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MEASURE AND INTEGRATION IN THE
ALTERNATIVE SET THEORY

Miodrag Raskovié

With the analysis point of view, there is a strong similarity between the
saturated models of analysis (NA) and the Alternative Set Theory (AST). So,
notions as for example “infinite external set”, “internal set” and “hyper-finite set”
in NA have corresponding notions as “countable class”, “set” and “infinite” set in
AST (“infinite” in AST meaning).

The internal definition principle is in relation with the comprehension schema,
in AST, and comprehension property in NA is in relation with the prolongation
axiom.

This similarity between NA and AST becomes complete understandable, if
one knows that the ultra-power of the set of hereditary-finite sets enriched with its
subsets is a model for AST (see [5]).

On the other hand, AST allows us to make a natural fundation of analysis.
Our intention will be translating the notions and theorems from [2] to AST.

For basic motivations, notions, axioms, definations and theorems for AST, one
may consult [1]. We recall, that the class of natural numbers is N,! finite natural
number is FN,? rational numbers is RN3, finite rational numbers is FRN* and
bounded rational numbers is BRN.? All of this classes are class-teoreticly definable,
as theirs relations and operations <, + and - are. The set of real numbers is
Real = BRN/ =, where by = “infinitely near”® relations is denoted.

Real has all topological and algebrical property as the classical reals does.
But for us, its selector R C BRN” is more usuful than the such Real itself. R is

!We model natural numbers in the manner of von Neumann.

2n € FN iff (VX Cn) (“X is a set”).

3r € RN iff (Vm,n € Z) (r = (m,n)) and we write 7 = ™, where Z = NU{{0,a) | a € N}.
4r € FRN iff (3m,n € FZ) (r = ™), where FZ = FNU{(0,e) | « € FN}.

5r € BRN iff (3n € FN) (Jr| < n)

Sz=yiff (Vne FN) (Jz —y| < %)

7A class R is image of choice function on the class Real.
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topologicly isomorphic with Real, so that we can translate all interesting properties
from Real to R.

For each x € R, there is °z € Real so that z €° x, and for each y €° = we
have st(y) = . Observe that st(z) and °x are not same.

For ACR,let °A={x € Real | (Jy) (y€ ANy € x)}.

The topological notions as an interval, open and closed set, convergence and

so on, we can define in the usual manner (if we exchange a set wigth a class), but
the role of N and RN play FN and FRN. The role of *R play RN.

The set R omits some algebric characteristic, which Real has. For example, in
R, (3z) (z = 2) is true, but not (Iz) (xz = 2). However, this is not of an importance
for us. R is more natural then Real, because R C BRN, while Real is the class of
classes.

We can replace the saturation with the following theorems (see [1]).
THEOREM 1. Fach countable class is proper semiset.

THEOREM 2. Let X, Y be countable classes such that NX C UY . Then there
is a set u such that UX Cu CNY.

THEOREM 3. Let Z be set-theoretically definable class. Let X be a countable
subsemiset of Z. If X is directed then there is a u € Z which is an upper bound
of the elements of X ordered by inclusion. If X is dually directed then there is a
u € Z which is a lower bound of the elements of X oredered by C.

THEOREM 4. Let {X,,n € FN} be a sequence of revealed classes (for
example, definable classes are revealed) such that for eachm € FN, N{X,, |n <m}
is non-empty. Then N{X, |n € FN} # .

1. Loeb aad Lebesque measure

Now, we will start to investigate Loeb measure in AST.

Let z ~ n iff (3f)(f: == ).

Let Q be a set, and *P () the set of its subsets. It is easy to see that *P (1)
is a field of sets.

Let P and P be functions so that for Q ~ n, A €* P(Q) and ARm, we have
P(A) = {5} = 2 and P(4) = stP(A).

If A C Q, we can define inner measure so that Piyner(A) = sup{P(B) | B C
A, B set}, and outer measure Poyter(4) = inf{P(B) | A C B, B set}.

DEF. 1. A class A C Q is Loeb measureble iff Pyper(A) = Poyter(A) and let
us put P(A) = Puner(A) = Pouter(4).

Let L(2) be a class of Loeb measurable classes (which are sets or semisets).

LEMMA 1. For each a class A we have:
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(1) A € L(Q) iff for each € > 0 there are classes B and C so that BC ACC
and P(C\B) < e.
(2) -Pinner(A) =1- Pouter(Q\A)-

THEOREM 1.  (Loeb) The class L(Q) is a o-field and P is a o-additive
function.

Proof. A proof that L(f) is a field and P is additive is as in (2).

To complete the proof, we must show that, if for each ¢ € FN, A; D A;y1,
A; € L(Q), P(A;) = ry, and limi;ﬁo r; = r, then NiepnA; € L(Q) and
P(NiernA;) = r. We may apply the lemma 1 .... In this case is enough to
choose sets B and C, so that for A = N;ernA; and € > 0, we have B C A C C,
P(B)>r—eand P(C)<r+e.

The sequence {r;};crn is descending and limi;;’o ;1 = r, SO we can choose
n € FN® and a set C, so that A, C C and P(C) <7, + 5. But then AC 4, CC
and P(C) <rp+ 5§ <r+ 5+ 5 =r+e¢, as required.

Let us find B. We can chose sets B], C A, with P(B],) > ry, —2.™.

Let B, = B{ N...N B],. By induction, we can easily show that P(B,,) >
Tm—(1—2"™)e.

The class X,,, = {B €* P(Q) | P(B) > r—eAB C By, } isrevealed (and, more,
aset). Also, we have B, € X,,,, because B,, C B, and P(B;,) > rpp,—(1—27™) >
r —e. Therefore, X, # 0 and X3 DO X5 D .... So, by Theorem 4. we have
NmerNXm # 0.

Let is B € NpernXm- Then, for each m € FN, B C B,, and P(B)=P(B) >
r —e. For each m € FN, we have B,,, C A,;, - SoB C NyuerpNAm, as required.

THEOREM 2. For each A € L(Q), there is B €* P(Q) so that P(AAB) = 0.
The proof of the Theorem follows by the Theorem II.

THEOREM 3. If P(A) =0 and a semiset A is a countable union of sets, then
there is a set B D A, so that P(B) =0.

The proof follows by the Theorem 3.

Our intention will be to define Lebesques measure on R and Real, and to
show its conection with Loeb’s measure.

Let H € N\FN and At = % Then, the class T = {0, At,2A¢,...,1} =
{(k,H) | k € H} is a set.

Let [s,t] = {z € R| s < z < t} and str: T — [0,1], where st7 = st | T.
Further on, we will write st instead of str, if it will not bring us to an ambiguity.

For A C [0,1] we have st 1(A) C T and st(st 1(A)) = A, while for BC T
we have st(B) C [0,1] and st 1(st(B)) D B.

Let *[s,t] = {x € RN | s <z <t} and (s,t) = [s, t]\{s, t}.

830 that 7 <rn—|—§
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Now, we give the definition of Lebsque measure y, on [0, 1].

For A = [s,t] we have u([s,t]) = u((s,t)) =t —s.

If AC[0,1], and A is open, then A can be written (uniquely) as a countable
union of disjoint open intervals, A = UnernAn, and then p(A) = > oy p(4).

If A C[0,1] is closed, then [0,1]\ A is open, so u(A4) =1 — u([0, 1]\ A).

For all other A C [0,1], we define pinner(A) = sup{u(B) | B C A, B is closed}
and pouter(A) = inf{u(B) | A C B, B is open}.

The class of Lebesque measurable subclasses is Leb[0,1] = {A C [1,0] |
Winner(A) = fouter(A4)}, and for A € Leb[0,1] we have p(A4) = pouter(4) =
,U/inner(A)-

Now, we give Fisher’s theorem, which is connection between Loeb’s and
Lebesque’s measure. We need several lemmas for the proof of the theorem. However
we omit theirs proofs, which are very similar to proofs in (2).

Only, we must use the Theorem 4. instaed of w-saturation.

LEMMA 2. For each r € [0,1], st '({r}) = {t € T | t=r} € L(T) and has
Loeb measure but any set containing it has a positive Loeb measure.

LEMMA 3. For all s,t € [0,1], so that s <t we have P(T N* [s,t]) =t —s
and P(st™1[s,t] = u([s,t]) =t — s.

LEMMA 4. If AC[0,1] and A is closed, then st 1(A) € L(T) and p(A) =
P(st71(4)).

LEMMA 5. Let B C T be set. Then st(B) is closed.

THEOREM 5. (Fisher) for each A C[0,1], A € Leb[0,1] iff st~ '(A) € L[T),
and in this case, we have u(A) = P(st~1(4)).

The proof follows by the lemmas above.

We say °A C° [0,1] is Lebesque measurable iff A € Leb[0,1]. Let us define
°p with °u(°A) = u(A).

By Fishers theorem, we have °u(A) = P(st~1(A)).

2. Loeb measurable functions

First, will introduce two notions, and will give the theorem, which connects
them.

DEF. 2. A class function F' is Loeb measurable iff for each r € R, we have
{w| F(w) <r} e LQ).

A set function f is lifting of a function F: Q — Riff f:Q — RN and st f(w) =
F(w) almost sure (on a set of measure 1).

THEOREM 5. A class function F' is Loem measurable iff it has a lifting f.
Moreover, if for each w € Q, |F(w)| < n, then we can find o lifing f such that

|f (w)] < n.
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ProoF: Let f lifts F on z, where z = {w € Q | stf(w) =
P(z)=1 Forre R,aclass {w €z | Flw) <r} =nN{w ez | f(w)
measurable, as countable intersection of the measurable sets.

Let @ = {gn | n € FN} be a sequence of finite rationals and F a Loeb
measurable function.

The classes 4, = {w | F(W) < g,} are Loeb measurable, for each n € FN.
By the Theorem 2. there is a set B, so that P(B,AA,) = 0 and for g,,, < g, we
have B,, C B,.

For each n € F'N, there is an function f, such that:

F(w)} and
<r+=i}is

(*) (Vmﬁn)(meBm an(m) ng)'

It is enough to take f,, so that f,(Bo) = {go} and f(Bm+1\Bm) = {gm}, for
each 1 <m <n.

Let X, = {f | “f is function” and (*)}. Then, we have X,, # § and X; D
Xo.... According the Theorem 4., there is f € NperpnX,- So we have stf(w) =
F(w) for we Q\ Upern (AnAB,) and

P (9\ U (AnABn)> =P(Q) —P( U (AnABn)>

neFN neFN

=1- ) P(4,AB,) =1.

neFN

So we have st f(w) = F(w) almost surely.

The rest we can prove trivialy, if we bound f in X,, by n.

DEF. 4. A set function f is lifting of Fp:[0,1] - R iff f:T — RN and
st f(t) = Fy(st(t)) almost surely on T'.

LEMMA 6. A class function Fy:[0,1] = R is Lebesque measurable iff Fy has
a lifting f:T — RN.
PROOF:
f
T F
S‘"ll st
Fy
0,1] R

g

Let us define F: T — R by F(t) = Fy(st~1(t)). By Fisher’s theorem (Theorem
4) Fp is Lebesque measurable iff F' is Loeb measurable iff (by Theorem 5.) F' has
a lifting f.
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REMARK: If f:T — RN is almost surely finite set, then f is a fifting of some
F, where is F(w) = stf(w). Such F' is Loeb measurable.

DEF. 5. A set function f is a uniform lifting of F iff for all w € T, st f(w) =
F(w).

THEOREM 6. A class function F has a uniform lifting f iff {w | f(w) <r),
{w]| f(w) <r}e{z|JAA:FN =-* P(T)'X =NpernA} for allT € R.
The proof follows by Theorem 4.

Let Fo: T — Real, so that °F(w) = Fy(w). The function Fy is Loeb measur-
able iff for all » € R, we have {w € T | F(w) <r} € L(T).

3. Integration

Let Q be infinite set, then there is n € N and a set function f so that
fin = Q. Then, we have }° o F(w) =31 _| F(f(m)).

m=1
A bounded and Loeb measurable function F:Q — R is simple iff range (F)
is finite.

DEF. 6. Let F be bounded and measurable function. If F' is simple, then
Jo Fw)dw =37 ¢ onge ()T - P(F~'({r})). In general

/F(w)dw = sup {/G(w)dw | G is simple and G < F
Q Q

THEOREM 7. (Loeb) Let F: Q) — R be bounded and Loeb measurable function
and let f: Q) — RN be a bounded lifting of F, then

/F(w)dw = st Z f(w)Aw.
Q

weR

The proof is similar to the proof in (2).

THEOREM 8. Let F:[0,1] = R be bounded Lebesgue measurable and let f be
a lifting function of f. Then, we have [, F(t)dt = st ¢, f(w)Aw.

The proof follows easily by Theorem 4. and Theorem 7.

Let F:QQ — RN be Loeb measurable and non-negative. Let us denote
min(F(w),n) by (F An)(w).

Then, we define [, F(w)dw = lim, o [o(F A n)(w)dw.

A function F is Loeb integrable iff [, F(w)dw is finite.

We can denote max(F(w),0) by F*(w) and min(F(w),0) by F~(w). Then
we have F = F+ + F—.
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In general case, for unbounded F', we define

/F(w)dw = /F+(w)dw —/—F_(w)dw.

So, we see that a function F is Loeb integrable iff both F'* and F~ are.

DEF. 7. Let f be non-negative set function so that f: 2 - RN. The function
[ is s-integrable iff sum )  _, f(w)Aw is finite, and

lim st Z(f An)(w)Aw = st Z fw)Aw.

N weN we
In general, a function f is s-integrable iff both f* and f~ are.

THEOREM 9. A function F is Loeb integrable iff F has an s-integrable
lifting f.

The proof is similar to the proof in (2).

For Fy:[0,1] — Real and Fy(w) =° F(w) we can define

0/ F(t)dt =° 0/ Ft)dt
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