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AN UPPER ESTIMATION FOR THE EIGENFREQUENCES
OF VIBRATING LIAPUNOFF BODIES
(FIRST BOUNDARY VALUE PROBLEM)

I. Jod, L.L. Stacho

1. For any bounded (open) domain @ C R™ and for j = 1,2,--- we define
the j-th cigenfrequency A;(Q2) of the homogeneous Q shaped and at its boundary
01 fixed vibrating body by

9 ‘ 1/2
(1) A;j(Q) = inf sup (/ ngadf(x) H da://|f(x)|2 d:c)
LeM; feL
Q Q

where M; denotes the collection of the j-dimensional subspaces of the Soboleff
space Wy

As it is well-known (cf. [1]), if O is an (n — 1)-dimensional C?-submanifold
of R™, then the eigenvalues of the boundary value problem

Af+A*-f=0, feCLN)

are given by (1). On the other hand, it is also shown (e.g. [1, 3]) that all the
mappings  — A;(2) are continuous with respect to the topology on the set of the
bounded R™-domains defined by the usual Hausdorff distance.

While for all dimensions it is clairified (cf. [2]) that

A;(Q) > A, ({m € R™: ||z < (Vizﬂ)l/nD G=1,2,...)

where vol,, denotes the n-dimensional Hausdorff measure and w,, = vol,{z € R™ :
[|z|| < 1}, it is not at all known over two dimensions what kind of effective upper
estimates can be given for the value of A;(€2) depending on some geometric pa-
rameters of Q. However, for convex Q-s it was proved (cf. [3]) that the analogous

*le. f € W(}’z if grad f exists in the weak sense and belongs to L?(Q) and supp f is
contained in some copmact set which does not meet 9 .
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of the best known two dimensional estimates (see [4]) hold in general (and can
not be improved). The purpose of this paper is to extend a theorem of G. P4LvA
[5] concerning convex (-s to a larger class of geometrical figures (for generalized
Liapunoff bodies, defined in the next sections).

2. A bounded domain Q(C R™) whose boundary is an (n — 1)-dimensional
C2-submanifold in R" is called a Liapunoff body if the Minkowskian curvature of
O with respect to the outward from 2 oriented normal vectors is non-negative
at any point of Q. (Remark here that the convexity of ) is equivalent to the
non-negativeness of the main curvatures of 92 separately).

According to some recent results in geometric measure theory, it is possible
to give a generalization of the concept of Minkowskian curvature which applies to
the boundary of any open subset 2 C R™. This can be carried out as follows:

It is shown in [6, Theorem 5] that by setting
(2)
K={(z,k) :2€0Q, ||k]| =1, 0> 02z + ok € Q and dist (z + ok, Q) = o}
3)
h(z, k) = sup{& > 0 : dist(z + ok, ON) = o, Vo € [0,&]} for (z,k) € K,
one always can find a o-finite Borel measure g on K and Borel measurable functions
aj: K - R(j=0,...,n—1) such that for all f € L'(Q) we have

h(z,k)

n—1
(@) [1was=[ [ f@+e0)Y e b doduta .
Q K 0 7=0
Here dy and ag, ... ,a,—1 are necessarily determined only up to the signed
measures
(5) doj =ajdp (j=0,...,m—1)

in the sense that if (4) is satisfied when du and ag, ... a,_1 are replaced dy dj and
ag, - - - ,an—1, respectively, then we have

/ajd,u,:/fljdﬂ (j=0,...,n—1)
E E
for all such E C K that [a;jdp or [ a;djii makes sense. Thus, for dp (and hence
E E
n—1 .
also ¢ fi)-almost every (z,k) € K, the polynomials ¢ — ) a;j(z, k)¢’ and ¢ —
i—0
n—1 . !
> aj(z, k)’ differ only in a positive constant factor.
j=0

We shall call the measure da; defined by (5), which depends only on the
geometric parametars of {2, the j-th curvature measure of the boundary of €. This
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terminology is motivated by the relation (6) below. The formula (4) can be con-
sidered as a generalization of the main theorem in [11].

In the classical case, when 052 is C?-smooth, we have (z,k) € K if and only
if k is the toward Q oriented normal vector (of unit length) of the surface 9 at
the point z(€ 992). Now there is a natural choice for du and ag, .. .a,—1: We can
define du by

w(E) = vol,_1{x € 00 : 3k (x,k) € E}

(for the Borel measurable subsets E of K; vol,_; denoting the (n — 1)-dimensional

Hausdorff measure). Then ag(z, k), - .. ,an—1(x, k) are the coefficients of the poly-
nomial
n—1
(6) gl—)Za]xk EHl—gk
i—1
where ko(z),...,kn,_1(z) denote the main curvatures with respect to the outer

normal of 92 at the point z. Thus, in this special case, the curvature measures
da; (defined by (5) and (6)) are all absolutely continuous with respect to d o and
the Minkowskian curvature k1 + ...+ k,,_; of 99 coincides with — d‘“ . Therefore,
to save the most properties of the classiacal case, we define generahzed Liapunoff
bodies in the following way:

Definition. A bounded domain Q in R™ is said to be a generalized Liapunoff
body if all its cutvature measures o;(j = 0,... ,n — 1) introduced above are abso-
lutely continuous with respect to ag and the function —jg; (which we shall call
now the Minkowskian curvature of 9Q) is non-negative.

THEOREM 1. If Q € R"™ is a generalized Liapunoff body then the function
0~ vol,_190(Q_,) (where Q_, denotes the inner parallel domain of radius o > 0
of Q, i.e. Q_, = {x € Q: dist(x,00) > p}) is non-increasing for 0 < o < co.

Proof. Let Q denote a generalized Liapunof body and define K and h as
in (2) and (3). Choose du, ag,... ,an—1 so that (4) be satisfied. It is proved in [6
Theorem 5, Corollary] that here we necessarily have

n—1
(7 Z a;j(z,k)d >0 whenever 0 < g < h(z, k) ((z,k) € K).
j=0

Remark that (7) is not a simple corollary of (4) and the positiveness of the operation
f — [ f(y) dy because these facts ensure only Z aj(z,k)o? > 0 for 0 < p <
Q

h(z,k). Tt is easy to see from (2) and (3) that Q, ={z+ &k : (z,k) € K and
0 < & < h(z,k)} and hence

(8) lo_o(x + &k = 114 p(a,k)(§) for (z,k) € K and £ € [0, h(z, k)].
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From (4) and (8) we obtain

(9) volnf2_, [ 7<pz,k(f) de dys(s, k)

n—1 .
where ¢ 1(€) = ZO aj (@, k)& - 1jo,k(a,k)) (€)-
J:

Recall that for p-almost every (z,k) € K, the polynomial P, : & —
n—1

> a;(z, k)&% has only real roots (cf. [6, Theorem 5]) and that from the defini-

7=0
tion of Liapunoff bodies and (7) we have P, (0) > 0 and P, ,(0) = ai(z,k) =
% o) < 0 (for p-almost every (z,k) € K).

Since, in general, a polynomial P : R — R having only real roots and such
that P(0) > 0 and P'(0) < 0 is constant or has positive root and P desreases on
[0,min{¢ > 0 : P(§) = 0}] (cf. [10, Lemmal) it follows from (7) and the definiton
of P, j that the functions ¢, ; are monotone decreasing on the whole [0, 00) for
p-almost all (z,k) € K. Therefore, from (9) we deduce that the function

— 1(d+ + _ ) 1,0
-5 — vol,{)_
7 To\ae |, T ael, ¢

is well-defined for all p > 0 and it is decreasing.

However, it is shown in [7] that the (n — 1)-dimensional Minkowski content of

+ —

d(—,) equals to — (%—5 g+ Cfi—g | ,
parallel set is easily an (n — 1)-rectifiable subset of R™ (for definitions see [8]), a
well-known theorem of M. KNESER (cf. [8]) implies that vol,—10Q_, = (n — 1)-

Minkovski content (9(Q-,)) = %(%

vol,§2_¢. Since the boundary of any bounded

, + ((11_; | Q) vol,2_¢. This completes the

proof.

3. The following geometric estimation is given in [10] for the eigenfrequences

THEOREM 2. Let Q be such o bounded in R"™ that sup vol,_10(Q—,) < 0.
0>0

Then, by setting 1(Q) = vol,Q/sup vol,,_10(Q_,), we have
0>0

A(Q)? < - 1()7H

ol 3

The ideas of the proof of Theorem 2 are essentially based upon those of the
article [5].

Thus Theorem 1 directly yields our chief observation



An upper estimation for the eigenfrequences of vibrating Liapunoff- - - 63

THEOREM 3. If Q is a generalized Liapunoff body in R™ then
191&1 vol,_10(Q_,)

2 < .
(10) A7 < 2 vol, ()
In particular, if O is a C?-smooth hypersurface, then
l,—100
2 « T YOln-10%¢
A(@)" < 5 vol, ()

Remark. One can prove that for any generalized Liapunoff body @ C R™ we
have on the right hand side of (10)

lsa vol 10(9) = / cardinality {k : (z, k) € K}dvol, 1().
4
o0

Proof. By [6, Lemma 9] we can fix disjoint Borel subsets By, Ba,... of K
and open sets Q) Q2 ... C R" with positive reach (for def. see [6] or [11]) such

that by setting o, def inf{%reach Q) h(x, k) : (x,k) € Bm} and K,, & {(z,k) :

z €™ k|| =1, 3o >0z + ok € Q™) dist(x, d2™) = o} we have

K= ) Bm, 0m>0 and B, CK, (m=12,...).

m=1

Using [6, Theorem A, B] we can see that for each point y € a(QEﬁ)) there
exists a unique pair (2, (y), km(v)) in K,,, with the property y = & (¥) + 0mkm (v)
and, by [8, 3.2.3], for any fixed { € R, the mapping T{" : y — y + £k(y) satisfies

/ card(Tg”)_l(z)voln,lz = /[1 + (£ = om)kT" (¥)]
T (S) s
o+ [1+ (€ = om)kn—1(y)]dvol,—1(y),

where k,... k™ , are the main curvatuires of O(Q(Igzn) (cf. [6, Theorem B])
Q(m)

defined vol,,_; almost everywhere on 0(Q2",,,). Hence in particular,

(11) / card{k : (z,k) € By }dvole_1(z) =
{z:3k(z,k)EBm}
= [ - ek [ ek )ldvolaa (),
{z+omk:(z,k)EB,}

The proof of the main Theorem in [6] shows (cf. [6, (57), (5”)]) that the
measures a;dp in formula (5) are given by

S fudi= [ B+ e LB (- o) vl ()

=0 B {z+omkz,k)EB}
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for BC B,, and p € R(m =1,2,...). Thus (11) yields

(12) /card{k : (z,k) € K}dvol,_1(z) = /ao(m,k)du(x,k).
89 K

On the other hand, applying the functions ¢, ,((z,k) € K) introduced in
formula (9), we see

[ avdn = [ tmor s(@duto &) =t [ g a@)dta, )
010 00
K K K

since the functions ¢, j are monotone decreasing for all fixed (z,k) € K. Now, to
complete the proof, we need only to remark that, by (9) and by [8, 3.2.34], we have

d d [T
vol,_10Q_, = —d—gvolnﬂ,g = —d—g//goz,k(g)d{d,u(m,k) = /cpw,k(g)dp(w,k)
ke K

for almost every g € (0, 00).
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