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1. Introduction

Let z be a regular infinite cardinal and let X be a set. A family B consisting
of subsets of X is called y-algebra over X provided that it is closed under com-
plementation and < x union. A x-algebra B is called a separating algebra if for
any z,y € X, ¢ # y there is b € B such that x € b but y € b. A separating
x-algebra B is called minimal if it is minimal in the sense of set inclusion. In [6]
motivated by a problem in statistics, K. Namba constructed a minimal separating
o-algebra (= N;-algebra) without atoms. Namely, let X be the set of all finite sub-
sets of a set I and let By(I) be the o-algebra over X generated by sets of the form
{FeX|F>i},i €l So,in [7] Namba proved that By(I) is an atomless minimal
separating o-algebra over X if I is an uncountable set. In the same paper (see
[6; p. 110] and also [7]) Namba asked for a general principle of creating atomless
minimal separating o-algebras which are not subalgebras of By(I), for any I. We
shall give here such a principle in proving the following theorem. B, (I) denotes
the x-algebra over X = {F C I | F is finite} generated by {F € X | F' 3 i}, where
i€l

THEOREM A. Let x be a regular uncountable cardinal. Then there exists a
family By, o < 2% such that:

(1) B, is an atomless minimal separating x-algebra with x-generators of pow-
er x <,
(2) B, is not a subalgebra of By (I) for any I.
(3) If f: B, = B and g: Bg — B are x-homomorphisms 1-to-1 and onto respec-
tively, where B is a x-algebra, then o = 3 and f = g.

A x-complete algebra B is said to be x-hyper-rigid (see [3]) whenever for
every x-complete algebra B’, every y-complete homomorphisms f and g from B
into B’ such that f is 1-to-1 and g is onto we have f = g. The Theorem A answers
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a question of R. Bonnet (see [3; Probleme 3]) who showed, assuming GCH, that
for every infinite cardinal ) there exists a A™-hyper-rigid Boolean algebra of power
A+

A tree T is a normal wi-tree (or simply w;-tree) iff: (1) height (T) = wy;
(2) |RoT| =1and |R,T)| =g for 0 < a <wy; (3)if z € R,T and a < 8 < wy then
{y € RgT | x <1 y}| = Ro (see [5]). In [5; p. 70], T. Jech asked for a rigid normal
wi-tree. U. Avraham [1], J.E. Baumgartner (unpublished) and the author [9], all
independently, constructed such a tree which is also Aronszajn. In [2], U. Avraham
and S. Shelah constructed a model of set theory in which for every two (normal)
Aronszajn trees T and T" there exists a closed and unbounded (club) set C' C w;
such that T' | C and T' | C are isomorphic. So, in that model any Aronszajn tree
is not "really” rigid. Hence, it is natural to ask for the existence (in ZFC') of two
”really” non-isomorphic w;-trees and for a ”really” rigid w;-tree. We shall extract
from the proof of Theorem A the following strong answer to this question.

THEOREM B. There is a family Ty, o < 28t such that:
(1) T, is a normal wy -tree;
(2) IfC is a club inwy and if f:To|C — Tp|C is 1-to-1 order and level preserving
then o = B and f =id.
We use the usual notation and conventions. The basic definitions can be
found in any standard text in set theory.

2. Representation tbeorem for minimal x-algebras

From now x > R, is a fixed regular cardinal. A topological space X is x-
additive if the intersection of any < x open sets of X is open in X. The x-topology on
27 (or on a subset of 27) is the smallest x-additive topology containing the Tychonov
topology on 2! (or on a subset of 27). For z € 2! define supp (z) = {i € I | (i) = 1}
and X, (I) = {x € 2;/supp (x) is finite} with the x-topology. Then X, (I) is a x-
compact x-additive space (see [6]). (A space X is x-compact iff any open cover
of X contains a subcover of cardinality < x). It is easy to see that the Boolean
algebra of all closen subsets of X, (I) is a minimal separating x-algebra over X, (I)
isomorphic to the algebra B, (I) defined in §1.

Since we intend to prove the Theorem A in its dual form we need the following
theorem parts of which are proved in [6] and [8].

THEOREM C. The following statements are equivalent:
(i) B is a minimal separating x-algebra over X ;
(ii) every proper x-additive ideal of B is contained in a x-additive prime ideal of
the form {be B|b# z}, z € X;
(iii) X with the topology generated by B is a x-compact x-additive space and B is
equal to the field of all closen subsets of X.

Let St(B) be the Stone space of a minimal separating x-algebra B over X. Let
St,(B) = {I € St(B) | I is a x-additive prime ideal of B}. Then by the Theorem C
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we conclude that X, with the topology generated by B, is homeomorphic to St,(B)
with the topology induced from St(B), by the homeomorphism « — {b€ B | b &
z}. Hence, to answer the above mentioned Namba’s question we have to find a
general principle to create x-compact x-additive spaces (without isolated points)
which are not included in the continuouos image of any space of the form X, (I).

3. The construction

Let x be a regular uncountable cardinal fixed from now on. Let us make the
following conventions. 2X is the set {f | f:x = 2} or is the cardinality of this set.
All spaces are regular Hausdorff. All mappings between spaces are continuous and
between algebras are homomorphisms. We shall use the following well known fact
without mention: If X is a x-compact y-additive space, Y a x-additive space, and
if f: X — Y is a 1-to-1 mapping, then X is homeomorphic to the closed subspace
f"X ofY.

Let S be a stationary subset of x. A topological space X is S-compact if
for every stationary S’ C S and every sequence (x5 | § € S') from X there are
z € X and stationary S” C S such that {(z5 | § € S") converges to z, i.e. for every
open U 3 z there exists 6’ € S” such that §' < § € S” implies x5 € U. Since S-
compactness is not defined for S nonstationary in x, let us agree that whenever we
mention S-compactness, S is a stationary subset of x. The proofs of the following
two lemmas are easy.

LeEMMA 3.1. IfY is included as a closed subset of a continuous image of X
then the S-compactness of X implies the S-compactness of Y.

LEMMA 3.2. The space X, (I) (see §2) is S-compact for every stationary
S Cx.

Let Q = {0 < x | ¢f(d) = w}. Fix a strictly increasing sequence 1, = (n,(n) |
n < w) of ordinals cofinal with 4, for every § € Q. Now, for every S C Q we define
X(S) = {z € 2X | supp () is finite or for some o € S, supp (z) — o is

finite and supp (z) No = {n,(n) | n < w}}.

We shall consider X (S) as a subspace of 2X with the y-topology. From now on,
any set of ordinals we are working with, will be included in 2 without mention. Note
that if S’ C S then X (S5') is a closed subspace of X (S) and that X (0) = X, (x).
Also note that X (S) has no isolated points.

LEMMA 3.3.

(a) X(S) is a x-compact x-additive space for every S.

(b) X(S) is S'-compact iff SN S' is nonstationary in x.

(c) If f: X(S) = X(S) is 1-to-1 then S — S’ is nonstationary in x.
(d) If f: X(S) = X(S") is onto then S' — S is nonstationary in x.
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ProOOF: (a) It is well known (see [8]) that for proving x-compactness of X (.5)
it is enough to prove that every sequence (z, | o < x) from X (S) has a convergent
subsequence. We may assume zg # xg, for § # ¢'.

Case I. Sy = {6 € Q|supp (z,) N3 is bounded in ¢} is stationary.

This case is similar and less complicated than the following case. (Use the
Pressing Down Lemma (PDL); see [4].)

Caske II. S; is nonstationary in x.

We may assume S; = (), i.e. that § € Q implies supp (zs) N d = {ns(n) |
n < w}. Let n = min{m | {ns(m) | § € Q} is unbounded in x}. So, we can find
an unbounded set N C x and finite F C x such that § < &', 6, &' € N implies
F < ns(n) < ng(n) and F = {ns(m) | m < n} = {ns(m) | m < n}. Let z € X(S)
be defined by supp (z) = F. Then (z5 | § € N) converges to z.

(b) Assume first that S NS’ is nonstationary in x and prove that X (S) is
S'-compact. Let Sg C S’ be a stationary set and let (zs | § € So) be a sequence
from X (S). We may assume So NS = (). Hence supp (z5) N ¢ is bounded in § for
every 0 € So. So for every d € Sy there is an £(§) < 0 such that supp (z5) Ne(d) =
{nes)(n) | n < w} and supp (25) — £(d) is finite. By the PDL there are stationary
S1 C S, g0 € S and finite F' C [gg, x) such that €(§) = g9 and supp (z5)N[eo, ) = F,
for every § € S;. Define z € X(S) by

supp (x) = F U {ne,(n) | n <w}.

Clearly (x5 | § € S1) converges to z.

Assume now that So = S NS’ is stationary in x. For § € Sy, we define
x5 € X(S) by supp (z5) = {ns(n) | n < w}. Then an easy application of the PDL
shows that for no stationary S; C Sp, (zs | 6 € S1) is a convergent sequence in
X(S).

(c) Follows directly from (a), (b) and the Lemma, 3.1.

(d) Follows directly from (b) and the Lemma 3.1. This completes the proof
of Lemma 3.3.

Let S C Q be a stationary set in x. Then, by the Lemmas 3.2. and 3.3, X(.5)
is a x-compact x-additive space which is not included in the continuous image of
any space of the form X, (I). Thus, if A(S) is the Boolean algebra of all clopen
subsets of X (S), then A(S) is an atomless minimal separating x-algebra over X (.5)
which is not a subalgebra of any algebra of the form B, (I). Moreover, the family
{A(S) | S C Q is stationary} has other interesting properties (see Lemma 3.3 (c)
and (d)). This gives a quite complete answer to Namba’s question.

It is well known that there is a family K C {S C Q | S it stationary} such
that |[K| = 2X and S, S’ € L, S # S’ implies S — S’ is stationary in x (see, e.g.
[11]). So, the family A(S), S € K satisfies the Theorem A except the last condition
in (3). To get this condition we need a little more work.
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4. Proof of Theorem A

Let S C 2 be a fixed stationary set. Since we can easily decompose S into
X many stationary sets we can also construct a sequence (S5 | § € {0} U S) of
stationary subsets of S such that

(i) 6 < min Sj;
(ii)) Ss N Sy, = (0 for & #4&';
(i) U{Ss |6 e {0} U S} =S5.
Now for every & € S, fix a strictly increasing sequence ns = (s(n) | n < w)
of ordinals converging to ¢ such that:
(iv) if 0 € Ssr, then §' < 1;5(0) for every 6,6' € {0} U S;
(v) for every 6 € {0} U S and every finite F' C x — § there exists n < w such that
{~ € Ss/{ny(m)|m < n} = F} is a stationary subset of x.
Finally, let
Y (S) = {z € 2% | (there exists {do,-.- ,0,} C {0} US such that §o = 0, §;1+1 € Ss;;
for i <n < w, supp(z) N, = {ns;(m) | m <w,1<i<n}and
supp (z) — dy, is finite}.
We consider Y (S) as a subspace of 2X with the x-topology.

The proof of the following lemma, is almost identical to the proof of Lem-
ma 3.3.

LEMMA 4.1.
(a) Y(S
(b) Y(S) is S'-compact iff SN S’ is nonstationary in x
() If f:Y(S) = Y(S') is 1-to-1 then S — S’ is nonstationary in x.
(d) If £:Y(S) = Y(S9') is onto then S' — S is nonstationary in x.

Let K C {S C Q| S is stationary} be a fixed family such that |K| = 2X and
S,S"e K, S # 5" implies S — §' is a stationary subset of x. The following is the
dual form of Theorem A.

Y (S) is x-compact for every S.
Y

THEOREM D. The family Y(S), S € K has the following properties, where
S,8"'eK:
(1) Y(S) is a x-compact x-additive space.
(2) Y (S) is not included in the continuous image of any space of the form X, (I).
B) IfFf:Y =2Y(S) and :Y — Y (S") are 1-to-1 and onto, respectively, where Y
is a x-additive space, then S = S' and f = g.

Proor: (1) and (2) follow from the Lemmas 3.2 and 4.1. Let us prove (3).
Since Y is y-compact, ¥ is homeomorphic to the closed subspace f"Y of Y (S).
Hence Y is (@ — S)-compact (Lemmas 3.1 and 4.2). Since g is onto, Y (S’) is also
(@ — S)-compact (Lemma 3.1). By the property of the family K we must have
S = S’ by the Lemma 4.2 (b).
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Let us prove that f"Y =Y (S), i.e. that Y is homeomorphic to Y (S). Oth-
erwise we can find £ < x and ¢:£ — 2 such that the basic open set Y (S)! = {z €
Y (S) | t C =} is non-empty and disjoint from f"Y. By the construction of Y (S5)
it is easily seen that Y (S)! has the structure similar to Y (S?) for some stationary
set St C S (which is uniquely determined by t). Moreover, Y(S) — Y (S)! is a
St-compact space. Hence Y is a St-compact space. Since g: Y — Y (S') = Y(9) is
onto, Y (9) is also a St-compact space, a contradiction (Lemma 4.1 (b)). Hence f
is a homeomorphism from Y onto Y (S). Let h = gf 1:Y(S) — Y(S). Then h is
onto. Assume h # id. Then we can easily find ¢: £ — 2 and u: & = 2 (€, ( € ) such
that Y (S)? and Y (S)% are disjoint non-empty and Y (S)* is included in h"Y(S)*.
By the construction of Y (S) there are uniquely determined disjoint stationary sets
St, 8% C S such that Y(S)! and Y (S)“ have the structures similar to Y (S*) and
Y (S*), respectively. So again we have a contradiction (Lemmas 3.1 and 4.1 (b)).

This completes the proof of Theorem D.

Let S € K and let B(S) be the Boolean algebra of all clopen subsets of Y(.5).
Then B(S), S € K satisfies the Theorem A using the Theorem D and the ” x-Stone
duality”.

REMARK 4.2. LetS C Q be a stationary set in x and let < be the lexigraphical
ordering of Y (S). Let C(S) be the Boolean algebra of all finite unions of <-intervals
of the form [z,y),z,y € Y(S) U {—00,+00}. Then C(S) is a very strongly rigid
Boolean algebra (see [10], [11]; very strongly rigid = Ro-hyper rigid, see §1).

5. Proof of Theorem B.

In this section we consider the case x = Ny of the previous constructions.

Let S C 2 = {a < w| ais a limit ordinal > 0} be stationary set. Then Y (S)
naturally determines an wi-tree T'(S) = {t | t G « for some z € Y(5)}, i.e.,

T(S)={t:a — 2| a < w; and there exist n < w and {do,... ,d,} C {0}US
such that do = 0, dj41 € Ss, for i < n, supp (t) N oy, = {ns;(m) | m < w and
1< <n} and supp () — dy, is finite}.

Let S, S’ C Q be stationary sets in w1, let C be a closed and unbounded subset
of wy,and let h: T(S) | C — T(S") | C be a 1-to-1 order and level preserving map.
Define f : Y(S) — Y (S') by f(z) = the element of Y (S") uniqgely determined by
the wj-chain {h(t) | t € T(S) | C and t C z} of T'(S"). Clearly f is a well-defined
1-to-1 mapping. It is easily seen that f is also a continuous mapping. Now the
Theorem B follows from the case x = N; of the dual form of Theorem D.
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