 log 𝑛!. (1.1)

Consequently, they demonstrated that the number of lattice points in a sym-
metric convex body is essentially determined by its successive minima, modulo
a function that depends only on the rank of the convex body. This result has
significant applications in Arakelov geometry and number theory. Henk [14]
presented a remarkably simple proof of a result due to Gillet and Soulé, which
relates the number of lattice points in a symmetric convex body to its successive
minima.
In this paper, we present an alternative approach to studying lattice points.

We establish several inequalities for the lattice-point counting function of 𝐸,
along with related results. Our bounds are somewhat coarser compared to
those given by the Gillet-Soulé theorem. This is primarily because the proof
of Gillet and Soulé employs a difficult result due to Bourgain and Milman [4]
which gives a sharp lower bound for the product of the volumes of the unit
balls associated with a normed ℤ-module and its dual. Nevertheless, as noted
by Boucksom in [3], these coarser bounds remain sufficient for various appli-
cations.
Our approach is rooted in the theory of Euclidean lattices, more particularly

on theta series associated with Euclidean lattices. We define ℎ0𝜃(𝐸) as the real
number given by:

ℎ0𝜃(𝐸) = log
∑

𝑣∈𝐸
𝑒−𝜋‖𝑣‖2 .

We call it the theta invariant of 𝐸. We define ℎ1𝜃(𝐸) ∶= ℎ0𝜃(𝐸
∨
), where 𝐸

∨
de-

notes the dual of the Euclidean lattice 𝐸 (see Section 3 for more details about
these invariants).
A pivotal result in the theory of Euclidean lattices asserts that ℎ0𝜃(𝐸) and

ℎ̂0(𝐸) are essentially equal. More precisely, the difference ℎ0𝜃(𝐸) − ℎ̂0(𝐸) =
𝑂(𝑛 log 𝑛) depends only on 𝑛, the rank of 𝐸 (see Proposition 3.1). This result
plays a crucial role in this paper.
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Next, we exhibit briefly a class of normed ℤ-modules and Euclidean lattices
that arise naturally in Arakelov geometry. For an introduction to Arakelov ge-
ometry, see [24]. Let 𝒳 be a projective, integral, and flat scheme of dimension
𝑛 + 1 over ℤ. Such schemes are referred to as arithmetic varieties over ℤ. As-
sume 𝒳 is an arithmetic variety over ℤ of dimension 𝑛 + 1. We assume that
the generic fibre𝒳ℚ is smooth. Let ℒ = (ℒ, ‖ ⋅ ‖ℒ) be a smooth Hermitian line
bundle on 𝒳.
For any𝑘 ∈ ℕ, wewrite𝑘ℒ ∶= ℒ

⊗𝑘
, and denote by𝑛𝑘 the rank of𝐻0(𝒳, 𝑘ℒ).

We set 𝑋 ∶= 𝒳(ℂ) and 𝐿 ∶= ℒ(ℂ). Let 𝜇 be a smooth volume form on 𝒳. The
space of global sections𝐻0(𝑋, 𝐿) is equipped with the 𝐿2-norm:

‖𝑠‖2
𝐿2,ℒ

∶= ∫
𝑋
‖𝑠(𝑥)‖2

ℒ
𝜇 for any 𝑠 ∈ 𝐻0(𝑋, 𝐿).

Additionally, we consider the supremum norm, defined as:

‖𝑠‖sup,ℒ ∶= sup
𝑥∈𝑋

‖𝑠(𝑥)‖ℒ for any 𝑠 ∈ 𝐻0(𝑋, 𝐿).

Thus, we obtain two normed ℤ-modules: 𝐻0(𝒳,ℒ)𝐿2,ℒ = (𝐻0(𝒳,ℒ), ‖ ⋅
‖𝐿2,ℒ), which is Euclidean, and𝐻0(𝒳,ℒ)sup,ℒ = (𝐻0(𝒳,ℒ), ‖⋅‖sup,ℒ). Elements
of𝐻0(𝒳,ℒ)sup,ℒ with norm less than or equal to 1 are called small sections.
The arithmetic volume v̂ol(ℒ) for a Hermitian line bundle ℒ on an arith-

metic variety is a fundamental invariant in Arakelov geometry. It was intro-
duced by Moriwaki in [20] as an analogue of the geometric volume function.
Roughly speaking, this invariant measures the growth of the number of small
sections of 𝑘ℒ as 𝑘 → ∞. Yuan [26] studied the bigness property of Hermitian
line bundles on arithmetic varieties. The arithmetic volume function of ℒ is
defined as follows:

v̂ol(ℒ) ∶= lim sup
𝑘→∞

ℎ̂0(𝐻0(𝒳, 𝑘ℒ)(sup,𝑘ℒ))
𝑘𝑛+1∕(𝑛 + 1)!

.

The following theorem is ourmain result. We shall show that it is essentially
a consequence of the theory of Euclidean lattices.

Theorem 1.1. Let 𝐸 be a normed ℤ-module of rank 𝑛. Then the following in-
equality holds:

−𝑛 log 𝑛 + log
(
1 − 1

2𝜋

)
− 𝜋 ≤ ℎ̂0(𝐸)−ℎ̂1(𝐸) − d̂eg(𝐸)

≤ 𝑛 log 𝑛 + 𝜋 − log
(
1 − 1

2𝜋

)
.

From this, we immediately obtain the asymptotic estimate

ℎ̂0(𝐸) − ℎ̂1(𝐸) − d̂eg(𝐸) = 𝑂(𝑛 log 𝑛),
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where the error term 𝑂(𝑛 log 𝑛) depends only on the rank 𝑛 of the lattice 𝐸.
In view of (1.1), wemay interpret Theorem 1.1 as an arithmetic Riemann–Roch
theorem for normed ℤ-modules.
A particularly important class of Euclidean lattices consists of those lattices

𝐸 for which the underlying ℤ-module 𝐸 admits a basis that is orthogonal with
respect to the scalar product on𝐸. Such lattices arise naturally in the arithmetic
geometry of toric varieties, as we now recall.
Let𝒳 be a smooth toric variety over Spec(ℤ), equipped with an action of the

torus 𝕋. Then𝒳 is determined by a complete nonsingular fan in the real vector
space𝑁⊗ℤℝ ≃ ℝ𝑛, where𝑁 is a freeℤ-module of rank 𝑛. Denote by𝑀 = 𝑁∨

the dual ℤ-module, and let𝑀ℝ = 𝑀 ⊗ℤ ℝ.
Let ℒ be a 𝕋-equivariant line bundle on 𝒳 that is generated by its global

sections. Then there exists a 𝕋-Cartier divisor 𝐷 on 𝒳 such that ℒ ≃ 𝒪(𝐷).
The divisor 𝐷 determines a rational convex polytope ∆𝐷 ⊂ 𝑀ℝ. The space of
global sections of 𝒪(𝐷) is then described combinatorially by the lattice points
in ∆𝐷, as follows:

𝐻0(𝒳,𝒪(𝐷)) =
⨁

𝑚∈∆𝐷∩𝑀
ℤ ⋅ 𝜒𝑚,

where 𝜒𝑚 denotes the character associated with 𝑚 ∈ 𝑀. For details, we refer
the reader to [8, 23].
Following [5, Section 3], we define aHermitian line bundle𝒪(𝐷) ∶= (𝒪(𝐷), ‖⋅

‖) on𝒳 as toric if𝐷 is a toric divisor and its associated Green function is invari-
ant under the action of 𝕊, the compact torus of 𝒳(ℂ). Let 𝜇 denote a smooth
volume form on 𝒳(ℂ), which is invariant with respect to the action of 𝕊. Fur-
thermore, let 𝒪(𝐷) be a toric, continuous Hermitian line bundle on 𝒳. One
can see that (𝜒𝑚)𝑚∈∆𝐷∩𝑀 forms a ℤ-basis of 𝐻0(𝒳,𝒪(𝐷))𝐿2,𝒪(𝐷) that is orthog-
onal with respect to the Euclidean norm ‖ ⋅ ‖𝐿2,𝒪(𝐷). This observation plays a
key role in the proof of the integral representation for the arithmetic volume
of toric Hermitian line bundles (see [22, Lemma 2.2] and [13, 5]). For further
background on the Arakelov geometry of toric varieties, we refer the reader to
[5, 6].
The classical theory of Euclidean lattice reduction seeks to construct dis-

tinguished bases of Euclidean lattices, commonly referred to as reduced bases.
Loosely speaking, this theory demonstrates that an Euclidean lattice of rank
𝑛 > 0 can be effectively approximated by a direct sum of rank one Euclidean
lattices, expressed as 𝐸1 ⊕𝐸2 ⊕…⊕𝐸𝑛, where 𝐸1, … , 𝐸𝑛 denote rank one Eu-
clidean lattices. This approximation is achieved with a controlled error that
depends on 𝑛. Consequently, the lattice can be approximately characterized by
𝑛 real parameters 𝜇𝑖 ∶= d̂eg 𝐸𝑖. For detailed presentations and relevant refer-
ences, the reader is referred to [16, 17].
Motivated by the above discussion, we prove the following result.
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Theorem 1.2. Let 𝐸 = (𝐸, ‖ ⋅ ‖) be a Euclidean lattice of rank 𝑛, and suppose
that 𝐸 admits an orthogonal ℤ-basis. Then the following inequality holds:

−12𝑛 log 𝑛 + log
(
1 − 1

2𝜋

)
≤ ℎ̂0(𝐸) +

𝑛∑

𝑖=1
logmin(𝜆𝑖(𝐸), 1) ≤ 𝜋 + 𝑛 log 32,

where 𝜆𝑖(𝐸) is the 𝑖-th successive minimum of 𝐸, see Section 4 for the definition.

We generalize this result in Corollary 4.3 by showing that, for any normed
ℤ-module 𝐸 of rank 𝑛, the estimate

ℎ̂0(𝐸) +
𝑛∑

𝑖=1
logmin(𝜆𝑖(𝐸), 1) = 𝑂(𝑛 log 𝑛)

holds, where the error term 𝑂(𝑛 log 𝑛) depends only on 𝑛.
In Paragraph 4.1, we study the notion of arithmetic bigness in Arakelov ge-

ometry. The results presented in this section are primarily applications of the
theory developed in this paper. Let𝒳 be an arithmetic variety overℤ of dimen-
sion 𝑛 + 1. We assume that the generic fibre 𝒳ℚ is smooth. Let ℒ = (ℒ, ‖ ⋅ ‖ℒ)
be a smooth Hermitian line bundle on 𝒳. Yuan [26] introduced the condition:

lim inf
𝑘→∞

log#{𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ∣ ‖𝑠‖sup,𝑘ℒ < 1}
𝑘𝑛+1∕(𝑛 + 1)!

> 0,

as a criterion for defining an arithmetically big line bundle. Moriwaki [21]
proposed an alternative definition for arithmetic big line bundles: ℒ is said
to be arithmetically big if ℒℚ is big and there exists a positive integer 𝑘 and a
nonzero global section 𝑠 of 𝑘ℒ such that ‖𝑠‖sup,𝑘ℒ < 1. He demonstrated that
Yuan’s definition is equivalent to the existence of a nonzero section of a power
of ℒ with supremum norm less than 1, and that ℒℚ is big 1.
We provide an alternative proof of Moriwaki’s result; see Theorem 4.6 and

the discussion following it.

2. Normed ℤ-modules
A normedℤ-module 𝐸 = (𝐸, ‖ ⋅‖) is aℤ-module of finite type endowed with

a norm ‖ ⋅ ‖ on the ℂ-vector space 𝐸ℂ = 𝐸 ⊗ℤ ℂ. Let 𝐸tors denote the torsion-
module of 𝐸, 𝐸f ree = 𝐸∕𝐸tors, and 𝐸ℝ = 𝐸 ⊗ℤ ℝ. We let 𝐵(𝐸, ‖ ⋅ ‖) = {𝑚 ∈ 𝐸ℝ ∣
‖𝑚‖ ≤ 1}. There exists a unique Haar measure on 𝐸ℝ such that the volume of
𝐵(𝐸, ‖ ⋅ ‖) is 1. We let

𝜒(𝐸, ‖ ⋅ ‖) = log#𝐸tors − log vol(𝐸ℝ∕(𝐸∕𝐸tors)).

1That is, vol(ℒℚ) > 0, which by definition means

lim sup
𝑘→∞

ℎ0(𝒳ℚ, 𝑘ℒℚ)
𝑘𝑛∕𝑛!

> 0,

where 𝑛 = dim𝒳ℚ.
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Equivalently, we have

𝜒(𝐸, ‖ ⋅ ‖) = log#𝐸tors − log (
vol(𝐸ℝ∕(𝐸∕𝐸tor))
vol(𝐵(𝐸, ‖ ⋅ ‖)) ) ,

for any choice of a Haar measure of 𝐸ℝ.
The arithmetic degree of (𝐸, ‖ ⋅ ‖) is defined as follows

d̂eg(𝐸, ‖ ⋅ ‖) = d̂eg 𝐸 = 𝜒(𝐸) − 𝜒(ℤ
𝑛
),

where 𝜒(ℤ
𝑛
) = − log (Γ(𝑛

2
+ 1)𝜋−

𝑛
2 ), with 𝑛 is the rank of 𝐸ℝ.

When the norm ‖ ⋅ ‖ is induced by a Hermitian product ⟨⋅, ⋅⟩, we have

d̂eg(𝐸) = log#𝐸∕(𝑠1, … , 𝑠𝑛) − log
√
det(

⟨
𝑠𝑖, 𝑠𝑗

⟩
)1≤𝑖,𝑗≤𝑛,

where 𝑠1, … , 𝑠𝑛 are elements of 𝐸 such that their images in 𝐸⊗ℤℚ form a basis.
We define 𝐻̂0(𝐸) and ℎ̂0(𝐸) to be

𝐻̂0(𝐸) =
{
𝑚 ∈ 𝐸 ∣ ‖𝑚‖ ≤ 1

}
and ℎ̂0(𝐸) = log#𝐻̂0(𝐸).

We let

𝐻̂1(𝐸) ∶= 𝐻̂0(𝐸
∨
) and ℎ̂1(𝐸) ∶= ℎ̂0(𝐸

∨
),

where 𝐸
∨
is the ℤ-module 𝐸∨ = Homℤ(𝐸,ℤ) endowed with the dual norm

‖ ⋅ ‖∨ defined as follows

‖𝑓‖∨ = sup
𝑚∈𝐸ℝ⧵{0}

|𝑓(𝑚)|
‖𝑚‖ , ∀𝑓 ∈ 𝐸∨.

Gillet and Soulé [10] proved an arithmetic analogue of geometric Riemann-
Roch theorem for curves. It can be stated as follows:

− log(6) rk 𝐸 ≤ ℎ̂0(𝐸) − ℎ̂1(𝐸) − d̂eg(𝐸) ≤ log( 3
2
)rk 𝐸 + 2 log((rk 𝐸)!), (2.1)

see [21, Proposition 2.1] and also [26].
In this paper,𝐸𝑡 will denote the normedℤ-module𝐸 endowedwith the norm

𝑡‖ ⋅ ‖ where 𝑡 > 0.
Let 𝑣𝑛 denote the volume of the unit ball in ℝ𝑛 endowed with its standard

Euclidean structure. It is known that

𝑣𝑛 =
𝜋

𝑛
2

Γ(𝑛
2
+ 1)

.

Stirling’s formula gives that

−𝑛2 log 𝑛 + 𝑛 log 2 ≤ log 𝑣𝑛 ≤ −𝑛2 log 𝑛 +
𝑛
2 (log(2𝜋) + 1) ∀𝑛 ≫ 1. (2.2)
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3. On theta invariants of Euclidean lattices
In this section, we review some elements of the theory of Euclidean lattices.

Let 𝐸 = (𝐸, ‖ ⋅ ‖𝐸) be a Euclidean lattice over ℤ of rank 𝑛. We recall that
this means that we are given the following data: A finite-dimensionalℝ-vector
space 𝐸ℝ, (𝑛 ∶= dimℝ 𝐸ℝ), a lattice 𝐸 in 𝐸ℝ, and {𝑒1, … , 𝑒𝑛} aℝ-basis of 𝐸ℝ such
that 𝐸 = ⊕𝑛

𝑖=1ℤ𝑒𝑖, and a Euclidean norm ‖ ⋅ ‖𝐸 associated to some Euclidean
scalar product ⟨⋅, ⋅⟩ on 𝐸ℝ.
Let 𝜆𝐸 be the unique translation-invariant Radon measure on 𝐸ℝ which

satisfies the following normalization condition: for every orthonormal basis
{𝑒1, … , 𝑒𝑛} of (𝐸ℝ, ‖ ⋅ ‖𝐸),

𝜆𝐸
( 𝑛∑

𝑖=1
[0, 1[𝑒𝑖

)
= 1.

We set
covol(𝐸) ∶= vol(𝐸ℝ∕𝐸),

which is, by definition, 𝜆𝐸(
∑𝑁

𝑖=1[0, 1[𝑣𝑖) for every ℤ-basis {𝑣1, … , 𝑣𝑛} of 𝐸.
covol(𝐸) is called the covolume of 𝐸. Note that

d̂eg(𝐸) = − log covol(𝐸).

𝐸 induces a natural Euclidean structure on the dual𝐸∨. We denote the resulting
Euclidean lattice by 𝐸

∨
.

We let

𝜃𝐸(𝑡) =
∑

𝑣∈𝐸
𝑒−𝜋𝑡‖𝑣‖

2
𝐸 (𝑡 > 0).

𝜃𝐸 is called the theta series associated with 𝐸.
By the Poisson summation formula, we obtain a relation between the theta

series of 𝐸 and 𝐸
∨
. That is
∑

𝑣∈𝐸
𝑒−𝜋‖𝑣‖

2
𝐸 = (covol(𝐸))−1

∑

𝑣∨∈𝐸∨
𝑒
−𝜋‖𝑣∨‖2

𝐸
∨ . (3.1)

One can attach to 𝐸 another arithmetic invariant ℎ0𝜃(𝐸) called the theta in-
variant of 𝐸. It is given as follows:

ℎ0𝜃(𝐸) ∶= log 𝜃𝐸(1).

We let

ℎ1𝜃(𝐸) ∶= ℎ0𝜃(𝐸
∨
).

The equation (3.1) may be written as follows:

ℎ0𝜃(𝐸) − ℎ1𝜃(𝐸) − d̂eg(𝐸) = 0. (3.2)
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Proposition 3.1. Let 𝐸 be an Euclidean lattice. We have

ℎ0𝜃(𝐸) −
1
2rk𝐸 log rk 𝐸 + log

(
1 − 1

2𝜋

)
≤ log#{𝑣 ∈ 𝐸| ‖𝑣‖𝐸 < 1}

≤ log#{𝑣 ∈ 𝐸| ‖𝑣‖𝐸 ≤ 1} ≤ ℎ0𝜃(𝐸) + 𝜋,
(3.3)

where rk𝐸 denotes the rank of the lattice 𝐸.

Proof. See [1] or [2]. For reader’s convenience, we recall the proof of (3.3). By
the Poisson summation formula, we have

log 𝜃𝐸(𝑡) +
1
2rk𝐸 log 𝑡 + log covol(𝐸) = log 𝜃𝐸∨(

1
𝑡 ) ∀𝑡 > 0. (3.4)

We differentiate this equation to get that

∑

𝑣∈𝐸
‖𝑣‖2

𝐸

𝑒−𝜋𝑡‖𝑣‖
2
𝐸

∑
𝑢∈𝐸

𝑒−𝜋𝑡‖𝑢‖
2
𝐸

+ 1
𝑡2

∑

𝑣∨∈𝐸∨
‖𝑣∨‖2

𝐸
∨

𝑒
− 𝜋

𝑡
‖𝑣∨‖2

𝐸
∨

∑
𝑢∨∈𝐸∨

𝑒
− 𝜋

𝑡
‖𝑢∨‖2

𝐸
∨
= rk 𝐸

2𝜋𝑡
∀𝑡 > 0.

It follows that
∑

𝑣∈𝐸
‖𝑣‖2

𝐸
𝑒−𝜋𝑡‖𝑣‖

2
𝐸 ≤ rk𝐸

2𝜋𝑡
∑

𝑢∈𝐸
𝑒−𝜋𝑡‖𝑢‖

2
𝐸 ∀ 𝑡 > 0.

From which we infer the following inequality

(1 − rk𝐸
2𝜋𝑡 )

∑

𝑢∈𝐸
𝑒−𝜋𝑡‖𝑢‖

2
𝐸 ≤

∑

𝑢∈𝐸
‖𝑢‖𝐸<1

𝑒−𝜋𝑡‖𝑢‖
2
𝐸 ∀𝑡 > 0. (3.5)

Let 𝑡 > max(1, rk 𝐸
2𝜋
). We have

log#{𝑣 ∈ 𝐸| ‖𝑣‖𝐸 < 1} ≥ log
( ∑

𝑣∈𝐸
‖𝑣‖<1

𝑒−𝜋𝑡‖𝑣‖2
)

≥ log 𝜃𝐸(𝑡) + log (1 − rk𝐸
2𝜋𝑡 ) (by (3.5))

≥ log 𝜃𝐸(1) −
rk𝐸
2 log 𝑡 + log (1 − rk𝐸

2𝜋𝑡 ) (by (3.4)).

By taking 𝑡 = rk𝐸, we obtain

log#
{
𝑣 ∈ 𝐸| ‖𝑣‖𝐸 < 1

}
≥ ℎ0𝜃(𝐸) −

rk𝐸
2 log rk 𝐸 + log

(
1 − 1

2𝜋

)
.

On the other hand, it is clear that

log#
{
𝑣 ∈ 𝐸| ‖𝑣‖𝐸 ≤ 1

}
≤ ℎ0𝜃(𝐸) + 𝜋.

This concludes the proof of the proposition. □
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Proposition 3.2. Let 𝐸 be an Euclidean lattice. We have

−12rk(𝐸) log rk(𝐸) + log
(
1 − 1

2𝜋

)
− 𝜋 ≤ ℎ̂0(𝐸) − ℎ̂1(𝐸) − d̂eg(𝐸)

≤ 1
2rk(𝐸) log rk(𝐸) + 𝜋 − log

(
1 − 1

2𝜋

)
.

Proof. We combine (3.3) with (3.2) to conclude the proof of the proposition.
□

Proof of Theorem 1.1. Let 𝐸 = (𝐸, ‖ ⋅ ‖) be a normed ℤ-module of rank 𝑛.
There exists a Euclidean norm ‖ ⋅ ‖𝐽 on 𝐸 satisfying the following

‖ ⋅ ‖ ≤ ‖ ⋅ ‖𝐽 ≤ 𝑛
1
2 ‖ ⋅ ‖.

This norm is called John norm, see for instance [2, Appendix F, 355]. This gives
us the following inequalities.

𝜒(𝐸𝐽) ≤ 𝜒(𝐸) ≤ 𝑛
2 log 𝑛 + 𝜒(𝐸𝐽),

and
ℎ̂0(𝐸𝐽) ≤ ℎ̂0(𝐸) ≤ ℎ̂0((𝐸𝐽)𝑛−

1
2
),

and

ℎ̂0(((𝐸𝐽)𝑛−
1
2
)
∨
) ≤ ℎ̂0(𝐸

∨
) ≤ ℎ̂0(

(
𝐸𝐽
)∨
),

where 𝐸𝐽 = (𝐸, ‖ ⋅ ‖𝐽).
Let 𝜆𝐸𝐽 denote the unique Lebesgue measure on 𝐸ℝ that gives the volume 1

to the unit cube in (𝐸ℝ, ‖ ⋅ ‖𝐽). Then

𝜒(𝐸, ‖ ⋅ ‖𝐽) = log vol(𝐵(𝐸, ‖ ⋅ ‖𝐽)) + d̂eg(𝐸𝐽).

Consequently, we get

log 𝑣𝑛 + d̂eg(𝐸𝐽) ≤ 𝜒(𝐸) ≤ log 𝑣𝑛 + (𝑛∕2) log 𝑛 + d̂eg(𝐸𝐽).

So

ℎ̂0(𝐸𝐽)−ℎ̂1(𝐸𝐽) − log 𝑣𝑛 −
𝑛
2 log 𝑛 − d̂eg(𝐸𝐽) ≤ ℎ̂0(𝐸) − ℎ̂1(𝐸) − 𝜒(𝐸)

≤ ℎ̂0 ((𝐸𝐽)𝑛−
1
2
) − ℎ̂1 ((𝐸𝐽)𝑛−

1
2
) − log 𝑣𝑛 − d̂eg(𝐸𝐽).

From Proposition 3.2, we obtain

−𝑛 log 𝑛 − log 𝑣𝑛 + log
(
1 − 1

2𝜋

)
− 𝜋 ≤ ℎ̂0(𝐸) − ℎ̂1(𝐸) − 𝜒(𝐸)

≤ 𝑛 log 𝑛 + 𝜋 − log
(
1 − 1

2𝜋

)
− log 𝑣𝑛.

We use (2.2) to end the proof of the Theorem. □
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4. Successive minima and arithmetic bigness
Minkowski defined 𝑛 successive minima of a given convex body. In the con-

text of normed ℤ-modules, they are given as follows. Let 𝐸 be a normed ℤ-
module of positive rank𝑛. The successiveminima (𝜆𝑖(𝐸))𝑖=1,…,𝑛 of𝐸 are defined
as follows:

𝜆𝑖(𝐸) = inf
{
𝑟 > 0 ∣ dimℝ(Spanℝ(𝐸 ∩ {𝑚 ∈ 𝐸ℝ ∣ ‖𝑚‖ ≤ 𝑟})) ≥ 𝑖

}

for 𝑖 = 1, … , 𝑛. Clearly

𝜆1(𝐸) ≤ … ≤ 𝜆𝑛(𝐸).

Lemma 4.1. Let ℤ be the Euclidean lattice ℤ endowed with the standard norm
onℝ. We have

1 ≤ min(1,
√
𝑡)𝜃ℤ(𝑡) ≤

3
2 ∀𝑡 > 0.

Proof. Let 𝑡 ≥ 1, then 𝜃ℤ(𝑡) ≤ 𝜃ℤ(1). On the other hand, let 𝑡 ∈ (0, 1). Since
𝜃ℤ(𝑡) =

1
√
𝑡
𝜃ℤ(

1
𝑡
). Then 𝜃ℤ(𝑡) ≤

1
√
𝑡
𝜃ℤ(1).We infer that

𝜃ℤ(𝑡) ≤
𝜃ℤ(1)

min(1,
√
𝑡)

∀ 𝑡 > 0.

Since min(1,
√
𝑡)𝜃ℤ(𝑡) = min(1, 1

√
𝑡
)𝜃ℤ(

1
𝑡
) for every 𝑡 > 0 and 𝜃ℤ is a nonde-

creasing function and 𝜃ℤ(𝑡) ≥ 1, we obtain

1 ≤ min(1,
√
𝑡)𝜃ℤ(𝑡) ∀𝑡 > 0.

Using the geometric growth of the exponential terms, we estimate:

𝜃ℤ(1) = 1 + 2
∞∑

𝑛=1
𝑒−𝜋𝑛2 ≤ 1 + 𝑒𝜋

1 − 𝑒−𝜋 ≤ 3
2.

Thus, we establish the inequality:

1 ≤ min(1,
√
𝑡)𝜃ℤ(𝑡) ≤

3
2 ∀𝑡 > 0.

This ends the proof of the lemma. □

Proof of Theorem 1.2. Let {𝑒1, … , 𝑒𝑛} be an orthogonal ℤ-basis of 𝐸. Without
loss of generality, assume that ‖𝑒1‖ ≤ … ≤ ‖𝑒𝑛‖. Then

𝜆𝑖(𝐸) = ‖𝑒𝑖‖ (𝑖 = 1, … , 𝑛).
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We have

𝜃𝐸(1)
𝑛∏

𝑖=1
min(𝜆𝑖(𝐸), 1) =

𝑛∏

𝑖=1
𝜃ℤ(‖𝑒𝑖‖

2)
𝑛∏

𝑖=1
min(‖𝑒𝑖‖, 1)

≤
𝑛∏

𝑖=1

3
2

min(‖𝑒𝑖‖, 1)

𝑛∏

𝑖=1
min(‖𝑒𝑖‖, 1) (by Lemma 4.1)

≤ (32)
𝑛
.

On the other hand, by applying Lemma 4.1 once again, we obtain:

1 ≤
∏

𝑖=1,…,𝑛
𝜆𝑖(𝐸)≤1

𝜃ℤ(𝜆𝑖(𝐸)
2)

∏

𝑖=1,…,𝑛
𝜆𝑖(𝐸)≤1

𝜆𝑖(𝐸)

=
∏

‖𝑒𝑖‖≤1
𝜃ℤ(‖𝑒𝑖‖

2)
∏

‖𝑒𝑖‖≤1
‖𝑒𝑖‖

≤
𝑛∏

𝑖=1
𝜃ℤ(‖𝑒𝑖‖

2)
𝑛∏

𝑖=1
min(‖𝑒𝑖‖, 1)

= 𝜃𝐸(1)
𝑛∏

𝑖=1
min(𝜆𝑖(𝐸), 1),

where the final inequality follows from the orthogonality property.
Combining these results, we obtain:

0 ≤ ℎ̂0𝜃(𝐸) +
𝑛∑

𝑖=1
logmin(𝜆𝑖(𝐸), 1) ≤ 𝑛 log 32.

Finally, by Proposition 3.1, we conclude:

−12𝑛 log 𝑛 + log
(
1 − 1

2𝜋

)
≤ ℎ̂0(𝐸) +

∑

𝑖
logmin(𝜆𝑖(𝐸), 1) ≤ 𝜋 + 𝑛 log 3

2
.

This completes the proof. □

Theorem 4.2. Let 𝐸 be a Euclidean lattice. We have
−𝜋 − log 𝑛!+ log

( 2
𝑒𝜋

) 𝑛
2
− 𝑛

2
log 𝑛 + log

(
1 − 1

2𝜋

)
≤

ℎ̂0(𝐸) +
𝑛∑

𝑖=1
logmin(𝜆𝑖(𝐸), 1) ≤ 𝜋 − log

(
1 − 1

2𝜋

)
+ 𝑛 log 𝑛,

where 𝑛 is the rank of 𝐸.
Proof. Let 𝐸0 be the ℤ-submodule of 𝐸 generated by the elements of the set
𝐸 ∩ {𝑚 ∈ 𝐸ℝ ∣ ‖𝑚‖ < 1}. Let 𝐸0 denote the Euclidean lattice 𝐸0 equipped with
the induced Euclidean norm from 𝐸. It is clear that:

ℎ̂1(𝐸0) = 0.
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Now, consider the case where 𝜆1(𝐸) > 1. In this situation, we observe that:
ℎ̂0(𝐸) = 0.

Thus, the theorem holds true in this case.
Let us consider the case where 𝜆1(𝐸) < 1. In this case, the submodule 𝐸0 has

positive rank. It is straightforward to see that
∏

𝑖 𝜆𝑖(𝐸0) =
∏

𝑖min(𝜆𝑖(𝐸), 1).
From equation (3.3), we obtain the bounds:

𝑒−𝜋 ≤ 𝜃𝐸∨0 (1) ≤
2𝜋

2𝜋 − 1𝑛
𝑛0∕2
0 ,

where 𝑛0 is the rank of 𝐸0.
By Minkowski’s theorem on successive minima ([12, Theorem 1, p. 59, The-

orem 2, p. 62]),
2𝑛0
𝑛0!

≤ 𝜆1(𝐸0)⋯𝜆𝑛0(𝐸0) vol(𝐵(𝐸0, ‖ ⋅ ‖)) ≤ 2𝑛0 .

where vol(⋅) is the volume function with respect to the Lebesgue measure that
gives volume 1 to 𝐸ℝ∕𝐸. Note that 𝜃𝐸0(1)

∏
𝑖 𝜆𝑖(𝐸0) =

∏
𝑖 𝜆𝑖(𝐸0)

covol(𝐸0)
𝜃𝐸∨0 (1).

We conclude that

𝑒−𝜋 2𝑛0
𝑛0!𝑣𝑛0

≤ 𝜃𝐸0(1)
∏

𝑖
𝜆𝑖(𝐸0) ≤

2𝜋
2𝜋−1

𝑛𝑛0∕20
2𝑛0
𝑣𝑛0
.

We use (2.2) to obtain that

𝑒−𝜋 1
𝑛!

( 2
𝑒𝜋

) 𝑛
2 ≤ 𝜃𝐸0(1)

∏

𝑖
𝜆𝑖(𝐸0) ≤

2𝜋
2𝜋−1

𝑛𝑛.

Note that 2𝑛∕𝑛! is a decreasing function.
Since {𝑚 ∈ 𝐸ℝ ∣ ‖𝑚‖ < 1} ∩ 𝐸 = 𝐵𝐸0(0, 1) ∩ 𝐸0, we can use Proposition 3.1

to deduce that
𝑒−𝜋

𝑛!

( 2
𝑒𝜋

) 𝑛
2 𝑛−

𝑛
2 (1 − 1

2𝜋
) ≤ #(𝐵𝐸(0, 1) ∩ 𝐸)

∏

𝑖
min(𝜆𝑖(𝐸), 1) ≤ 𝑒𝜋 2𝜋

2𝜋−1
𝑛𝑛. (4.1)

It remains to consider the case when 𝜆1(𝐸) = 1. We see that (4.1) holds for 𝐸𝑡
with 𝑡 ∈ (0, 1). By letting 𝑡 → 1, we conclude that (4.1) holds for 𝐸. This ends
the proof of the theorem. □

Corollary 4.3. Let 𝐸 be a normed lattice of rank 𝑛. We have

−𝜋− log 𝑛! + 𝑛
2
log

( 2
𝑒𝜋

)
− 𝑛 log 𝑛 + log

(
1 − 1

2𝜋

)

≤ ℎ̂0(𝐸) +
𝑛∑

𝑖=1
logmin(𝜆𝑖(𝐸), 1) ≤ 2𝜋 − 2 log

(
1 − 1

2𝜋

)
+ 3𝑛

2
log 𝑛.

Proof. Let𝐸 be a normed lattice. Let ‖⋅‖𝐽 be the John norm on𝐸ℝ that satisfies

‖ ⋅ ‖ ≤ ‖ ⋅ ‖𝐽 ≤ 𝑛
1
2 ‖ ⋅ ‖.
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Let us denote by 𝐸𝐽 the Euclidean lattice 𝐸 endowed with ‖ ⋅ ‖𝐽 .
We have

#
(
𝐵(𝐸, ‖ ⋅ ‖) ∩ 𝐸

)∏

𝑖
min(𝜆𝑖(𝐸), 1)

≤#(𝐵(𝐸, 1
√
𝑛
‖ ⋅ ‖𝐽) ∩ 𝐸)

∏

𝑖
min(𝜆𝑖(𝐸𝐽), 1)

≤𝑒𝜋𝜃(𝐸𝐽) 1√
𝑛

(1)
∏

𝑖
min(𝜆𝑖(𝐸𝐽), 1)

≤𝑒𝜋𝑛
𝑛
2 𝜃𝐸𝐽 (1)

∏

𝑖
min(𝜆𝑖(𝐸𝐽), 1)

≤𝑛
𝑛
2 𝑒𝜋 2𝜋

2𝜋−1
#(𝐵(𝐸, ‖ ⋅ ‖𝐽) ∩ 𝐸)

∏

𝑖
min(𝜆𝑖(𝐸𝐽), 1)

≤𝑒2𝜋
( 2𝜋
2𝜋−1

)2
𝑛

3𝑛
2 ,

wherewehave usedTheorem4.2 and that 𝑡 ↦ log 𝜃𝐸(𝑡)+
𝑛
2
log 𝑡 is an increasing

function.
Note thatmin(𝜆𝑖(𝐸), 1) ≥

1
√
𝑛
min(𝜆𝑖(𝐸𝐽), 1) for every 𝑖 = 1, … , 𝑛. We deduce

that

ℎ̂0(𝐸𝐽) +
∑

𝑖
logmin(𝜆𝑖(𝐸), 1) −

𝑛
2
log 𝑛 ≤ ℎ̂0(𝐸) +

∑

𝑖
logmin(𝜆𝑖(𝐸), 1).

Using Theorem 4.2 once again, we derive the following inequality:

−𝜋 − log 𝑛! + 𝑛
2
log

( 2
𝑒𝜋

)
− 𝑛 log 𝑛+ log

(
1 − 1

2𝜋

)

≤ ℎ̂0(𝐸) +
∑

𝑖
logmin(𝜆𝑖(𝐸), 1).

This concludes the proof of the corollary. □

4.1. Arithmetic bigness. Let𝒳 be an arithmetic variety overℤ of dimension
𝑛 + 1 and such that 𝒳ℚ is smooth. Let ℒ = (ℒ, ‖ ⋅ ‖ℒ) be a smooth Hermitian

line bundle on 𝒳. For any 𝑘 ∈ ℕ, we write 𝑘ℒ ∶= ℒ
⊗𝑘
, we let 𝑛𝑘 denote the

rank of 𝐻0(𝒳, 𝑘ℒ). We set 𝑋 ∶= 𝒳(ℂ), and 𝐿 ∶= ℒ(ℂ). Let 𝜇 be a smooth
volume form on ℒ. The space of global sections 𝐻0(𝑋, 𝐿) is endowed with the
𝐿2-norm

‖𝑠‖2
𝐿2,ℒ

∶= ∫
𝑋
‖𝑠(𝑥)‖2

ℒ
𝜇 for any 𝑠 ∈ 𝐻0(𝑋, 𝐿).

Also we consider the sup norm defined as follows

‖𝑠‖sup,ℒ ∶= sup
𝑥∈𝑋

‖𝑠(𝑥)‖ℒ for any 𝑠 ∈ 𝐻0(𝑋, 𝐿).

For an introduction to Arakelov geometry, see [24].
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There are several notions of arithmetic positivity for a Hermitian line bundle
on an arithmetic variety. We refer the reader to [21, 27], or to [5, p. 227] for a
detailed discussion of these concepts.
A Hermitian line bundle ℒ on 𝒳 is said to be big if:

∙ The generic fiber ℒℚ is big,2

∙ There exists a positive integer 𝑘 and a nonzero section 𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ)
such that ‖𝑠‖sup, 𝑘ℒ < 1.

A Hermitian line bundle 𝒜 is said to be ample if:
∙ ℒ is ample on 𝒳,
∙ The first Chern form 𝑐1(ℒ) is positive on 𝒳(ℂ), and
∙ For a sufficiently large integer 𝑘, the space 𝐻0(𝒳, 𝑘ℒ) is generated by
the set

{𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ∣ ‖𝑠‖sup,𝑘ℒ < 1},
as a ℤ-module.

Following the convention in [21, Convention 9, p. 411], we write ℒ ≤ ℳ if
there is an injective homomorphism 𝜙 ∶ ℒ → ℳ such that ‖𝜙ℂ(⋅)‖ℳ ≤ ‖ ⋅ ‖ℒ
on𝒳(ℂ), where ‖ ⋅ ‖ℒ and ‖ ⋅ ‖ℳ are the Hermitian norms associated to ℒ and
ℳ, respectively.

Lemma 4.4. Letℒ = (ℒ, ‖ ⋅ ‖) be a big Hermitian line bundle on𝒳. Then there
exists a positive integer 𝓁0 such that

ℎ̂0
(
𝐻0(𝒳, 𝓁ℒ)sup, 𝓁ℒ

)
≠ 0 for all 𝓁 ≥ 𝓁0.

Proof. Since ℒ is big, there exist a positive integer 𝑘0 and a nonzero section
𝑠 ∈ 𝐻0(𝒳, 𝑘0ℒ) such that ‖𝑠‖sup, 𝑘0ℒ < 𝛼 for some real number 0 < 𝛼 < 1.
It is known that the sequence

(1𝑘 log 𝜆1
(
𝐻0(𝒳, 𝑘ℒ)sup, 𝑘ℒ

)
)
𝑘∈ℕ

converges to a finite limit as 𝑘 → ∞. In particular,

lim
𝑘→∞

1
𝑘 log 𝜆1

(
𝐻0(𝒳, 𝑘ℒ)sup, 𝑘ℒ

)
= lim

𝑘→∞
1
𝑘𝑘0

log 𝜆1
(
𝐻0(𝒳, 𝑘𝑘0ℒ)sup, 𝑘𝑘0ℒ

)

≤ 1
𝑘0

log 𝛼

< 0.

2That is, vol(ℒℚ) > 0, which by definition means

lim sup
𝑘→∞

ℎ0(𝒳ℚ, 𝑘ℒℚ)
𝑘𝑛∕𝑛!

> 0,

where 𝑛 = dim𝒳ℚ.
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Let 0 < 𝜀 < − 1
𝑘0
log 𝛼. By the convergence above, there exists 𝓁0 ∈ ℕ such that

for all 𝓁 ≥ 𝓁0,

1
𝓁 log 𝜆1

(
𝐻0(𝒳, 𝓁ℒ)sup,𝓁ℒ

)
≤ lim

𝑘→∞
1
𝑘 log 𝜆1

(
𝐻0(𝒳, 𝑘ℒ)sup,𝑘ℒ

)
+ 𝜀

≤
log 𝛼
𝑘0

+ 𝜀 < 0.

Thus, for all 𝓁 ≥ 𝓁0, we have log 𝜆1
(
𝐻0(𝒳, 𝓁ℒ)sup, 𝓁ℒ

)
< 0, i.e.,

𝜆1
(
𝐻0(𝒳, 𝓁ℒ)sup, 𝓁ℒ

)
< 1.

So ℎ̂0(𝐻0(𝒳, 𝓁ℒ)sup,𝓁ℒ) ≠ 0 for all 𝓁 ≥ 𝓁0. □

Proposition 4.5. Let𝒜 be an ample Hermitian line bundle on𝒳. Then,

lim inf
𝑘→∞

ℎ̂0(𝐻0(𝒳, 𝑘𝒜)sup,𝑘𝒜)
𝑘𝑛+1∕(𝑛 + 1)!

> 0.

Proof. Since 𝒜 is ample, there exists an integer 𝑘0 > 0 such that the graded
algebra

⨁
𝑚∈ℕ𝐻

0(𝒳,𝑚𝑘0𝒜) is generated by the set

𝑆 ∶=
{
𝑠 ∈ 𝐻0(𝒳, 𝑘0𝒜)

||||| ‖𝑠‖sup, 𝑘0𝒜 < 1
}
.

Define
𝜀 ∶= − sup

𝑠∈𝑆
log ‖𝑠‖sup, 𝑘0𝒜 > 0.

By construction, for each𝑘 ≥ 1, we canfind a basis of𝐻0(𝒳, 𝑘𝑘0𝒜) consisting of
sections whose sup-norm is at most 𝑒−𝜀𝑘. Consequently, the 𝑛𝑘𝑘0-th successive
minimum 𝜆𝑛𝑘𝑘0 (𝑘𝑘0𝒜) satisfies

𝜆𝑛𝑘𝑘0 (𝑘𝑘0𝒜) ≤ 𝑒−𝜀𝑘,

where 𝑛𝑘 is the rank of𝐻0(𝒳, 𝑘𝒜).
By Corollary 4.3, we get the following inequality:

𝑂(𝑛𝑘 log 𝑛𝑘) + 𝜀𝑛𝑘𝑘0𝑘 ≤ ℎ̂0
(
(𝐻0(𝒳, 𝑘𝑘0𝒜)sup, 𝑘𝑘0𝒜

)
.

Consequently,

𝜀(𝑛 + 1)
vol(𝒜ℚ)

𝑘0
≤ lim inf

𝑘→∞

ℎ̂0
(
𝐻0(𝒳, 𝑘𝑘0𝒜)sup, 𝑘𝑘0𝒜

)

(𝑘𝑘0)𝑛+1∕(𝑛 + 1)!
,

noting that 𝒜ℚ is big.
Applying Lemma 4.4 to𝒜, we obtain a positive integer 𝓁0 such that, for every

𝓁 ≥ 𝓁0,
ℎ̂0
(
𝐻0(𝒳, 𝓁𝒜)sup, 𝓁𝒜

)
≠ 0.
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Given 𝑚 ≥ 𝑘1𝑘0 + 𝑘0 + 𝓁0, write 𝑚 = 𝑘𝑘0 + 𝑟 + 𝓁0, where 𝑘 ∈ ℕ and 𝑟 ∈
{0, … , 𝑘0 − 1}. By Lemma 4.4, we have

𝑘𝑘0𝒜 ≤ 𝑘𝑘0𝒜+ 𝑟𝒜 + 𝓁0𝒜.
Therefore,

ℎ̂0
(
𝐻0(𝒳,𝑚𝒜)sup,𝑚𝒜

)

𝑚𝑛+1 ≥
ℎ̂0 (𝐻0(𝒳, 𝑘𝑘0𝒜)

sup, 𝑘𝑘0𝒜
)

(𝑘𝑘0)𝑛+1
(𝑘𝑘0)𝑛+1

(𝑘𝑘0 + 𝑟 + 𝓁0)𝑛+1

≥
ℎ̂0 (𝐻0(𝒳, 𝑘𝑘0𝒜)

sup, 𝑘𝑘0𝒜
)

(𝑘𝑘0)𝑛+1
(𝑘𝑘0)𝑛+1

(𝑘𝑘0 + 𝑘0 + 𝓁0)𝑛+1
.

It follows that

lim inf
𝑚→∞

ℎ̂0(𝒳,𝑚𝒜)
𝑚𝑛+1 > 0.

This completes the proof. □

Moriwaki in [20] introduced the arithmetic volume v̂ol(ℒ) for a Hermitian
line bundle ℒ on arithmetic variety 𝒳 which is an analogue of the geometric
volume function. It is given as follows:

v̂ol(ℒ) = lim sup
𝑘→∞

ℎ̂0(𝐻0(𝒳, 𝑘ℒ)sup,𝑘ℒ)
𝑘𝑛+1∕(𝑛 + 1)!

.

Yuan [26] employs the condition

lim inf
𝑘→∞

log#{𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ∣ ‖𝑠‖sup,𝑘ℒ < 1}
𝑘𝑛+1∕(𝑛 + 1)!

> 0,

as a definition of an arithmetic big Hermitian line bundle. Moriwaki [21]
proposed an alternative definition for arithmetic big line bundles: ℒ is said
to be arithmetically big if ℒℚ is big and there exists a positive integer 𝑘 and a
nonzero global section 𝑠 of 𝑘ℒ such that ‖𝑠‖sup,𝑘ℒ < 1. He showed that Yuan’s
definition is equivalent to the existence of a nonzero section of a sufficiently
high tensor power of ℒ with sup-norm less than 1, and that ℒℚ is big.
The following theorem is an application of the theory developed in this paper.

Theorem 4.6. We keep the same notations as in the beginning of this section. We
have

(1)

lim sup
𝑘→∞

log#
{
𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ||||| ‖𝑠‖sup,𝑘ℒ < 1

}

𝑘𝑛+1∕(𝑛 + 1)!

= lim sup
𝑘→∞

log#
{
𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ||||| ‖𝑠‖sup,𝑘ℒ ≤ 1

}

𝑘𝑛+1∕(𝑛 + 1)!
.
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(2)

lim inf
𝑘→∞

log#
{
𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ||||| ‖𝑠‖sup,𝑘ℒ < 1

}

𝑘𝑛+1∕(𝑛 + 1)!

= lim inf
𝑘→∞

log#
{
𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ||||| ‖𝑠‖sup,𝑘ℒ ≤ 1

}

𝑘𝑛+1∕(𝑛 + 1)!
.

Proof. Let us prove (1). (2) can be proved in a similar way. Let 𝑘 be a positive
integer. We denote by ‖ ⋅ ‖𝐽𝑘 the John norm on𝐻0(𝒳, 𝑘ℒ)ℝ satisfying

𝑛
− 1
2

𝑘 ‖ ⋅ ‖𝐽𝑘 ≤ ‖ ⋅ ‖sup,𝑘ℒ ≤ ‖ ⋅ ‖𝐽𝑘 ,

where 𝑛𝑘 is the rank of𝐻0(𝒳, 𝑘ℒ). So

lim sup
𝑘→∞

log#
{
𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) |||| ‖𝑠‖𝐽𝑘 ≤ 1

}

𝑘𝑛+1∕(𝑛 + 1)!

≤ lim sup
𝑘→∞

log#
{
𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ∣ ‖𝑠‖sup,𝑘ℒ ≤ 1

}

𝑘𝑛+1∕(𝑛 + 1)!

≤ lim sup
𝑘→∞

log# {𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ)
||||||||
𝑛
− 1
2

𝑘 ‖𝑠‖𝐽𝑘 ≤ 1}

𝑘𝑛+1∕(𝑛 + 1)!
.

Similarly, we get

lim sup
𝑘→∞

log#
{
𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) |||| ‖𝑠‖𝐽𝑘 < 1

}

𝑘𝑛+1∕(𝑛 + 1)!

≤ lim sup
𝑘→∞

log#
{
𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ||||| ‖𝑠‖sup,𝑘ℒ < 1

}

𝑘𝑛+1∕(𝑛 + 1)!

≤ lim sup
𝑘→∞

log# {𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ)
||||||||
𝑛
− 1
2

𝑘 ‖𝑠‖𝐽𝑘 < 1}

𝑘𝑛+1∕(𝑛 + 1)!
.

On the other hand, we have

ℎ0𝜃
(
𝐻0(𝒳, 𝑘ℒ)𝐽𝑘

)
≤ ℎ0𝜃 (

(
𝐻0(𝒳, 𝑘ℒ)𝐽𝑘

)
𝑛
− 1
2

𝑘

)

≤ ℎ0𝜃
(
𝐻0(𝒳, 𝑘ℒ)𝐽𝑘

)
− 𝑛𝑘 log 𝑛𝑘

4
.
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where we have used the fact that log 𝜃𝐸(𝑡)+
1
2
rk 𝐸 log 𝑡 is a nondecreasing func-

tion, see (3.4). So

lim sup
𝑘→∞

ℎ0𝜃
(
𝐻0(𝒳, 𝑘ℒ)𝐽𝑘

)

𝑘𝑛+1∕(𝑛 + 1)!
= lim sup

𝑘→∞

ℎ0𝜃 ((𝐻0(𝒳, 𝑘ℒ)𝐽𝑘 )𝑛−
1
2

𝑘

)

𝑘𝑛+1∕(𝑛 + 1)!
. (4.2)

Combining the inequalities above with (4.2) and Proposition 3.1, we conclude
that

lim sup
𝑘→∞

log#
{
𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ||||| ‖𝑠‖sup,𝑘ℒ < 1

}

𝑘𝑛+1∕(𝑛 + 1)!

= lim sup
𝑘→∞

log#
{
𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ||||| ‖𝑠‖sup,𝑘ℒ ≤ 1

}

𝑘𝑛+1∕(𝑛 + 1)!
.

This completes the proof of (1). □

From this theorem, we can deduce that ℒ is arithmetically big in the sense
of Yuan if and only if it is arithmetically big in the sense of Moriwaki. Indeed,
let us explain this in detail.
Let ℒ be a big Hermitian line bundle on 𝒳 in the sense of Moriwaki. Let 𝒜

be an ample Hermitian line bundle on𝒳. By the argument in [21, p. 445], there
exists a positive integer 𝑝 such that

𝑝ℒ ≥ 𝒜.
This implies the following bound:

lim inf
𝑘→∞

ℎ̂0
(
𝐻0(𝒳, 𝑝𝑘ℒ)sup,𝑝𝑘ℒ

)

(𝑝𝑘)𝑛+1
≥ 1
𝑝𝑛+1 lim inf

𝑘→∞

ℎ̂0
(
𝐻0(𝒳, 𝑘𝒜)sup,𝑘𝒜

)

𝑘𝑛+1 .

By Proposition 4.5, we know that

lim inf
𝑘→∞

ℎ̂0
(
𝐻0(𝒳, 𝑘𝒜)sup,𝑘𝒜

)

𝑘𝑛+1 > 0,

since 𝒜 is ample.
Then

lim inf
𝑘→∞

ℎ̂0
(
𝐻0(𝒳, 𝑝𝑘ℒ)sup,𝑝𝑘ℒ

)

(𝑝𝑘)𝑛+1
> 0.

Arguing as in the proof of Proposition 4.5, we deduce that

lim inf
𝑘→∞

ℎ̂0
(
𝐻0(𝒳, 𝑘ℒ)sup,𝑘ℒ

)

𝑘𝑛+1 > 0.

Using Theorem 4.6, we conclude that ℒ is arithmetically big in the sense of
Yuan.
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Now, let us suppose that

lim inf
𝑘→∞

log#{𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ∣ ‖𝑠‖sup,𝑘ℒ < 1}
𝑘𝑛+1∕(𝑛 + 1)!

> 0.

This assumption implies the existence of a positive constant 𝑐 and a positive
integer 𝑘0 such that

log#{𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ) ∣ ‖𝑠‖sup,𝑘ℒ < 1} ≥ 𝑐𝑘𝑛+1 for all 𝑘 ≥ 𝑘0. (4.3)

Consequently, there exists a nonzero section 𝑠 ∈ 𝐻0(𝒳, 𝑘0ℒ) satisfying
‖𝑠‖sup,𝑘0ℒ < 1.

Next, we aim to show that ℒℚ is big. According to Corollary 4.3, we have

log#{𝑠 ∈ 𝐻0(𝒳, 𝑘ℒ)|‖𝑠‖
sup,𝑘ℒ

< 1}

≤ −𝑛𝑘 log 𝜆1(𝐻0(𝒳, 𝑘ℒ)
sup,𝑘ℒ

) + 𝑂(𝑛𝑘 log 𝑛𝑘).

Combining this with our earlier inequality (4.3), we obtain

𝑐𝑘𝑛+1 ≤ −𝑘𝑛𝑘 log 𝜆1
(
𝐻0(𝒳, 𝑘ℒ)sup,𝑘ℒ

) 1
𝑘 + 𝑂(𝑛𝑘 log 𝑛𝑘).

From this, we can infer that
𝑐

− log 𝜆1(𝐻0(𝒳, 𝑘ℒ)sup,𝑘ℒ)
1
𝑘

≤ lim inf
𝑘→∞

𝑛𝑘
𝑘𝑛 + 𝑂(

log 𝑘
𝑘 ).

Then
0 < lim inf

𝑘→∞

𝑛𝑘
𝑘𝑛 .

This shows that ℒℚ is indeed big.

Remark 4.7. Note that, as explained in [21, p. 446], the proof thatℒℚ is big under
the assumption v̂ol(ℒ) > 0 relies on [21, Theorem 4.4], which in turn is based on
the main technical result of the paper, namely [21, Theorem 3.1].
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