Δ-ENDOMORPHISM NEAR-RINGS

Vučić Dašić

The concept of a distributively generated near-rings arise if we define addition and multiplication of endomorphisms of the group (G,+) in the usal manner. It is possibble to consider the set of the mappings of (G,+) into itself which are similar to the endomorphisms of a group in such a way that their "linearity" is corrected by the elements from a normal subgroup Δ of the group (G,+). These mappings are called Δ -endomorphisms of (G,+). The set of Δ -endomorphisms of G generate (additively) a near-ring $\mathcal{E}_{\Delta}(G)$, whose defect depends on the shoice of the subgroup Δ . Also, Δ -endomorphisms for which is invariant every fully invariant subgroup of the group (G,+), are investigated. In this case we obtain the subnearring $\mathcal{E}_{\Delta}(G)$ of the near-ring $\mathcal{E}_{\Delta}(G)$. Some known properties of the endomorphism near-rings were transfered to the Δ -endomorphism near-rings.

Some elementary results relating to the E_{Δ} -invariant subgroups of (G, +) are presented in Section 2. In Section 3 we consider the structure of ideals of the nearring $E_{\Delta}(G)$, generalizing the results which were obtained by H. Johnson in [8] and [9] for the near-ring of endomorphisms. The result in Section 4 refers to the problem embedding of near-rings into some near-ring of Δ -endomorphisms and generalizes the Theorem Heatherly and Malone in [7]. Also, a \mathcal{D} -direct sum of subnear-rings of the near-ring $E_{\Delta}(G)$ is considered, where \mathcal{D} is a defect of $E_{\Delta}(G)$.

1. Preliminaries

Throughout this paper term "near-ring" shall mean "left near-ring" R satisfying ox = o for all $x \in R$. The necessary definitions concerning near-rings with a defect of distributivity are now given.

A set of generators of the near-ring R is a multiplicative subsemigroup S of R whose elements generale (R,+). Let S be a set of generators of the near-ring R and let

$$D_S = \{d: d = -(xs + ys) + (x + y)s, x, y \in R, s \in S\}.$$

This paper forms part of the author's doctoral dissertation to be submitted to the University of Sarajevo in 1979. I wish to express my gratitude to Prof. V. Perić for much helpful discussion and advice.

The normal subgroup D of the group (R, +) which is generated by the set D_S is called the defect of distributivity of the near-ring R. Thus, for all $x, y \in R$ and $s \in S$ there exists $d \in D$ such that

$$(x+y)s = xs + ys + d.$$

The near-ring R with the defect D will be detoned by (R, S) when we wish to stress the set of generators S. A near-ring R is called D-distributive if R = S, i.e. for each $x, y, z \in R$ there exists $d \in D$ such that

$$(x+y)z = xz + yz + d.$$

Let (R, S) be a near-ring with the defect D and $A \subset R$. The normal subgroup \bar{A} of (R, +) generated by the set $A \cup AS$ has the elements of the form

$$\bar{a} = \sum_{i} (r_i \pm a_i s_i + m_i a_i' - r_i), \quad (r_i \in R, \ a_i, a_i' \in A, \ s_i \in S, \ m_i \text{--integers}).$$

For all $r, r_i \in R$, $a_i, a_i' \in A$ and $s, s_i \in S$ there exists $d_1, d_2 \in D$ such that

$$(r + \bar{a})s = rs + \bar{a}s + d_1 = rs + \left(\sum_{i} (r_i \pm a_i s_i + m_i a_i' - r_i)\right)s + d_1$$
$$(r + \bar{a})s = \sum_{i} (r_i s \pm a_i s_i s + m_i a_i' s - r_i s) + d_2 + d_1.$$

The normal subgroup D_r of the group (R, +) generated by the elements $d_2 + d_1 = d \in D$ which have been obtained in the previous manner, is called a relative defect of the subset A with respect to R. It is obvious that $D_r \subseteq D$.

Lemma 1.1. ([4]. Lemma 3.2) Let (R,S) be a near-ring with defect. The normal subgroup B of the group (R,+) is a right ideal of R if and only if B is an S-subgroup which contains the relative defect of the subset B with respect to R.

PROPOSITION 1.2. ([5], Coroll. of Lemma 1.1) Let (R, S) be a near-ring with defect and $A \subset R$. The normal subgroup \bar{A} of (R, +) generated by $A \cup RA \cup AS \cup RAS$ is an ideal of R if and only if \bar{A} contains the relative defect of the subset $A \cup RA$ with respect to R.

Proposition 1.3. ([4], Theorem 2.3 b) Every direct sum of the near-rings R_i with the defect D_i respectively, is a near-ring R whose defect is a direct sum of the defects D_i .

2. Elementary properties of Δ -endomorphisms

Let $M_0(G)$ be a set of zero preserving mappings of the group (G, +) into itself.

DEFINITION. Let Δ be a normal subgroup of the group (G, +). The mapping $f \in M_0(G)$ with $(\Delta)f \subseteq \Delta$ is called Δ -endomorphism of the group (G, +) if for all $x, y \in G$ there exists $\delta \in \Delta$ such that

$$(x+y)f = (x)f + (y)f + \delta.$$

It is easy to prove by induction that for each $x_1, \ldots, x_n \in G$ and some Δ -endomorphism f there exists $\delta \in \Delta$ such that

$$(x_1 + \ldots + x_n)f = (x_1)f + \cdots + (x_n)f + \delta.$$

In the case $\Delta = (0)$ we obtain the endomorphisms of the group (G, +). The set of all Δ -endomorphisms of the group (G, +) will be denoted by $\mathcal{E}nd_{\Delta}(G)$. This set is a semigroup with respect to composition.

Let us denote by $(G, \Delta)_0$ the set of all mappings $h: G \to \Delta$ with (0)h = 0. It is clear that $(G, \Delta)_0 \subseteq \mathcal{E}nd_{\Delta}(G)$. Thus, for $\Delta \neq (0)$ it follows that $\mathcal{E}nd_{\Delta}(G) \neq End(G)$.

If (G, +) is non-commutative, then the set of all Δ -endomorphisms of G will not be closed under pointwise addition. However, the set of all (finite) sums and differences of Δ -endomorphisms of G forms a near-ring, which will be designated by $\mathcal{E}_{\Delta}(G)$. Namely, if $f = \sum_{i} (\pm t_{i})$ and $h = \sum_{j} (\pm t_{j}'), (t_{i}, t_{j}' \in \mathcal{E}nd_{\Delta}(G))$, then for all $x \in G$ we have

$$(x)fh = \sum_{j} \pm \left(\sum_{i} ((\pm x)t_{i})\right) t_{j}'$$

$$= \sum_{j} \pm \left(\sum_{i} (\pm x)t_{i}t_{j}' + \delta_{ij}\right)$$

$$= \sum_{j} \pm \left(\sum_{i} (\pm x)t_{i}t_{j}'\right) + \delta, \quad (\delta_{ij}, \delta \in \Delta).$$

But, the element $\delta \in \Delta$ depends on x. If we put $\delta = (x)\alpha$, then $\alpha \in (G, \Delta)_0$ i.e. $\alpha \in \mathcal{E}nd_{\Delta}(G)$. Hence,

$$(x)fh = (x)\left[\left(\sum_{j}\left(\pm\sum_{i}t_{i}t_{j}'\right)\right) + \alpha\right], \text{ i.e.}$$

$$fh = \sum_{j}\left(\sum_{i}(\pm t_{ij})\right) + \alpha,$$

where $t_i t_j' = t_{ij} \in \mathcal{E} nd_{\Delta}(G)$ and $\alpha \in \mathcal{E} nd_{\Delta}(G)$.

The normal subgroup \mathcal{D} of the group $(\mathcal{E}_{\Delta}(G), +)$ generated by

$$\{\delta: \delta = -(ht + ft) + (h + f)t, \quad h, f \in \mathcal{E}_{\Delta}(G), \ t \in \mathcal{E}nd_{\Delta}(G)\}$$

is a defect of distributivity of the near-ring $\mathcal{E}_{\Delta}(G)$. It is clear that $\mathcal{D} \subseteq (G, \Delta)_0$. For example, the near-ring $\mathcal{E}_{\Delta}(Z_4) = \{f_0, f_1, \dots, f_{15}\}$, where $\Delta = \{0, 2\}$, has the defect $\mathcal{D} = \{f_0, f_3, f_{12}, f_{13}\}$ (table 1).

If the commutator subgroup G' of (G, +) is a subset of Δ , then $\mathcal{E}_{\Delta}(G)$ is a \mathcal{D} -distributive near-ring, where \mathcal{D} is the defect of $\mathcal{E}_{\Delta}(G)$. Let G be a nilpotent group and Δ its maximal subgroup. Then by Corollary 10.3.2 of [6] it follows that the near-ring $\mathcal{E}_{\Delta}(G)$ is \mathcal{D} -distributive, where \mathcal{D} is the defect of $\mathcal{E}_{\Delta}(G)$.

Let (R, S) be a near-ring with the defect D. For all $s \in S$ and $x \in R$ there is a map $f_s: x \to xs$ from R into R. These maps are D-endomorphisms. Let us denote by $\mathcal{E}_D(R)$ the near-ring of "right multiplications" of the near-ring R with the defect D. The defect of distributivity of $\mathcal{E}_D(R)$ is the set

$$\{f_d: (x)f_d = xd, \ x \in R, \ d \in D\}.$$

Proposition 2.1. If Δ is a proper normal subgroup of the group (G,+), then $\mathcal{E}_{\Delta}(G)\subset M_0(G)$.

PROOF. Anyhow $\mathcal{E}_{\Delta}(G) \subseteq M_0(G)$. If $(0) \neq \Delta \neq G$ and $y \in G \setminus \Delta$, then the map $h \in M_0(G)$ can be defined as follows

$$x(h) = \begin{cases} y, & x \in \Delta, x \neq 0 \\ 0 & x = 0 \\ x, & x \notin \Delta \end{cases}$$

Since (Δ) $\mathcal{E}_{\Delta}(G) \subseteq \Delta$, we have $h \notin \mathcal{E}\Delta(G)$.

If B is a fully invariant subgroup of the group (G,+), then B must not be invariant with respect to all Δ -endomorphisms of (G,+). For example, the subgroup $B=\{0,2,4\}$ of $(Z_6,+)$ is not invariant with respect to the Δ -endomorphism $f=\begin{pmatrix}012345\\003003\end{pmatrix}$, where $\Delta=\{0,3\}$.

Let Δ be a proper normal subgroup of the group (G,+). There exist nontrivial Δ -endomorphisms for which are invariant all subgroups of (G,+). For instance, the mapping $f \in M_0(G)$ with (x)f = x for all $x = \Delta$, and (x)f = 0 for all $x \in G \setminus \Delta$ is such a Δ -endomorphism. Let us denote by $End_{\Delta}(G)$ the biggest subsemigroup of the semigroup $\mathcal{E}nd_{\Delta}(G)$ for which are invariant all fully invariant subgroups of the group (G,+). If we denote by $E_{\Delta}(G)$ the additive group generated by $\mathcal{E}nd_{\Delta}(G)$, then $E_{\Delta}(G)$ is a near-ring whose set of generators $End_{\Delta}(G)$ is contained in a set of generators $\mathcal{E}nd_{\Delta}(G)$ of the near-ring $\mathcal{E}_{\Delta}(G)$. Every fully invariant subgroup of (G,+) which is invariant with respect to $End_{\Delta}(G)$, is invariant with respect to

 $E_{\Delta}(G)$ as well. For this reason we say that the subgroups of this kind are E_{Δ} -invariant.

EXAMPLE 1. The group $(Z_6,+)$ has 96 Δ -endomorphisms for which only the subgroup $\Delta = \{0,3\}$ is invariant. However, the set $End_{\Delta}(Z_6) = \{f_0,f_1,\ldots,f_{23}\}$ contains all Δ -endomorphisms of $(Z_6,+)$ for which both subgroups Δ and $B=\{0,2,4\}$ are invariant (table 2). If we take for Δ the subgroup B, then there exist 486 Δ -endomorphisms. But by claiming that both subgroups of $(Z_6,+)$ are invariant this number will be reduced to 54.

If Δ is a fully invariant subgroup of (G, +), then a near-ring $E_{\Delta}(G)$ contains the endomorphism near-ring E(G). A several following propositions are related to the elementary proposities of E_{Δ} -invariant subgroup and they generalize the corresponding results of M. Jonson in [8].

PROPOSITION 2.2. Let Δ be a fully invariant subgroup of (G, +) and let $y \in G$, $(y \neq 0)$. If \mathcal{H} is a right $E_{\Delta}(G)$ -subgroup, then $(y)\mathcal{H}$ is E_{Δ} -invariant subgroup of (G, +).

The proof is quite analogous with that in ([8], Lemma 3.1).

COROLLARY. Let B be E_{Δ} -invariant subgroup of (G, +) and let $y \in B$, $(y \neq 0)$. If \mathcal{H} is a right $E_{\Delta}(G)$ -subgroup, then $(y)\mathcal{H}$ is E_{Δ} -invariant subgroup of (G, +).

DEFINITION. Let B be a subgroup of the group (G, +) and $\mathcal{H} \subseteq M_0(G)$. If B is an invariant subgroup with respect to \mathcal{H} , then we say that \mathcal{H} acts transitively on B if for all $x \in \mathbf{B}$, $(x \neq 0)$ we have $(x)\mathcal{H} = B$.

DEFINITION. The group (G, +) is called E_{Δ} -simple if and only if (G, +) has not proper E_{Δ} -invariant subgroups.

Using Corollary of Proposition 2.2 we obtain the following.

Proposition 2.3. Let B be an E_{Δ} -invariant subgroup of the group (G, +). Then B is a minimal E_{Δ} -invariant subgroup of (G, +) if and only if $E_{\Delta}(G)$ acts transitively on B.

COROLLARY. Let Δ be a fully invariant subgroup of (G, +). $E_{\Delta}(G)$ acts transitively on G if and only if G is E_{Δ} -simple.

Let G be a group and $B \subset G$. Denote by $\mathcal{A}(B)$ a right annihilator of B in $E_{\Delta}(G)$, that is, $\mathcal{A}(B) = \{ f \in E_{\Delta}(G) \colon (b)f = 0 \text{ for all } b \in B \}.$

PROPOSITION 2.4. Let B_i $(i \in I)$ be a collection of minimal E_{Δ} -invariant subgroups of the group (G,+) and let \mathcal{N} be a right $E_{\Delta}(G)$ -subgroup of $E_{\Delta}(G)$ containing only nilpotent elements. Then $\mathcal{N} \subseteq \cap_i \mathcal{A}(B_i)$.

PROOF. Let $h \in \mathcal{N}$ and suppose that for some $b \in B_p$ $(p \in I)$, $(b)h \neq 0$. By Proposition 2.2 $(b)hE_{\Delta}(G)$ is E_{Δ} -invariant subgroup. Since B_p is a minimal E_{Δ} -invariant subgroup of (G, +), there exists $f \in E_{\Delta}(G)$ such that (b)hf = b. Hence

hf is not nilpotent. On the other hand, $hf \in \mathcal{N}$ and this contradiction establishes the proposition.

The next proposition is easily verified.

Proposition 2.5. Let B_i $(i \in I)$ be a collection of E_{Δ} -invariant subgroups of the group (G, +). If $\Delta \subseteq \sum_i B_i$ then $\sum_i B_i$ is E_{Δ} -invariant subgroup.

3. The ideal structure of $E_{\Delta}(G)$

The results in this section refer to the ideal structures of the near-ring $E_{\Delta}(G)$. The results of M. Johnson ([8], Lemmas 6.1, 8.5, Thms 6.2, 6.11, 6.12, Propositions 8.9, 8.15) and ([9], Lemma 11, Thms 8 and 16) become a special case of these, when we take an endomorphism near-ring E(G) instead $E_{\Delta}(G)$.

If \mathcal{H} is a subset of $E_{\Delta}(G)$, we define

$$\Im(\mathcal{H}) = \{(x)h: x \in G, \quad h \in \mathcal{H}\}.$$

Obvious, $\Im(\mathcal{D}) \subseteq \Delta$, where \mathcal{D} is the defect of the near-ring $E_{\Delta}(G)$.

PROPOSITION 3.1. Let B be an E_{Δ} -invariant subgroup of the group (G, +). If $\Im(\mathcal{D}_r) \subseteq B$, where \mathcal{D}_r is the relative defect of the subset $\mathcal{B} = \{f \in E_{\Delta}(G) \colon \Im(f) \subseteq B\}$ with respect to $E_{\Delta}(G)$, then \mathcal{B} is an ideal of $E_{\Delta}(G)$.

PROOF. It is easy to show that \mathcal{B} is a normal subgroup of $(E_{\Delta}(G), +)$ and $E_{\Delta}(G)$ -subgroup of $E_{\Delta}(G)$. If $\delta \in \mathcal{D}_r$ then $\delta \in \mathcal{B}$ because $\Im(\mathcal{D}_r) \subseteq \mathcal{B}$. Hence \mathcal{B} contains the relative defect of the subset \mathcal{B} with respect to $E_{\Delta}(G)$. Therefore, by Lemma 1.1 it follows that \mathcal{B} is a right ideal of $E_{\Delta}(G)$. Also, \mathcal{B} is a lift $E_{\Delta}(G)$ -subgroup. Thus \mathcal{B} is an ideal of $E_{\Delta}(G)$.

PROPOSITION 3.2. Let $\Delta \neq G$ be a nonzero fully invariant subgroup of the group (G, +). Then $E_{\Delta}(G)$ is not a simple near-ring.

PROOF. Let \mathcal{D}_r be a relative defect of the subset

$$\mathcal{B} = \{ f \in E_{\Delta}(G) \colon \Im(f) \subseteq \Delta \}$$

with respect to $E_{\Delta}(G)$. Because $\mathcal{D}_r \subseteq \mathcal{D} \subseteq (G, \Delta)_0$, we have $\Im(\mathcal{D}_r) \subseteq \Delta$. By Proposition 3.1, \mathcal{D} is an ideal of $E_{\Delta}(G)$. Since $\Delta \neq G$ it follows that the identity map is not in \mathcal{B} , i.e. $\mathcal{B} \neq E_{\Delta}(G)$. Let us define the map $h \in (G, \Delta)_0$ as follows

$$(x)h = \begin{cases} x, & x \in \Delta \\ 0, & x \notin \Delta \end{cases}$$

This map is a nonzero Δ -endomorphism and $\Im(h) \subseteq \Delta$, i.e. $h \in \mathcal{B}$. Hence, \mathcal{B} is a proper ideal of $E_{\Delta}(G)$.

Proposition 3.3. Let Δ be a fully invariant subgroup of the group (G,+) $E_{\Delta}(G)$ is simple if and only if G is E_{Δ} -simple.

PROOF. If G is a nonzero E_{Δ} -simple group it must be either $\Delta=(0)$ or $\Delta=G$. For $\Delta=(0)$ the results follows from ([8], Th. 6.12) and for $\Delta=G$ it follows from ([2], Lemma 4).

Conversely, let now $E_{\Delta}(G)$ be a simple near-ring. If $\Delta=(0)$ the result follows from ([8], Th. 6.12). If $\Delta \neq (0)$ then it is not a proper subgroup of G. Namely, if $\Delta \neq G$ then by Proposition 3.2 $E_{\Delta}(G)$ is not a simple near-ring. Thus, let $\Delta = G$, i.e. $E_{\Delta}(G) = H_0(G)$. If B is a proper subgroup of (G, +), then there always exists $f \in M_0(G)$ for that B is not invariant. Therefore, G is an E_{Δ} -simple group.

THEOREM 3.4. If B is a sum of all minimal nozero E_{Δ} -invariant subgroups of a finite group (G,+) and $\Delta \subseteq B$ is fully invariant subgroup of (G,+), then $\mathcal{B} = \{h \in E_{\Delta}(G) : \Im(h) \subseteq B\}$ is a proper nonzero ideal of $E_{\Delta}(G)$.

PROOF. By Proposition 2.5 it follows that B is E_{Δ} -invariant subgroup. If \mathcal{D}_r is a relative defect of the subset \mathcal{B} with respect to $E_{\Delta}(G)$, then $\mathcal{D}_r \subseteq \mathcal{D} \subseteq (G, \Delta)_0$. Since, $\Delta \subseteq B$ we have $\Im(\mathcal{D}_r) \subseteq B$. Thus, by Proposition 3.1 \mathcal{B} is an ideal of $E_{\Delta}(G)$. Clearly, $\mathcal{B} \neq E_{\Delta}(G)$. Let $\{x_1, \ldots, x_n\} = G$. By Proposition 2.2 $(x_p)E_{\Delta}(G)(p = 1, \ldots, n)$ is E_{Δ} -invariant subgroup of (G, +). Thus, $(x_p)E_{\Delta}(G) \cap B \neq (0)$ for all $p = 1, \ldots, n$. Now the proof is similar to the proof of the Theorem 6.2 in [8].

PROPOSITION 3.5. Let B be a sum of all minimal nonzero E_{Δ} -invariant subgroups of a finite group (G,+) and let $\Delta \subseteq B$ be a fully invariant subgroup of (G,+). If \mathcal{H} is a minimal right $E_{\Delta}(G)$ -subgroup of $E_{\Delta}(G)$ then $\Im(\mathcal{H}) \subseteq B$.

The proof is the same as that in ([9], Proposition 6.)

THEOREM 3.6. Let B a minimal nonzero E_{Δ} -invariant subgroup of the group (G,+). If $b \in B(b \neq 0)$, then A(b) is a maximal right ideal of $E_{\Delta}(G)$.

PROOF. If $\Delta = G$ then $E_{\Delta}(G) = M_0(G)$. In this case the result follows from ([10], Th. 3). If $\Delta = (0)$ then result follows by Lemma 8.5 of [8]. Let now $\Delta \neq (0)$ and $\Delta \neq G$. Since $e \notin \mathcal{A}(b)$ (e is the identity map), we have that $\mathcal{A}(b) \neq E_{\Delta}(G)$. Let us suppose that there is a right ideal \mathcal{P} of $E_{\Delta}(G)$ such that $\mathcal{A}(b)$ is a proper subset of \mathcal{P} . By Corollary of Proposition 2.2 it follows that $(b)\mathcal{P}$ is an E_{Δ} -invariant subgroup of (G, +). Thus, either $(b)\mathcal{P} = B$ or $(b)\mathcal{P} = (0)$, because B is a minimal E_{Δ} -invariant subgroup. Since $\mathcal{A}(b) \subset \mathcal{P}$ we have $(b)\mathcal{P} = B$. Consequently, there exists $f \in \mathcal{P}$ such that (b)f = b. Let h = -f + e, where e is the identity map of G itself. Clarly $h \in \mathcal{A}(b)$. Thus, $e = h + f \in \mathcal{P}$ and $\mathcal{P} = E_{\Delta}(G)$. Therefore, $\mathcal{A}(b)$ is a maximal ideal of $E_{\Delta}(G)$.

THEOREM 3.7. Let B be a minimal nonzero E_{Δ} -invariant subgroup of the group (G, +). Then $\mathcal{A}(B)$ is a maximal ideal of $E_{\Delta}(G)$.

The proof is similar to the proof of the Proposition 8.15 in [8].

EXAMPLE 2. Let $E_{\Delta}(Z_6)$ be a near-ring of Δ -endomorphisms of the group $(Z_6,+)$ (table 2). The subgroups $B_1=\Delta=\{0,3\}$ and $B_2=\{0,2,4\}$ of $(Z_6,+)$

are minimal E_{Δ} -invariant subgroups. The annihilator ideals

$$\mathcal{A}(B_1) = \{f_0, f_2, f_4, f_6, f_7, f_9, f_{12}, f_{14}, f_{16}, f_{18}, f_{20}, f_{22}\}$$

and

$$\mathcal{A}(B_2) = \{f_0, f_3, f_9, f_{11}, f_{12}, f_{13}, f_{14}, f_{21}\}$$

are maximal ideals of $E_{\Delta}(Z_6)$.

The following theorem gives another type of a maximal right ideal of $E_{\Delta}(G)$ and generalizes the Proposition 8.9 in [8].

THEOREM 3.8. Let B be a maximal E_{Δ} -invariant subgroup of a finite group (G, +) and let $\Delta \subseteq B$ be a fully invariant subgroup of (G, +). If $x \in G \setminus B$ then $\mathcal{B} = \{\beta \in E_{\Delta}(G): (x)\beta \in B\}$ is a maximal right ideal of $E_{\Delta}(G)$.

PROOF. It is easy to show that \mathcal{B} is a normal $E_{\Delta}(G)$ -subgroup. Let \mathcal{D}_r be a relative defect of the subset \mathcal{B} with respect to $E_{\Delta}(G)$. Since $\mathcal{D}_r \subseteq \mathcal{D} \subseteq (G, \Delta)_0$ we have $\mathcal{D}_r \subseteq \mathcal{B}$. Thus, by Lemma 1.1 it follows that \mathcal{B} is a right ideal of $E_{\Delta}(G)$. Morover, $\mathcal{B} \neq E_{\Delta}(G)$, because \mathcal{B} contains no the identity map e of G into itself.

We will prove that \mathcal{B} is a maximal right ideal of $E_{\Delta}(G)$. Let \mathcal{P} be a right ideal of $E_{\Delta}(G)$ such that $\mathcal{B} \subset \mathcal{P}$. Assume that $\alpha \in \mathcal{P}$ and $\alpha \notin \mathcal{B}$ i.e. $(x)\alpha \notin \mathcal{B}$. The normal subgroup $(x)\alpha E_{\Delta}(G) + \mathcal{B}$ is E_{Δ} -invariant. Namely, for all $f \in E_{\Delta}(G)$ and $f \in E_{\Delta}(G)$ we have

$$((x)\alpha f + b) t = (x)\alpha f t + (b)t + \delta \in (x)\alpha E_{\Delta}(G) + B,$$

because $\delta \in \Delta \subseteq B$ and b, $(b)t \in B$. Since B is a maximal E_{Δ} -invariant subgroup of (G,+), then $(x)\alpha E_{\Delta}(G)+B=G$. Thus, there exist $f \in E_{\Delta}(G)$ and $b \in B$ such that $(x)\alpha f+b=x$. The map $h\colon G\to G$ with $h=-\alpha f+e$ belongs to $E_{\Delta}(G)$. Since $(x)h=-(x)\alpha f+x=b-x+x=b\in B$ we have $h\in \mathcal{B}$, i.e. $h\in \mathcal{P}$. Also, $\alpha f\in \mathcal{P}$. Hence $e=(\alpha f+h)\in \mathcal{P}$ and $\mathcal{P}=E_{\Delta}(G)$. Therefore, \mathcal{B} is a miximal right ideal of $E_{\Delta}(G)$.

EXAMPLE 3. Let $E_{\Delta}(Z_4)$ be a near-ring of Δ -endomorphisms of the group $(Z_4, +)$ (table 1). The subgroup $\Delta = \{0, 2\}$ is a maximal E_{Δ} -invariant subgroup of $(Z_4, +)$. For $x = 3 \notin \Delta$ the set

$$\mathcal{B} = \{ f \in E_{\Delta}(Z_4) : (3)f \in \Delta \} = \{ f_0, f_3, f_7, f_8, f_{12}, f_{13}, f_{14}, f_{15} \}$$

is a maximal right ideal of $E_{\Delta}(Z_4)$.

THEOREM 3.9 Let $B \neq G$ be a sum of all minimal monzero E_{Δ} -invariant subgroups of a finite group (G, +). If $\Delta \subseteq B$ is a fully invariant subgroup of (G, +) then the nil radical of $E_{\Delta}(G)$ is nonzero.

PROOF. Let B_i $(i \in I)$ be a collection of all minimal nonzero E_{Δ} -invariant subgroups of (G, +) and let $\mathcal{A}(B_i)$ be annihilator ideals of the subgroups B_i $(i \in I)$.

We prove first that $\cap_i \mathcal{A}(B_i)$ is nonzero. Suppose, if possible $\cap_i \mathcal{A}(B_i) = (0)$. By using the Proposition 2.4 it follows that $E_{\Delta}(G)$ contains no nonzero right $E_{\Delta}(G)$ -subgroup consisting of nilpotent elements. Thus, by Theorem 3 of [3] $E_{\Delta}(G)$ is a direct sum of minimal nonzero $E_{\Delta}(G)$ -subgroups. Hence, by Proposition 3.5 we obtain $\Im(E_{\Delta}(G)) \subseteq B$. In particular, for identitety map $e \in E_{\Delta}(G)$ we have $G = (G)e \subseteq B$, i.e. G = B. But this contradictory to the supposition that $G \neq B$. Therefore $\cap_i \mathcal{A}(B_i) \neq (0)$. Since the nil radical is the sum of all nil ideals and $\cap_i \mathcal{A}(B_i)$ is nonzero nil ideal, it follows that the nil radical of $E_{\Delta}(G)$ is nonzero.

PROPOSITION 3.10. Let Δ be a minimal fully invariant subgroup of a finite group (G,+) and let $\mathcal N$ be any nilpotent $E_{\Delta}(G)$ -subgroup of $E_{\Delta}(G)$. If the normal subgroup $\mathcal W$ of the group $(E_{\Delta}(G),+)$, generated by the set $E_{\Delta}(G)\mathcal N$, contains the relative defect of the subset $E_{\Delta}(G)\mathcal N$ with respect to $E_{\Delta}(G)$, then $\mathcal W$ is a nilpotent ideal of $E_{\Delta}(G)$.

PROOF. By Proposition 1.2 $\mathcal W$ is an ideal of $E_{\Delta}(G)$. Since $\mathcal N$ is a right $E_{\Delta}(G)$ -subgroup of $E_{\Delta}(G)$ and $E_{\Delta}(G)$ has identity, the elements of $\mathcal W$ have the form $w=\sum_i (f_i\pm h_i n_i-f_i), \ (f_i,\ h_i\in E_{\Delta}(G),\ n_i\in \mathcal N).$ If $x\in G,\ x\neq 0$, and $n\in \mathcal N$, then E_{Δ} -invariant subgroup of (G,+) generated by (x)n is properly contained in the E_{Δ} -invariant subgroup generated by x. Indeed, let X be E_{Δ} -invariant subgroup generated by (x)n. Clearly $Y\subseteq X$. Let us suppose that Y=X. Then there exists $f\in E_{\Delta}(G)$ such that (x)nf=x and, we have a contradiction, because $nf\in \mathcal N$ and $\mathcal N$ is a nilpotent $E_{\Delta}(G)$ -subgroup. Thus $Y\subset X$.

Let $B = \sum_k B_k$ be a sum of all minimal E_{Δ} -invariant subgroups of (G, +) and let $w = \sum_i (f_i \pm h_i n_i - f_i) \in \mathcal{W}$, $(f_i, h_i \in E_{\Delta}(G), n_i \in \mathcal{N})$. Then there exists a positive integer p such that $(x)w^p \in B$, because every fully invariant subgroup generated by $(x)h_i n_i$ is properly contained in the fully invariant subgroup generated by $(x)h_i$. Thus,

$$(x)w^{p+1} = ((x)w^p)w = \left(\sum_k b_k\right)w$$
$$= \sum_i \left[\left(\sum_k b_k\right)f_i \pm \left(\sum_k b_k\right)h_i n_i - \left(\sum_k b_k\right)f_i\right].$$

By Proposition 2.5 B is E_{Δ} -invariant subgroup, i.e

$$\left(\sum_{k} b_{k}\right) h_{i} n_{i} = \left(\sum_{k} b_{k}'\right) n_{i}, \quad (b_{k}, b_{k}' \in B_{k}).$$

Let $n_i = \sum_j (\pm t_{ij}), \ (t_{ij} \in End_{\Delta}(G)), \text{ then}$

$$\left(\sum_{k} b_{k}\right) h_{i} n_{i} = \left(\sum_{k} b_{k}'\right) n_{i} = \left(\sum_{k} b_{k}'\right) \sum_{j} (\pm t_{ij}) =$$

$$= \sum_{j} \pm \left(\sum_{k} b_{k}'\right) t_{ij} = \sum_{j} \pm \left(\sum_{k} (b_{k}') t_{ij}\right) + \delta, \ (\delta \in \Delta).$$

The elements of different minimal E_{Δ} -invariant subgroups B_k commute elementwise. Thus

$$\left(\sum_{k} b_{k}\right) h_{i} n_{i} = \sum_{k} \left[\left(b_{k}'\right) \sum_{j} (\pm t_{ij}) \right] + \delta = \sum_{k} \left(b_{k}'\right) n_{i} + \delta.$$

Therefore

$$(x)w^{p+1} = \sum_{i} \left[\left(\sum_{k} b_{k} \right) f_{i} \pm \left(\sum_{k} (b_{k}') n_{i} + \delta \right) - \left(\sum_{k} b_{k} \right) f_{i} \right].$$

By Proposition 2.4, $n_i \in \mathcal{A}(B_k)$ for all k and hence $(x)w^{p+1} \in \Delta$. Thus, there exist $\delta', \delta'' \in \Delta$ such that

$$(x)w^{p+2} = ((x)w^{p+1})w = (\delta')w = (\delta')\sum_{i}(f_{i} \pm h_{i}n_{i} - f_{i}) =$$

$$= \sum_{i}[(\delta')f_{i} \pm (\delta')h_{i}n_{i} - (\delta')f_{i}] =$$

$$= \sum_{i}[(\delta')f_{i} \pm (\delta'')n_{i} - (\delta')f_{i}] = 0.$$

Thus, every element $w \in \mathcal{W}$ is nilpotent. Because G is finite it follows that \mathcal{W} is nilpotent.

THEOREM 3.11. Let Δ be a minimal fully invariant subgroup of a finite group (G,+) and let $\mathcal N$ be any nilpotent $E_{\Delta}(G)$ -subgroup of $E_{\Delta}(G)$. If the normal subgroup ω of the group $(E_{\Delta}(G),+)$ generated by the set $E_{\Delta}(G)\mathcal N$ contains the relative defect of the subset $E_{\Delta}(G)\mathcal N$ with respect to $E_{\Delta}(G)$, then the nil radical $\eta(E_{\Delta}(G))$ coincides with the radical $J_2(E_{\Delta}(G))$.

PROOF. By Proposition 3.10 $\mathcal{N} \subseteq \eta(E_{\Delta}(G))$, because the nil radical $\eta(E_{\Delta}(G))$ is the sum of all nil ideals. Thus, $E_{\Delta}(G)/\eta(E_{\Delta}(G))$ contains no nonzero nilpotent right $E_{\Delta}(G)$ -subgroups. By using two theorems of Blackett ([3], Thms 1 and 2) it follows that every minimal right ideal of $E_{\Delta}(G)/\eta(E_{\Delta}(G))$ contains an idempotent element. By Beidleman [1], a proper ideal B of a near-ring R is called a strong radical-ideal of R if and only if every nonzero right ideal R/B contains a minimal right ideal which contains an idempotent element. Hence, $\eta(E_{\Delta}(G))$ is a strong radical-ideal of $E_{\Delta}(G)$. The following step in the proof is the same as that of ([1], Th. 8).

If the group (G, +) is equal to the sum of its minimal fully invariant subgroups, then as an immediate consequence of Proposition 3 of [1], $J_2(E(G)) = (0)$, where E(G) is an endomorphism near-ring. However, this is not true for near-ring $E_{\Delta}(G)$ if (G, +) is equal to the sum its minimal E_{Δ} -invariant subgroups, where Δ is a proper minimal E_{Δ} -invariant subgroup of (G, +). For example, the group $(Z_6, +)$

is a direct sum of a minimal E_{Δ} -invariant subgroups $B_1 = \Delta = \{0, 3\}$ and $B_2 = \{0, 2, 4\}$, but the radical

$$J_2(E_{\Delta}(Z_6)) = \mathcal{D} = \{f_0, f_9, F_{12}, f_{14}\} \neq (0),$$

where \mathcal{D} is the defect of the near-ring $E_{\Delta}(Z_6)$ (table 2). In general, let (G, +) be a direct sum of minimal E_{Δ} -invariant subgroups, where Δ is a proper E_{Δ} -invariant subgroup and let \mathcal{D} be the defect of the near-ring $E_{\Delta}(G)$. Is it $J_2(E_{\Delta}(G)) = \mathcal{D}$? The answer is connected to the posibility that every Δ -endomorphism f of (G, +) can be uniquely expressed in the form $f = h + \delta$, where $h \in E(G)$ and $\delta \in \mathcal{D}$.

4. Embeddings of near-ring with defect into some $E_{\Delta}(G)$

The problem of embedding the near-rings with the defect of distributivity is not easy. The following results refer to the particular case and generalize corresponding results for distributively generated near-ring (see [7]).

By using the technique of "right multiplicator" we have.

PROPOSITION 4.1. Let (R,S) be a near-ring with the defect D. If A(R) = (0), then R embeos in $E_D(R)$.

PROPOSITION 4.2. Let R be a near-ring such that $R = A(R) \oplus B$, where B is an ideal of R. Let $D \neq R$ be the defect of distributivity of R. Then D is the defect of the near-ring B.

PROOF. Since $B \simeq R/A(R)$ it follows that B is a near-ring with the defect D'. On the other hand $A(R) = \{a \in R : ra = 0, \text{ for all } r \in R\}$, i.e. A(R) is a near-ring with the defect D'' = (0). By Proposition 1.3 R is a near-ring with the defect $D = D' \oplus D'' = D'$.

THEOREM 4.3. Let (R, S) be a near-ring with the defect $D \neq R$ and let R be a direct sum of ideals which include A(R), where A(R) is finite. Then there exist the group (G, +) and its normal subgroup Δ such that R embeds in $E_{\Delta}(G)$.

PROOF. Let $R=A(R)\oplus B$. By Proposition 3 of [7], A(R) embeds in some $E(G_1)$. Bu Lemma 2 of [7], A(B)=(0). Since D is a defect of B (Proposition 4.2), it follows that B embeds in $E_D(B)$ (Proposition 4.1). Thus, R embeds in $\mathcal{R}=E(G_1)\oplus E_D(B)$, whereby multiplication on \mathcal{R} is componentwise. Let \mathcal{D} be a defect of the near-ring $E_D(B)$. Then, by Proposition 1.3 it follows that \mathcal{R} is a near-ring with defect $\mathcal{D}\neq \mathcal{R}$, because the defect of $E(G_1)$ is zero. The nearing \mathcal{R} contains identity $e=(e_1,e_2)$, where $e_1\in E(G_1)$ and $e_2\in E_D(B)$ are identity mappings, thus $A(\mathcal{R})=(0)$. Hence by Proposition 4.1 \mathcal{R} embeds in $E_D(\mathcal{R})$. Consequently, there exist the group (G,+) and its normal subgroup Δ such that R embeds in $E_\Delta(G)$.

DEFINITION. Let (R, +) be a direct sum of the subgroups (A, +) and (B, +). Let (A, +, .) and (B, +, .) be two subnear-rings of the nearring

TABLE 1. The Δ -endomorphisms of $(Z_4, +)$ for $\Delta = \{0, 2\}$. The group $(E_{\Delta}(Z_4), +)$ and the semigroup $(E_{\Delta}(Z_4), \circ)$ Δ -endomorphisms

	The	group	(E_{Δ})	4),	+) a	na u	ic sc	mugi	oup	$(\mathcal{L}\Delta)$	(Z ₄),	٠).	∆- €110	uomo	i pins	1113		
	0123	+	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
f_0	- 0000	0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
f_1	= 0123	1	1	3	0	2	7	12	13	9	11	14	8	15	6	5	4	10
f_2	= 0321	2	2	0	3	1	14	13	12	4	10	7	15	8	5	6	9	11
	= 0202	3	3	2	1	0	9	6	5	14	15	4	11	10	13	12	7	8
f_4	= 0103	4	4	7	14	9	3	8	.15	2 .	6	0	12	13	11	10	1	5
$f_{\scriptscriptstyle 5}$	= 0121	5	5	12	13	6	8	3	0	11	9	13	7	14	2	1	10	4
f_6	= 0323	6	-6	13	12	5	15	0	3	10	4	8	14	7	1	2	11	9
	= 0222	7	7	9	4	14	2	11	10	0	13	1	6	5	15	8	3	12
	= 0220	8	8	11	10	15	6	9	4	13	0	5	2	1	14	7	12	3
	= 0301	9	9	14	7	4	0	15	8	1	5	3	13	12	10	11	2	6
	= 0101	10	10	8	15	11	12	7	14	6	2	13	3	0	9	4	5	1
f_{11}	= 0303	11	11	15	8	10	13	14	7	5	1	12	0	3	4	9	6	2
	= 0200	12	12	6	5	13	11	2	1	15	14	10	9	4	0	3	8	7
	= 0002	13	13	5	6	12	10	1	2	8	7	11	4	9	3	0	15	14
f_{14} :	= 0020	14	14	4	9	7	1	10	11	3	12	2	5	6	8	15	0	13
					_													
	= 0022	15	15	10	11	8	5	4	.9	12	3	6	1	2	7	14	13	0
				10	_							6	1	2	7	14	13	0
				10	_					12 7		6 9	10	2	7	14	13	15
		15	15		11	8	5	4	.9	7 0	3							
		0	0	1	11	3	5	4 5	6	7 0 7	8	9	10	11	12	13	14	15
		° 0	0 0	1 0 .	2 0	3	5 4 0 .	5	6	7 0	8 0	9	10	11	12	13	14	15
		° 0 1	0 0 0	1 0. 1	11 2 0 2	3 0 3	5 4 0 4	5 0 5	6 0 6	7 0 7	8 0 8	9 0 9	10 0 10	11 0 11	12 0 12	13 0 13	14 0 14	15 0 15
		0 1 2	0 0 0 0	1 0. 1 2	11 2 0 2 1	3 0 3 3	5 4 0 4 9	5 0 5 5	9 6 0 6 6	7 0 7 7	8 0 8 15	9 0 9 4	10 0 10 10	11 0 11 11	12 0 12 13	13 0 13 12	14 0 14 14	15 0 15 8
		0 1 2 3	0 0 0 0 0	1 0. 1 2 3	11 2 0 2 1 3	3 0 3 3 0	5 4 0 4 9 0	5 0 5 5 3	6 0 6 6 3	7 0 7 7 3	8 0 8 15 3	9 0 9 4 0	10 0 10 10 0	11 0 11 11 0	12 0 12 13 0	13 0 13 12 0	14 0 14 14 3	15 0 15 8 3
		0 1 2 3 4	0 0 0 0 0 0	1 0. 1 2 3 4	11 2 0 2 1 3 9	3 0 3 3 0 3	5 4 0 4 9 0 4	5 0 5 5 3 10	6 0 6 6 3 11	7 0 7 7 3 3	8 0 8 15 3 12	9 0 9 4 0 9	10 0 10 10 0 10	11 0 11 11 0 11	12 0 12 13 0 12	13 0 13 12 0 13	14 0 14 14 3 0	15 0 15 8 3 13
		0 1 2 3 4 5	0 0 0 0 0 0	1 0. 1 2 3 4 5	11 2 0 2 1 3 9 6	3 0 3 0 3 3 3	5 4 0 4 9 0 4 10	5 0 5 5 3 10 5	6 0 6 6 3 11 6	7 0 7 7 3 3 7	8 0 8 15 3 12 7	9 0 9 4 0 9	10 0 10 10 0 10	11 0 11 11 0 11 11	12 0 12 13 0 12 3	13 0 13 12 0 13 0	14 0 14 14 3 0 14	15 0 15 8 3 13
		0 1 2 3 4 5 6	0 0 0 0 0 0 0	1 0. 1 2 3 4 5 6	11 2 0 2 1 3 9 6 5	3 0 3 3 0 3 3 3 3	5 4 0 4 9 0 4 10 11	5 0 5 5 3 10 5 5	9 6 0 6 6 3 11 6 6	7 0 7 3 3 7	3 8 0 8 15 3 12 7 14	9 0 9 4 0 9 11 10	10 0 10 10 0 10 10	11 0 11 11 0 11 11	12 0 12 13 0 12 3 0	13 0 13 12 0 13 0 3	0 14 14 3 0 14 14	15 0 15 8 3 13 14 7
		0 1 2 3 4 5 6 7	0 0 0 0 0 0 0 0	1 0. 1 2 3 4 5 6 7	111 2 0 2 1 3 9 6 5 7	3 0 3 0 3 3 3 0	5 4 0 4 9 0 4 10 11 0	5 0 5 5 3 10 5 7	9 6 0 6 6 3 11 6 6 7 8 11	7 0 7 7 3 3 7 7	8 0 8 15 3 12 7 14 7	9 0 9 4 0 9 11 10	10 0 10 10 0 10 10 10	11 0 11 11 0 11 11 11	12 0 12 13 0 12 3 0	13 0 13 12 0 13 0 3 0	14 0 14 14 3 0 14 14 7	15 0 15 8 3 13 14 7
		0 1 2 3 4 5 6 7 8	0 0 0 0 0 0 0 0 0	1 0. 1 2 3 4 5 6 7 8	111 2 0 2 1 3 9 6 5 7 8	3 0 3 0 3 3 3 0 0	5 4 0 4 9 0 4 10 11 0 0	5 0 5 5 3 10 5 7 8	9 6 0 6 6 3 11 6 6 7 8	7 0 7 7 3 3 7 7 7 8	8 0 8 15 3 12 7 14 7 8	9 0 9 4 0 9 11 10 0	10 0 10 10 0 10 10 10 0 0	11 0 11 11 0 11 11 0 0	12 0 12 13 0 12 3 0 0	13 0 13 12 0 13 0 3 0	14 0 14 14 3 0 14 14 7 8	15 0 15 8 3 13 14 7 7 8 12 0
		0 1 2 3 4 5 6 7 8 9	0 0 0 0 0 0 0 0 0 0	1 0. 1 2 3 4 5 6 7 8	111 2 0 2 1 3 9 6 5 7 8 4	3 0 3 3 0 3 3 0 0 0 3	5 4 0 4 9 0 4 10 11 0 0 9	5 0 5 5 3 10 5 5 7 8 10	9 6 0 6 6 3 11 6 6 7 8 11	7 0 7 7 3 3 7 7 7 8 3	8 0 8 15 3 12 7 14 7 8 13	9 0 9 4 0 9 11 10 0 0 4	10 0 10 10 0 10 10 10 0 0	111 0 111 111 0 111 111 0 0	12 0 12 13 0 12 3 0 0 0	13 0 13 12 0 13 0 3 0 0	14 0 14 14 3 0 14 14 7 8	15 0 15 8 3 13 14 7 7 8 12

13 13 13 13 0

14 14 14 14 0

0 0 0 0

0

13 13

14 14

15 15

The near-ring $E_{\Delta}(Z_4)$ has the defect $\mathcal{D} = \{f_0, f_3, f_{12}, f_{13}\}.$

0

15 15 0 0 15 15 15 15 0

TABLE 2.

The Δ -endomorphisms of $(Z_6, +)$ for which the subgroups

The semigroup $(E_{\Delta}(Z_6), \circ)$. The near-ring $E_{\Delta}(Z_6)$ has the defect

		22	_	7		0		70	7	0										7			0		7	
		2	0	7	7	0	4													22					71	Ñ
÷		21	0	21	0	e	0	13	14	12	11	6	11	11	12	13	14	21	14	11	12	13	0	21	0	11
		20	0	20	4	0	7	22	20	22	7	0	4	0	0	0	0	20	20	7	22	22	4	Ō	7	4
		19	0	19	4	e	7	15	18	16	10	6	∞	11	12	13	14	10	7	19	4	∞	16	21	18	15
		18	0	18	4	0	7	16	18	16	7	0	4	0	0	0	0	7	7	18	4	4	16	0	18	16
		17	0	17	7	3	4	23	22	20	∞	6	10	11	12	13	14	18	4	17	18	10	20	21	22	23
		16	0	16	7	0	4	18	16	18	4	0	7	0	0	0	0	16	16	4	18	18	7	0	4	7
		15	0	15	7	3	4	19	16	18	∞	6	10	11	12	13	14	15	16	∞	18				4	10
		14	0	14	0	0		12																	•	0
		13				Б		21																	7	
	<u>.</u>	12 1																								
3	f12, J					0								0										0		
ĺ	. وگر ر	=				33																11	0	21	0	11
,	$\mathfrak{D} = \{f_0, f_9, f_{12}, f_{14}\}$	2	0	10	4	3	7	œ	7	4	10	6	∞	11	12	13	14	10	7	10	4	∞	4	21	7	∞
	8	6	0	6	0	0	0	6	6	6	0	0	0	0	0	0	0	14	14	12	12	12	14	0	12	14
		∞	0	∞	7	3	4	10	4	7	∞	6	10	11	12	13	14	∞	4	∞	7	10	7	21	4	10
		7	0	7	4	0	7	9	7	9	7	0	4	0	12	0	0	20	20	18	22	22	16	0	18	16
		9	0	9	7	0	4	7	9	7	4	0	7	0	0	0	0	16	16	22	18	18	20	0	22	20
		5	0	2	4	3	7	-	7	9	10	6	∞	11	12	13	14	23	20	19	22	17	16	21	18	15
ı		4	0	4	7	0	4	7	4	7.	4	0	7	0	0	0	0	4	4	4	7	7	7	0	₹	7
		3	0	3	0	3	0	3	6	6	11	6	11	11	0	13	14		14	13	12	13	14	21	12	21
		2	0	7	4	0	7	4	7	4	7	0	4	0	0	0	0	7	7	71	4	4	+	0	2	-
			0																				7		7	ب م
		0	0	•	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0
		•	0	-	7	3	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	70	21	22	23

(R, +, .) with the defect D. A multiplication on R is D-componentwise if for all $a, a' \in A$ and $b, b' \in B$ there exists $d \in D$ such that (a+b)(a'+b') = aa' + bb + d. We say that R is a D-direct sum of thee subnear-rings A and B.

Let $E_{\Delta}(G)$ be a Δ -endomorphism near-ring with the defect \mathcal{D} . For some idempotent $e \in E_{\Delta}(G)$ let \mathcal{A} be the subgroup of $(E_{\Delta}(G), +)$ generated by $\{s - es: s \in End_{\Delta}(G)\}$ and \mathcal{M} be the subgroup of $(E_{\Delta}(G), +)$ generated by $\{es: s \in End_{\Delta}(G)\}$.

THEOREM 4.4. Let $G = B \oplus C$ be a direct sum of E_{Δ} -invariant subgroups B and C, where B is summand and Δ is a subset of one of the summands. If e is the projection map $e: G \to B$ and $\mathcal{AM} \subseteq \mathcal{D}$, then $E_{\Delta}(G)$ is the \mathcal{D} -direct sum of the subnear-rings \mathcal{A} and \mathcal{M} , where \mathcal{D} is the defect of $E_{\Delta}(G)$.

PROOF. The projection map $e: G \to B$ is an endomorphism of (G, +). The idempotent $e \in End(G)$ is a right identity for \mathcal{M} . Hence, \mathcal{M} is a subnear-ring of $E_{\Delta}(G)$. Also, by Corollary 2.3 of [11] it follows that \mathcal{A} is an ideal of $E_{\Delta}(G)$. Because B and C commute elementwise and B is E_{Δ} -invariant abelian summand, it follows that the decomposition $E_{\Delta}(G) = \mathcal{A} + \mathcal{M}$ has \mathcal{M} in the additive center of $E_{\Delta}(G)$, i.e. semidirect sum $\mathcal{A} + \mathcal{M}$ is direct.

We shall now prove that the multiplication on $E_{\Delta}(G)$ is \mathcal{D} -componentwise. Let $a, a' \in \mathcal{A}$ and $m, m' \in \mathcal{M}$, where a' = s' - es', m = et, $m' = et'(s', t, t' \in End_{\Delta}(G))$. Then

$$(a+m)(a'+m') = (a+m)(s'-es') + (a+m)et'$$

$$= (a+m)s' - (a+m)es' + (a+m)et' =$$

$$= as' + ms' + \delta_1 - (aes' + mes' + \delta_2) + aet' + met' + \delta_3 =$$

$$= as' - aes' + aet' + ms' - mes' + met' + \delta =$$

$$= aa' + am' + ma' + mm' + \delta$$

$$= aa' + mm' + \delta', \quad (\delta_1, \delta_2, \delta_3, \delta, \delta' \in \mathcal{D})$$

because ma' = et(s' - es') = ets' - etes' = 0 and $\mathcal{AM} \subseteq \mathcal{D}$.

For example, if for an idempotent of the near-ring $E_{\Delta}(Z_6)$ with the defect $\mathcal{D}=\{f_0,f_9,f_{12},f_{14}\}$ (table 2) we take the map $e=f_3\colon G\to B=\{0,3\}$ then, $E_{\Delta}(Z_6)$ is a \mathcal{D} -direct sum of the subnear-rings

$$\mathcal{A} = \{f_0, f_2, f_4, f_6, f_7, f_9, f_{11}, f_{12}, f_{13}, f_{14}, f_{16}, f_{18}, f_{20}, f_{22}\}$$

and $\mathcal{M} = \{f_0, f_3\}$

REFERENCES

- [1] J.C. Beidleman, On the theory of radicals of distributively generated near-rings II. The nil-radical, Math. Annalen 173 (1967), 200-218.
- [2] G. Berman, R. Silverman, Simplicity of near-rings of transformations, Proc. Amer. Math. Soc. 10 (1959) No. 3, 456-459.

- [3] D. Blackett, Simple and semi-simple near-rings, Proc. Amer. Math. Soc. 4 (1953), 772-785.
- [4] V. Dašić, The defect of distributivity of the near-rings, Math. Balkanica (to apper).
- [5] V. Dašić, On the radicals of near-rings with defect of distributivity, Publ. de l'Institut mathématique, 28 (42) 1980.
- [6] M. Hall, The theory of groups, New York, 1959.
- [7] H.E. Heatherly, J.J. Malone, Some near-ring embedding II, Quart. J. Math. Oxford (2), 24 (1973), 63-70.
- [8] M. Johnson, Ideal and submodule structure of transformation near-rings, Doctoral Diss., University of Iowa, 1970.
- [9] M. Johnson, Radicals of endomorphism near-rings, Rocky Mountain J. of Math. 3 (1973), No. 1, 1-7.
- [10] M. Johnson, Maximal right ideals of transformations, J. Austral. Math. Soc. 19 (Series A) (1975), 410-412.
- [11] C. Lyons, On decompositions of E(G), Rocky Mountain J. of Math. 3 (1973), No. 4, 575–582.
- [12] G. Pilz, Near-rings. The theory and its applications, Nort-Holland Publ. Comp. Amsterdam-New York-Oxford, 1977.

Mathematical institute University of Titograd, Yugoslavia