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ON FINITE MULTIQUASIGROUPS

Georgi Cupona, Zoran Stojakovié, Janez Usan

In the present paper multiquasigroups and their relations to orthogonal sys-
tems of operations and codes are studied. In the first part of the paper the notion
of an [n, m]-quasigroup of order ¢ is defined and it is shown that for n,m,q > 2 it
follows that m < g —1, in the second part, as a corollary of the preceding result, an
upper bound for the maximal number of n-ary operations in an orthogonal system
of operations on a set with g elements is obtained. In the third part the existence of
a class of multiquasigroups is shown, and in the fourth part a connection between
multiquasigroups and a special kind of code is pointed out.

In the paper some result from [4] are used, but it is possible to read it inde-
pendently.

1. Let @) be a finite, nonempty set with ¢ elements, n, m positive integers and
f amapping of Q" into Q™. The structure Q(f) is said to be an [n, m]-quasigroup,
or simply multiquasigroup, iff the following condition is satisfied:

(A) For every injection ¢ from N,, = {1,... ,n} into N4, and every sequence
ai,---,0a, € @, there exists a unique sequence by, ... ,byptm € Q such that:

f(bl,.. . 7bn) = (bn-l—la- . ;bn—i-m) and b(p(l) = a1y... ,b<p(n) = Qnp.

q is called the order of Q(f).

One of the tasks of the paper is to discuss triples of natural numbers (n,m, q)
for which [n, m]-quasigroups of order ¢ exist. It is clear that: (i) Q(f) is an [n, 1]-
quasigroup iff Q(f) is an n-quasigroup; (ii) Q(f) is an [1, m]-quasigroup iff there
exist permutations fi,..., fm of @ such that f(z) = (fi(x),..., fm(x)); (iii) for
each pair of natural numbers n, m there exists an [n,m]-quasigroup of order 1.
Therefore, in the sequel we shall assume that n,m,q > 2.

First, we shall prove that the following proposition:

1°. If m,n,q > 2 and if there exists an [n, m]-quasigroup of order ¢, then

m<q-—1. (1)
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PrOOF. First, we note that if Q(f) is a [2,m]-quasigroup and if we put

P={(z1,...,Zm42) | f(@1,22) = (T3, .., Tmy2)},
b.fvz{(wlr--7$m+2)ep|$i=$},
B,={b)|z€Q}, Bi=BiU---UBpys,

we get a m + 2-net (where P is the set of points, B is the set of blocks i.e. lines,
and the incidence is the ordinary belonging) of order ¢ ([4]). It is well known that
from here it follows (see [1], p. 9) that m +2 < ¢+ 1, e.d. (1).

Now, we shall assume that Q(f) is an [n,m]-quasigroup of order ¢, where
n=p+2,p>1 Ifai,...,ap,is an arbitrary sequence of elemets from @, and if
we put

f,(may) = f(ala' . JGPJ'Z.J:U)J
we get a [2,m]-quasigroup Q(f'). From here, considering the preceding result, it
follows that m < ¢ — 1.
As a corollary of the preceding we get:
1.1. If m,n > 2, then there does not exist an [n, m]-quasigroup of order 2.

2. Let ¥ = (f1,-..,fr) be a sequence of n-ary operations defined on the
same set (), where k > n. X is said to be an orthogonal system of n-ary operations
on @ (0OSnO) iff the following condition is satisfied:

(B) For every injection ¢: N,, — N the maping

(-Tl;--- awn) = (yw(l)a'-' 7y<p(n))

is a permutation of Q", where y, = f,(z1,...,Tn)-

A sequence ¥ = (f1,...,fr) on n-ary operations on a set @ is said to be
a strongly orthogonal system, iff the sequence ¥1 = (g1,-.- ,9n, f1,-.-, fx) is an
orthogonal system, where g1, ... , g, are defined by:

(Vi € Np)gi(zy,--- ,Tn) = x;-

It can be easily proved that in a strongly orthogonal system all n-ary opera-
tions are n-quasigroups.

A system of binary quasigroups is orthogonal iff it is strongly orthogonal,
but for n > 2 a system of n-quasigroups which is orthogonal need not be strongly
orthogonall).

We shall show that:

2°. Ifn, ¢ > 2 and if (f1,..., fr) is an OSnO on a set ) with g elements,
then

k<n+gqg-1 (2)

L An example fot this are four ternary quasgroups given in [2] on pages 181 and 182.
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Proor. For k =n and k = n + 1 there is nothing to prove. So, we shall
assume that k = n + m, where m > 2. If a mapping f: Q™ — Q™ is defined by

flxe,...,mn) = (Tntt,--- ,Tk) &
(Eltl,... ,in € Q).Cl?l = fl(tla--- ,tn),... , T :fk(tly"' ,tn),

we get an [n, m]-quasigroup Q(f), and from 1° it follows that m = k—n <> ¢ -1,
ie. (2).
As a corollary of 2° we get the following:

2.1. If n, ¢ > 2, then the number of n-ary operations in an OSnO defined on

a set with ¢ elements is bounded, and if w,(q) is the maximal number of elements
in such a system, then

wnlg) Sn+g—1. (2.1)

From 2° it follows also that the maximal number of n-ary operations in a
stongly orthogonal system on a set with g elements is not greater than g — 1.

We note that in [3] (the same result is quoted in [2]) the following theorem is
proved:

2.2. Ifn > 2, ¢q > 3 and if m,(¢) denotes the maximal number of n-
quasigroups which make an orthogonal system of n-quasigroups on a set with )
elements, then

() < (n—1)(g—1). (2.2)

Since every orthogonal system of n-quasigroups is also an OSnO, we have
mn(q) < wn(q), so (2.1) improves (2.2).

Tt is easy to see that the upper bound for m,(q) is:

(i) better in (2.2) for n = ¢ = 3 and for n = 2, ¢ arbitrary;

(ii) the same in (2.1) and (2.2) for n =3, ¢ = 4 and for n =4, ¢ = 2;

(iii) better in (2.1) in all other cases.

Using the corresponding result on the nonexistence of an OSnO, we get that:

2.3. If n, m > 2 then there does not exist an [n, m]-quasigroup of order 6.

Proor. If Q(f) is an [n, m]-quasigroup and if fi,..., fn, are defined by

f(xla"' ,.’L'n) = (yla"' ;ym)ﬁyv :fv(xla"' ,SL’n)

a system of n-quasigroups is obtained. For m > n this system is orthogonal. So,
if we define a [2,m]-quasigroup Q(f') as in the proof of 1°, then we obtain an
orthogonal system of binary quasigroups fi’,..., fm' and such a system, as it is
well known, for m > 2, ¢ = 6 does not exist.

3. All the results of the two preceding have “negative character”, i.e. they
consider the cases in which there do not exist multiquasigroups. Here, we shall
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show the existence of a class of multiquasigroups which we shall call linear multi-
quasigroups.

3°. Let F be a field and A = [a;;] an n x (m + n) matrix over F' such that
every minor of A of order n is nonsingular. If a mapping f: F™ — F™ is defined by

f(wla-- - al'n) = ($n+17-- - 7xn+m) < (Ht € Fn)x = tA: (3)
where x = (21, ... ,Zntm), then we get an [n, m]-quasigroup F(f).
ProoF. Let ¢ = (¢1,...,¢,) € F™ be a sequence of elements from F,

and ¢ an injection from N, into Npin. The matrix B = [b;;] of order n, where
bij = @y (j), is nonsingular, which means that the equation ¢ = tB has a unique
solution t = ¢cB~!, and from here we get that there exist a unique sequence b =
(b1,... ybuym) € F™™ such that b,y = ¢, and b = tA, ie. f(br,...,b,) =
(bnt1s -+ s bntm)-

Putting in 3° t = (z1,... ,z,) the following proposition is obtained:

3.1. Let A = [a;;] be an n x m matrix over a field F', such that every minor?
of A is nonsingular. If a mapping f: F™ — F™ is defined by

f(mla"'7xn):(y15"'7ym)<:>y:x"4; (31)

where x = (21,...,25), ¥ = (Y1,--- ,Ym), then an [n,m]-quasigroup F(f) is ob-
tained.

It is clear that, if an n x m matrix A defines an [m,n]-quasigroup, then
the transpose AT of the matrix A defines an [m,n]-quasigroup. Also, every p x g
submatrix of A defines a [p, g]-quasigroup.

From 3.1. it follows that if a matrix A with nonsigular minors can be defined
over a Galois field FF = GF(p®), then the corresponding linear multiquasigroup is
obtained. We get some examples.

1 1

31) F=GF(3)={0,1,-1},n=m=2, A= ,

1 -1

f@,y) = () Su=z+y, v=z-y.

32) F=GF(5) ={0,1,2,—1,-2}

11 2 1 1
A=l1 2|, AFE ; _11] ds=11 2 1
1 -1 11 2

fz,y,2)=(u,v) e z=zc+y+2 v=z+2y-—z,
fo(z,y) = (w,v,w) Su=z+y, v=c+2y, w=zx—y
fa(z,y,2) = (u,v,w) Su=2x+y+z2, v=x+2y+z2, w=z+y+2z.

20f order k, k = 1,... ,min(n,m).



On finite multiquasigroups 57

It is natural to ask when a matrix A with nonsingular minors can be con-
structed over a field F. A sufficient condition gives the following proposition.

3.2. If F is a finite field with ¢ elements and if m and n are positive integers

such that
() (") e 62

i
then there exists an n x m matrix A = [a;;] such that every minor of A is nonsin-
gular.

PRrROOF. It is clear that the proposition is true for n = 1 or m = 1, hence,
we shall assume that n, m > 2. If (3.2) is true then the inequality

zi: (k;l) (s;l) <q (3.2)

is also true for every k < n, s < m. We shall suppose that k < n, s < m and that
we have constructed the matrices

aix @12 A1s
a1 @12 - Qim Qo1 G99 as
S

a21 22 a2 _

=B, | . =C,

................... ar1 ko s
ag1 Qg2 Gkm a as a
El

with nonsingular minors. The proof will be completed if we show that there exists
an element b € F such that all minors of the matrix

a1 G112 - G1s  Q1s41

a21 G22 - G2 Q2541
.......................... =D,

ar1 Qg2 Qs Oks+1

a1 as ag b

are nonsingular. It is clear that D has

O6 GG

minors in which b appears, and every such minor is singular only for one value of
b, i.e. there exist at most 3°; (¥) (£) values of b for which a minor of D in which b
appears is singular. From (3.2) it follows that we can find b such that all minors of

D are nonsigular, which completes the proof.

The matrix Az from the example 3.2) shows that, in general, the condition
(3.2) is not necessary for the existence of a matrix with the given property.

A corollary of 3.2. is the following;:
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3.3. For every pair of natural numbers m, n > 2 and every prime p, there exist
an infinite number of natural numbers a such that ther exist an [n, m]-quasigroup
of order g = p°.

It is clear that the propositions 3° and 3.1. can be formulated in a more
general form, where instead of a field we use a commutative and associative ring
with identity, and the term “nonsigular minor” we replace by “invertible square
submatrix”. As a consequence of such more general proposition, we get:

3.4. If there exists an integer n x m matrix A = [a;;], such that every minor
A is relatively prime with ¢, then there exists an [n, m]-quasigroup of order q.

PROOF. If we consider A as a matrix over the ring Z, = Z/qZ (of residue
classes modulo q) we get that every minor of A is invertible.

We give some examples.

3.3) Using the matrix [1 1] we can construct a [2, 2]-quasigroup of any odd

1 2
oder.
The matrix
-2 1 -1
-1 2 —1
1 -1 2

defines a [3, 3]-quasigroup of order ¢, where ¢ is any natural number relatively prime
with 6.

4. Multiquasigroups can be interpreted as a special kind of relations, i.e.
codes. First, every subset K of Q* is called a k-code over Q. Two elements
a---ap and by ---b form QF are said to be on a distance d iff they differ in
exactly d components. If d is the minimal distance between different sequences
from K, then we say that K has the code distance d. It is easy to see that the
following proposition is valid:

4° If Q(f) is an [n, m]-quasigroup of order ¢ and if a code K is defined by

aj - Qmyn € K & f(ala-'- aan) = (an+17"' aan+m)7 (4)

then a m + n-code with ¢"™ elements and of the code distance m + 1 is obtained.
And conversely, if K is a m + n-code with ¢™ elements and of the code distance
m + 1 over a set ) with ¢ elements, then by (4) an [n, m]-quasigroup of order q is
defined.

From the above proposition it follows that there exists an equivalence between
multiquasigroups and a special kind of codes.

It is natural to ask what structure Q(f) is defined by (4) if it is given only
that K is a m + n-code of the code distance d = m + 1. In this case, a partial
[n, m]-quasigroup Q(f) is obtained (the definition of which we shall not give here).
In [4] it is shown that every partial [n, m]-quasigroup can be completed to an [n, m]-
quasigroup, but then the carrier of the multiquasigroup is essentially enlarged, and
this is not of interest in the case when the carrier is finite.
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