PUBLICATIONS DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 28 (42), 1980, pp. 61-75

A-ENDOMORPHISM NEAR-RINGS

Vuéié Dasié

The concept of a distributively generated near-rings arise if we define addition
and multiplication of endomorphisms of the group (G, +) in the usal manner. It is
possibble to consider the set of the mappings of (G, +) into itself which are similar
to the endomorphisms of a group in such a way that their “linearity” is corrected
by the elements from a normal subgroup A of the group (G, +). These mappings
are called A-endomorphisms of (G, +). The set of A-endomorphisms of G generate
(additively) a near-ring £a(G), whose defect depends on the shoice of the subgroup
A. Also, A-endomorphisms for which is invariant every fully invariant subgroup of
the group (G, +), are investigated. In this case we obtain the subnearring Ea(G)
of the near-ring EA(G). Some known properties of the endomorphism near-rings
were transfered to the A-endomorphism near-rings.

Some elementary results relating to the Ea-invariant subgroups of (G, +) are
presented in Section 2. In Secton 3 we consider the structure of ideals of the near-
ring Ea(G), generalizing the results which were obtained by H. Johnson in [8] and
[9] for the near-ring of endomorphisms. The result in Section 4 refers to the problem
embedding of near-rings into some near-ring of A-endomorphisms and generalizes
the Theorem Heatherly and Malone in [7]. Also, a D-direct sum of subnear-rings
of the near-ring Ea(Q) is considered, where D is a defect of Ea(G).

1. Preliminaries

Throughout this paper term “near-ring” shall mean “left near-ring” R satis-
fying ox = o for all x € R. The necessary definitions concerning near-rings with a
defect of distributivity are now given.

A set of generators of the near-ring R is a multiplicative subsemigroup S of
R whose elements generale (R,+). Let S be a set of generators of the near-ring R
and let
Dg={d:d=—(zs+ys)+(z+y)s, z,y€eR, seS}
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The normal subgroup D of the group (R,+) which is generated by the set
Dg is called the defect of distributivity of the near-ring R. Thus, for all z,y € R
and s € S there exists d € D such that

(z+y)s =zs+ys+d.

The near-ring R with the defect D will be detoned by (R, .S) when we wish to stress
the set of generators S. A near-ring R is called D-distributive if R = S, i.e. for
each z,y, 2z € R there exists d € D such that

(r+y)z=xz+yz+d.

_ Let (R, S) be anear-ring with the defect D and A C R. The normal subgroup
A of (R, +) generated by the set AU AS has the elements of the form

a= Z(n +a;s; + mya;’ —r;), (r; € R, a;,a; € A, s; €S, m;— integers).

i

For all r, r; € R, a;, a;' € A and s, s; € S there exists di, d2 € D such that

(r+a)s=rs+as+di=rs+ (Z(rz +a;s; +mia;’ — r,)) s+di
i
(r+a)s= Z(ris +a;s;8 + msa;'s — r;is) +ds + d.

i

The normal subgroup D, of the group (R, +) generated by the elements dy + d; =
d € D which have been obtained in the previous manner, is called a relative defect
of the subset A with respect to R. It is obvious that D, C D.

LemMMA 1.1. ([4]. Lemma 3.2) Let (R, S) be a near-ring with defect. The
normal subgroup B of the group (R,+) is a right ideal of R if and only if B is an
S-subgroup which contains the relative defect of the subset B with respect to R.

ProposITION 1.2. ([5], Coroll. of Lemma 1.1) Let (R, S) be a near-ring with
defect and A C R. The normal subgroup A of (R, +) generated by AURAUASURAS
is an ideal of R if and only if A contains the relative defect of the subset AU RA
with respect to R.

PropoOSITION 1.3. ([4], Theorem 2.3 b) Every direct sum of the near-rings

R; with the defect D; respectively, is a near-ring R whose defect is o direct sum of
the defects D;.
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2. Elementary properties of A-endomorphisms

Let My(G) be a set of zero preserving mappings of the group (G, +) into
itself.

DEFINITION. Let A be a normal subgroup of the group (G, +). The mapping
f € My(G) with (A)f C A is called A-endomorphism of the group (G, +) if for all
z,y € G there exists § € A such that

(@+y)f =(@)f+W/f+0

It is easy to prove by induction that for each z1,...,z, € G and some A-
endomorphism f there exists § € A such that

(x1+...+zp)f =(@)f+- -+ (xn)f +6.

In the case A = (0) we obtain the endomorphisms of the group (G, +). The set of
all A-endomorphisms of the group (G, +) will be denoted by Enda (G). This set is
a semigroup with respect to composition.

Let us denote by (G, A)y the set of all mappings h: G — A with (0)h = 0.
It is clear that (G,A)g C Enda(G). Thus, for A # (0) it follows that Enda(G) #
End(G).

If (G, +) is non-commutative, then the set of all A-endomorphisms of G will
not be closed under pointwise addition. However, the set of all (finite) sums and
differences of A-endomorphisms of G forms a near-ring, which will be designated
by Ea(G). Namely, if f =3, (+t;) and h = 3 (+t)'), (i, t;' € Enda(G)), then for
all x € G we have

z)fh = Zﬂ:(Z ))t’
—Zi(Ziaztt +6,,>
—Zi(;imtt )+5, (8ij,0 € A).

But, the element § € A depends on z. If we put § = (x)a, then a € (G,A)y i.e.
a € Enda (G). Hence,

(@)fh = [(Z(iZtt>) ]

fh= Z (Z +t;; ) +a,
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where t;t;' = t;; € Enda(G) and a € Enda(G).
The normal subgroup D of the group (Ea(G), +) generated by

(6:6=—(ht+ ft)+ (h+ H)t, h,feEA(G), t € Enda(G)}

is a defect of distributivity of the near-ring EA(G). It is clear that D C (G, A)g.
For example, the near-ring Ea(Z4) = {fo, f1,---, f15}, where A = {0, 2}, has the
defect D = {fo, f3, f12, f13} (table 1)

If the commutator subgroup G’ of (G, +) is a subset of A, then EA(G) is a
D-distributive near-ring, where D is the defect of Ea(G). Let G be a nilpotent
group and A its maximal subgroup. Then by Corollary 10.3.2 of [6] it follows that
the near-ring £ (G) is D-distributive, where D is the defect of Ea(G).

Let (R, S) be a near-ring with the defect D. For all s € S and z € R there
is a map fs:x — xs from R into R. These maps are D-endomorphisms. Let us
denote by Ep(R) the near-ring of “right multiplications” of the near-ring R with
the defect D. The defect of distributivity of Ep(R) is the set

{fa: (@)fa=2d, v € R, d€ D}.

PropOSITION 2.1. If A is a proper normal subgroup of the group (G,+),
then Ea(G) C My(Q).

PrOOF. Anyhow EA(G) C My(G). If (0) # A # G and y € G\A, then the
map h € My(G) can be defined as follows

Yy, T€A T#0
zh)=< 0 =0
z, €A

Since (A) Ea(G) C A, we have h & EA(G).

If B is a fully invariant subgroup of the group (G, +), then B must not be
invariant with respect to all A-endomorphisms of (G, +). For example, the sub-
group B = {0, 2,4} of (Zg,+) is not invariant with respect to the A-endomorphism

F = (poaass), where A = {0,3}.

Let A be a proper normal subgroup of the group (G, +). There exist nontrivial
A-endomorphisms for which are invariant all subgroups of (G, +). For instance, the
mapping f € My(G) with (z)f =z for all z = A, and (z)f =0 for all x € G\A is
such a A-endomorphism. Let us denote by Enda (G) the biggest subsemigroup of
the semigroup Enda (G) for which are invariant all fully invariant subgroups of the
group (G, +). If we denote by Ea(G) the additive group generated by Enda(G),
then Ea(G) is a near-ring whose set of generators Enda(G) is contained in a set
of generators Enda (G) of the near-ring EA(G). Every fully invariant subgroup of
(G, +) which is invariant with respect to Enda(G), is invariant with respect to
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EA(G) as well. For this reason we say that the subgroups of this kind are E-
invariant.

ExAMPLE 1. The group (Zg,+) has 96 A-endomorphisms for which only the
subgroup A = {0, 3} is invariant. However, the set Enda(Zs) = {fo, f1,---, f23}
contains all A-endomorphisms of (Zg,+) for which both subgroups A and B =
{0,2,4} are invariant (table 2). If we take for A the subgroup B, then there
exist 486 A-endomorphisms. But by claiming that both subgroups of (Zg,+) are
invariant this number will be reduced to 54.

If A is a fully invariant subgroup of (G, +), then a near-ring Ea(G) contains
the endomorphism near-ring E(G). A several following propositions are related
to the elementary proposities of Ea-invariant subgroup and they generalize the
corresponding results of M. Jonson in [8].

PROPOSITION 2.2. Let A be a fully invariant subgroup of (G,+) and let
y € G, (y #0). If H is a right Ea(G)-subgroup, then (y)H is Ea-invariant
subgroup of (G, +).

The proof is quite analagous with that in ([8], Lemma 3.1).

COROLLARY. Let B be Ea-invariant subgroup of (G,+) and let y € B,
(y #0). If H is a right Ea(G)-subgroup, then (y)H is Ea-invariant subgroup of
(G, +)-

DEFINITION. Let B be a subgroup of the group (G,+) and H C My(G). If
B is an invariant subgroup with respect to #, then we say that H acts transitively
on B if for all z € B, (z # 0) we have (z)H = B.

DEFINITION. The group (G, +) is called Ea-simple if and only if (G, +) has
not proper Ea-invariant subgroups.

Using Corollary of Proposition 2.2 we obtain the following.

PROPOSITION 2.3. Let B be an Ea-invariant subgroup of the group (G,+).
Then B is a minimal Ea-invariant subgroup of (G,+) if and only if EA(G) acts
transitively on B.

COROLLARY. Let A be a fully invariant subgroup of (G,+). Ea(G) acts
transitively on G if and only if G is Ea-simple.

Let G be a group and B C G. Denote by A(B) a right annihilator of B in
EA(G), that is, A(B) = {f € Ea(G): (b)f =0for all b € B}.

PROPOSITION 2.4. Let B; (i € I) be a collection of minimal Ea-invariant
subgroups of the group (G,+) and let N be a right EA(G)-subgroup of EA(G)
containing only nilpotent elements. Then N C N; A(B;).

PROOF. Let h € N and suppose that for some b € B, (p € I), (b)h # 0. By
Proposition 2.2 (b)hEa(G) is Ea-invariant subgroup. Since B, is a minimal Ea-
invariant subgroup of (G, +), there exists f € Ea(G) such that (b)hf = b. Hence
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hf is not nilpotent. On the other hand, hf € N and this contradiction establishes
the proposition.

The next proposition is easily verified.

PROPOSITION 2.5. Let B; (i € I) be a collection of Ea-invariant subgroups
of the group (G,+). If A C ", B; then ), B; is Ea-invariant subgroup.

3. The ideal structurs of Ex(G)

The results in this section refer to the ideal structures of the near-ring Ea (G).
The results of M. Johnson ([8], Lemmas 6.1, 8.5, Thms 6.2, 6.11, 6.12, Propositions
8.9, 8.15) and ([9], Lemma 11, Thms 8 and 16) become a special case of these, when
we take an endomorphism near-ring E(G) instead Ea(G).

If H is a subset of Ea(G), we define
S(H) = {(z)h:2 € G, heH}
Obvious, §(D) C A, where D is the defect of the near-ring Ea (G).

PROPOSITION 3.1. Let B be an Ea-invariant subgroup of the group (G,
If 3(D,) C B, where D, is the relative defect of the subset B = {f € Ea(G): ¥(
B} with respect to EA(G), then B is an ideal of EA(G).

PROOF. It is easy to show that B is a normal subgroup of (EaA(G),+) and
EA(G)-subgroup of EA(G). If § € D, then § € B because $(D,) C B. Hence B
contains the relative defect of the subset B with respect to Ea(G). Therefore, by
Lemma 1.1 it follows that B is a right ideal of EA(G). Also, B is a lift Ea(G)-
subgroup. Thus B is an ideal of Ea(G).

+).
) €

PROPOSITION 3.2. Let A # G be a nonzero fully invariant subgroup of the
group (G,+). Then EA(G) is not a simple near-ring.

PRrROOF. Let D, be a relative defect of the subset
B={f € Ea(G):3(f) C A}

with respect to Ea(G). Because D, C D C (G, A)y, we have (D,) C A. By
Proposition 3.1, D is an ideal of Ea(G). Since A # G it follows that the identity
map is not in B, i.e. B # EA(G). Let us define the map h € (G, A)g as follows

z, x€EA

(x)hz{o, rd A

This map is a nonzero A-endomorphism and &(h) C A, i.e. h € B. Hence, B is a
proper ideal of Ea(G).

PROPOSITION 3.3. Let A be a fully invariant subgroup of the group (G, +) -
EA(G) is simple if and only if G is Ea-simple.
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Proor. If G is a nonzero Ea-simple group it must be either A = (0) or
A = G. For A = (0) the results follows from ([8], Th. 6.12) and for A = G it
follows from ([2], Lemma 4).

Conversely, let now Ea (G) be a simple near-ring. If A = (0) the result follows
from ([8], Th. 6.12). If A # (0) then it is not a proper subgroup of G. Namely, if
A # @G then by Proposition 3.2 EA(G) is not a simple near-ring. Thus, let A = G,
i.e. EA(G) = Ho(G). If B is a proper subgroup of (G, +), then there always exists
f € My(G) for that B is not invariant. Therefore, G is an Ea-simple group.

THEOREM 3.4. If B is a sum of all minimal nozero Ea-invariant subgroups
of a finite group (G,+) and A C B is fully invariant subgroup of (G,+), then
B = {h € EA(G):3(h) C B} is a proper nonzero ideal of Ea(G).

PRroOOF. By Proposition 2.5 it follows that B is Ea-invariant subgroup. If D,
is a relative defect of the subset B with respect to Ea(G), then D, CD C (G, A)o.
Since, A C B we have $(D,) C B. Thus, by Proposition 3.1 B is an ideal of Ea (G).
Clearly, B # EA(G). Let {z1,...,2,} = G. By Proposition 2.2 (z,)Ea(G)(p =
1,...,n) is Ea-invariant subgroup of (G,+). Thus, (zp)EaA(G) N B # (0) for all
p=1,...,n. Now the proof is similar to the proof of the Theorem 6.2 in [8].

PROPOSITION 3.5. Let B be a sum of all minimal nonzero E-invariant
subgroups of a finite group (G,+) and let A C B be a fully invariant subgroup of
(G,+). If H is a minimal right Ea(G)-subgroup of EA(G) then $(H) C B.

The proof is the same as that in ([9], Proposition 6.)

THEOREM 3.6. Let B a minimal nonzero Ea-invariant subgroup of the group
(G,+). If be B(b#0), then A(b) is a mazimal right ideal of Ea(G).

PrOOF. If A =G then EA(G) = My(G). In this case the result follows from
([10], Th. 3). If A = (0) then result follows by Lemma 8.5 of [8]. Let now A # (0)
and A # G. Since e ¢ A(b) (e is the identity map ), we have that A(b) # Ea(G).
Let us suppose that there is a right ideal P of Ea(G) such that A(b) is a proper
subset of P. By Corollary of Proposition 2.2 it follows that (b)P is an Ea-invariant
subgroup of (G, +). Thus, either (b)P = B or (b)P = (0), because B is a minimal
E-invariant subgroup. Since A(b) C P we have (b)P = B. Consequently, there
exists f € P such that (b)f =b. Let h = —f + e, where e is the identity map of G
itself. Clarly h € A(b). Thus, e = h+ f € P and P = EA(G). Therefore, A(b) is a
maximal ideal of Ea(G).

THEOREM 3.7. Let B be a minimal nonzero Ea-invariant subgroup of the
group (G,+). Then A(B) is a mazimal ideal of EA(G).

The proof is similar to the proof of the Proposition 8.15 in [§].

ExXAMPLE 2. Let Ea(Zg) be a near-ring of A-endomorphisms of the group
(Zs,+) (table 2). The subgroups B; = A = {0,3} and By = {0,2,4} of (Zs,+)
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are minimal Ea-invariant subgroups. The annihilator ideals

‘A(‘Bl) = {fO;f27f45f67f77f93f125f145f163f185f203f22}

and

A(B2) = {fo; f3>f9, f11; f12, f137f14,f21}

are maximal ideals of En(Zs).

The following theorem gives another type of a maximal right ideal of Ea(G)
and generalizes the Proposition 8.9 in [8].

THEOREM 3.8. Let B be a mazimal Ea-invariant subgroup of a finite group
(G,+) and let A C B be a fully invariant subgroup of (G,+). If x € G\B then
B = {0 € EA(G):(z)B € B} is a mazimal right ideal of Ea(G).

PrOOF. It is easy to show that B is a normal Ea (G)-subgroup. Let D, be
a relative defect of the subset B with respect to Ea(G). Since D, C D C (G, A)g
we have D,. C B. Thus, by Lemma 1.1 it follows that B is a right ideal of Ea(G).
Morover, B # Ea(G), because B contains no the identity map e of G into itself.

We will prove that B is a maximal right ideal of EA(G). Let P be a right
ideal of Ea(G) such that B C P. Assume that @ € P and a ¢ B ie. (z)a ¢ B.
The normal subgroup (z)aFEa (G) + B is Ea-invariant. Namely, for all f € Ea(G)
and ¢t € Enda(G) we have

()af +b)t = (x)aft+ (b)t+ 6 € (x)aEA(G) + B,

because § € A C B and b, (b)t € B. Since B is a maximal Ea-invariant subgroup
of (G, +), then (z)aFEa (G) + B = G. Thus, there exist f € Ea(G) and b € B such
that (z)af +b = x. The map h: G — G with h = —af + e belongs to Ea(G). Since
()h=—(zr)af +z=b—z+x=b€ B we hawe h € B, i,e. h € P. Also, af € P.
Hence e = (af + h) € P and P = EA(G). Therefore, B is a miximal right ideal of
EA(G).

EXAMPLE 3. Let Ea(Z4) be a near-ring of A-endomorphisms of the group
(Za,+) (table 1). The subgroup A = {0,2} is a maximal Ea-invariant subgroup
of (Z4,+). For x =3 € A the set

B={f € En(Z4):(3)f € A} = {fo, f3, f1, fs, 12, f13, f1a, f15}

is a maximal right ideal of Ea(Zy).

THEOREM 3.9 Let B # G be a sum of all minimal monzero Ea -invariant
subgroups of a finite group (G,+). If A C B is a fully invariant subgroup of (G, +)
then the nil radical of Ex(G) is nonzero.

Proor. Let B; (i € I) be a collection of all minimal nonzero Ea-invariant
subgroups of (G, +) and let A(B;) be annihilator ideals of the subgroups B; (i € I).
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We prove first that N;A(B;) is nonzero. Suppose, if possible N; A(B;) = (0). By
using the Proposition 2.4 it follows that Ea(G) contains no nonzero right Ea(G)-
subgroup consisting of nilpotent elements. Thus, by Theorem 3 of [3] Ea(G) is
a direct sum of minimal nonzero Ea(G)-subgroups. Hence, by Proposition 3.5
we obtain $(Ea(G)) C B. In particular, for identitety mape € Ea(G) we have
G = (G)e C B, i.e. G = B. But this contradictory to the supposition that G # B.
Therefore N; A(B;) # (0). Since the nil radical is the sum of all nil ideals and
N;A(B;) is nonzero nil ideal, it follows that the nil radical of Ea(G) is nonzero.

PROPOSITION 3.10. Let A be a minimal fully invariant subgroup of a finite
group (G,+) and let N be any nilpotent Ea(G)-subgroup of EA(G). If the normal
subgroup W of the group (EA(G),+), generated by the set Ea(G)N, contains the
relative defect of the subset Ex(G)N with respect to Ea(G), then W is a nilpotent
ideal of EA(G).

PRrROOF. By Proposition 1.2 W is an ideal of EA(G). Since N is a right
EA(G)-subgroup of Ea(G) and Ea(G) has identity, the elements of W have the
form w = Z;(fz + hini - fl): (fia hz € EA(G)J n; € N) Ifz € G, T 7£ 0,
and n € NV, then Ea-invariant subgroup of (G, +) generated by (z)n is properly
contained in the Fa-invariant subgroup generated by z. Indeed, let X be FEa-
invariant subgroup generated by x and let Y be Ea-invariant subgroup generated
by (z)n. Clearly Y C X. Let us suppose that Y = X. Then there exists f € Ea(G)
such that (z)nf = z and, we have a contradiction, because nf € N and N is a
nilpotent Ea (G)-subgroup. Thus Y C X.

Let B = ), By be a sum of all minimal Ex-invariant subgroups of (G, +)
and let w = Y, (fi £ hini — fi) € W, (fi,hi € EA(G), n; € N). Then there exists
a positive integer p such that (z)w? € B, because every fully invariant subgroup

generated by (z)h;n; is properly contained in the fully invariant subgroup generated
by (x)h;. Thus,

(@) = (()wr)w = (; bk) w
(2 (2o () )

By Proposition 2.5 B is Ea-invariant subgroup, i.e.

(Z bk) hing = (Z bk') ni, (bg,br' € By).
% %

Let n; = Ej(itij)’ (tij € E’ndA(G)), then

(= (o) (S e

J

=y = (Z bk’> tij =Y * (Z(bk')tij> +46, (6eA).
j k j k



70 Vuci¢ Dasic¢

The elements of different minimal FEa-invariant subgroups By commute element-
wise. Thus

(Z bk> hin; = Z [(bkl) Z(:ttij)] +6= Z(bk')ni + 6.
k k

k J

Therefore

o) (e84}

k

By Proposition 2.4, n; € A(By) for all k and hence (z)wPt! € A. Thus, there exist
d',8" € A such that

(@)wPt? = ((2)wP™w = (8w = (0) > (fi £ hini — f;) =

%

—Z 6 hini — (&) fi] =
Z + (8")ni — (8)f] =0

Thus, every element w € W is nilpotent. Because G is finite it follows that W is
nilpotent.

THEOREM 3.11. Let A be a minimal fully invariant subgroup of a finite
group (G,+) and let N be any nilpotent Ea(G)-subgroup of Ea(G). If the normal
subgroup w of the group (Ea(G),+) generated by the set Ean(G)N contains the
relative defect of the subset Ea(G)N with respect to Ea(G), then the nil radical
N(EA(G)) coincides with the radical J2(Ea(G)).

ProOOF. By Proposition 3.10 N' C 7(Ea(G)), because the nil radical
n(EA(G)) is the sum of all nil ideals. Thus, Ea(G)/n(Ea(G)) contains no nonzero
nilpotent right Ea (G)-subgroups. By using two theorems of Blackett ([3], Thms 1
and 2) it follows that every minimal right ideal of Ea(G)/n(Ea(G)) contains an
idempotent element. By Beidleman [1], a proper ideal B of a near-ring R is called
a strong radical-ideal of R if and only if every nonzero right ideal R/B contains a
minimal right ideal which contains an idempotent element. Hence, n(Ea(G)) is a
strong radical-ideal of Ea(G). The following step in the proof is the same as that
of ([1], Th. 8).

If the group (G, +) is equal to the sum of its minimal fully invariant subgroups,
then as an immediate consequence of Proposition 3 of [1], Jo(E(G)) = (0), where
E(QG) is an endomorphism near-ring. However, this is not true for near-ring Ea (G)
if (G,+) is equal to the sum its minimal Ea-invariant subgroups, where A is a
proper minimal Ea-invariant subgroup of (G, +). For example, the group (Zg, +)
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is a direct sum of a minimal Ea-invariant subgroups By = A = {0,3} and By =
{0,2,4}, but the radical

J2(Ea(Zs)) = D = {fo, fo, F12, f1a} # (0),

where D is the defect of the near-ring Ea(Zs) (table 2). In general, let (G, +) be a
direct sum of minimal Ea-invariant subgroups, where A is a proper Ea-invariant
subgroup and let D be the defect of the near-ring Ea(G). Is it J2(EA(G)) = D?
The answer is connected to the posiibility that every A-endomorphism f of (G, +)
can be unigeuly expressed in the form f = h + §, where h € E(G) and § € D.

4. Embeddings of near-ring with defect into some Fa (G)

The problem of embedding the near-rings with the defect of distributivity is
not easy. The following results refer to the particular case and generalize corre-
sponding results for distributively generated near-ring (see [7]).

By using the technique of “right multiplicator” we have.

PROPOSITION 4.1. Let (R,S) be a near-ring with the defect D. If A(R) =
(0), then R embeos in Ep(R).

PROPOSITION 4.2. Let R be a near-ring such that R = A(R) & B, where B
is an ideal of R. Let D # R be the defect of distributivity of R. Then D is the
defect of the near-ring B.

PROOF. Since B ~ R/A(R) it follows that B is a near-ring with the defect
D'. On the other hand A(R) = {a € R:ra = 0, for all r € R}, i.e. A(R) is a
near-ring with the defect D" = (0). By Proposition 1.3 R is a near-ring with the
defect D =D'® D" = D'.

THEOREM 4.3. Let (R, S) be a near-ring with the defect D # R and let R be
a direct sum of ideals which include A(R), where A(R) is finite. Then there exist
the group (G,+) and its normal subgroup A such that R embeds in Ea(G).

Proor. Let R = A(R) ® B. By Proposition 3 of [7], A(R) embeds in some
E(G1). Bu Lemma 2 of [7], A(B) = (0). Since D is a defect of B (Proposition
4.2), it follows that B embeds in Ep(B) (Proposition 4.1). Thus, R embeds in
R = E(G1) ® Ep(B), whereby multiplication on R is componentwise. Let D
be a defect of the near-ring Ep(B). Then, by Proposition 1.3 it follows that
R is a near-ring with defect D # R, because the defect of E(G1) is zero. The
nearring R contains identity e = (e1,e2), where e; € E(G1) and es € Ep(B)
are identity mappings, thus A(R) = (0). Hence by Proposition 4.1 R embeds in
Ep(R). Consequently, there exist the group (G,+) and its normal subgroup A
such that R embeds in Ea(G).

DEFINITION. Let (R, +) be a direct sum of the subgroups (4, +) and (B, +).
Let (A,+,.) and (B, +,.) be two subnear-rings of the nearring
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TABLE 1.
The A-endomorphisms of (Z,, +) for A={0, 2}.

Vuci¢ Dasic¢

The group (£a(Z,), +) and the semigroup (Ea (Z,),

0123

fo =0000
Jfi =0123
f, =0321
fi =0202
f, =0103
S5 =0121
fs = 0323
f, =0222
Js =0220
Sy =0301
Sf1o=0101
f1:=0303
Ji,=0200
f15=0002
J14=0020
f15=0022

+

: \OOO\IO\MAuNHQI
{

\OOO\IG\UIANN_‘Ol
[=]

L T R R
[ R VO

o) A-endomorphisms

The near-ring Ea(Z,) has the defect D ={f,, f;, fi2» fis}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 3 0 2 7 1213 9 11 14 8 15 5 4 10
2 0 3 1 14 13 12 4 10 7 15 8 9 11
3 2 1 0 9 6 5 14 154 11 10 13 12 7 8

4 7 149 3 8 152 6 0 12 13 11 10 1 5

5 12136 8 3 0 119 137 14 2 1 10 4

6 13 12 5 15 0 104 8 14 7 1 2 11 9

7 9 4 142 11 100 131 6 5 15 8 3 12
8 11 10 15 6 9 4 13 0 5 1 14 7 12 3

9 147 4 0 158 1 5 13 12 10 11 2 6

108 15 11 127 14 6 2 33 0 9 4 5 1

11 15 8 10 13 14 7 5 20 3 4 9 6 2

126 5 13 11 2 1 15 14 109 4 0 3 8 7

135 6 12101 2 8 7 11 4 9 3 0 15 14
14 4 9 7 1 1011 3 122 5 6 8 15 0 13
1510 11 8 5 4 9 123 6 1 2 7 14 13 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0o 0.0 0 00 0 % 0 0 0o 0o 0 0 0 0

001 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 2 1 3 9 5 6 ! 154 10 11 13 12 14 8
0 3 3 0 0 3 3 3 3 0 0 0 0 0 3 3

0 4 9 3 4 10 11 3 129 10 11 12 13 0 13
0 5 6 3 105 6 7 7 11 10 11 3 0 14 14
0 6 5 3 115 6 7 1410 10 11 0 3 14

0 7 7 0 0 7 7 0o 0 0 0 0 7

0 8 8 0 0 8 8 0 0 0 0 o0 8

0 9 4 3 9 10 11 3 134 10 11 13 12 0 12
0 10 11 3 10 10 11 3 3 11 10 11 3 0 0 0

0O i1 10 3 11 10 11 3 0 10 10 11 0 3 0 3

0 12 120 0 12 12 12120 0 0 0 0 12 12
0 1313 0 0 13 13 13 130 0 O O ©0 13 13
0 14 14 0 0 14 14 14 14 0 0 0 0 0 14 14
0 15150 0 15 1515150 0 0 0 0 15 15
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A-Endomorphism near-rings
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(R, +,.) with the defect D. A multiplication on R is D-componentwise if for all
a, o' € Aand b, b € B there exists d € D such that (a+b)(a' +b') = aa’ +bb+d.
We say that R is a D-direct sum of thee subnear-rings A and B.

Let EA(G) be a A-endomorphism near-ring with the defect D. For some
idempotent e € Ea(G) let A be the subgroup of (Ea(G),+) generated by {s —
es:s € Enda(G)} and M be the subgroup of (Ea(G),+) generated by {es:s €
Enda(G)}.

THEOREM 4.4. Let G = B @ C be a direct sum of Ea-invariant subgroups
B and C, where B is summand and A is a subset of one of the summands. If e
is the projection map e:G — B and AM C D, then EA(G) is the D-direct sum of
the subnear-rings A and M, where D is the defect of Ea(G).

ProOOF. The projection map e: G — B is an endomorphism of (G,+). The
idempotent e € End(G) is a right identity for M. Hence, M is a subnear-ring
of EA(G). Also, by Corollary 2.3 of [11] it follows that .4 is an ideal of Ea(G).
Because B and C' commute elementwise and B is Fa-invariant abelian summand,
it follows that the decomposition Ea(G) = A + M has M in the additive center
of Ea(QG), i.e. semidirect sum A + M is direct.

We shall now prove that the multiplication on Ea(G) is D-componentwise.
Let a,a' € A and m,m' € M, where @' = ' —es', m = et, m' = et'(s',t,t' €
Enda(G)). Then
(a+m)@ +m') = (a+m)(s —es') + (a+m)et’
=(a+m)s' — (a+m)es' + (a +m)et' =
=as' +ms' + 8, — (aes’ + mes' + &2) + aet’ + met' + 63 =
=as' — aes' + aet' + ms' — mes' +met' +6 =
=aad +am’' +ma' +mm' +6
=aa +mm' +§', (61,02,83,6,8' € D)

because ma' = et(s' —es') = ets’ — etes’ = 0 and AM C D.

For example, if for an idempotent of the near-ring Ea(Zg) with the defect
D = {fo, fo, f12, f14} (table 2) we take the mape = f3:G — B = {0,3} then,
EA(Zs) is a D-direct sum of the subnear-rings

A = {fo, f2, f1, s, 1, fo, 11, fr2, f13, f14, fie, fis, f20, fo2 }
and M = {fo, f3}
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