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SOME SPECIAL SUBSPACES OF A FINSLER SPACE

Irena Comié

Abstract. In the present paper are studied such subspaces of a Finsler space for which he
absolute differential of the tangent or normal vectors have special positions.

1. Introduction. The equation of a subspace F), of a Finsler space F,,
the definitions of the tangent vectors B!, the normal vectors N*, and the induced
"

and intrinsic connection coefficients and curvature tensors are the same as in [6],
[2] and [3]; so they are omitted. The induced connection coefficients and curvature
tensors shall be denoted as usual by —.

~ Let us denote by Ty (P) the subspace of the tangent space of F,, at P(z, ) =
(X*(u®),t, 4%) spanned by B, and by Ty (P) the subspace spanned by ];Y ’

The object of the present paper is to study special subspaces which satisfy
some of the following conditions at a fixed P for every displacement (du®,du®) on
the subspace F,,;:

1) DB €Ty & Dgi €Ty & (DB:, € Ty) A (DJ‘\[" € Ty)
1a) DJL\LT" =0= DB! €Ty
1b) DB = DJIYi €Ty
2) DB €Ty
3) D]L\["eTH
2a) =3a) (DB. €TV)A (DJX" € Ty)
foreverya=1,2,...,m,p=m+1,...,n.

Cases 1a) and 1b) are special cases of 1); 2a) = 3a) is a special case of 2) or
3).
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For the case 1) the induced and intrinsic connection coefficients are the same
v

and the normal curvature N(u,u) = 0 for every curve u®* = u®(s) trough P.
Theorem 1.1 gives equivalent conditions for F}, to satisfy the conditions of case 1)
for a fixed u and every 4.

For case 2) the subspace F, is Riemannian with
0= o 05 & 05 &
Raﬂ,),:o, Pa,@,yzo, Saﬂwzo.
For case 3) we have

1= v 1 v 1= v
R, =0, 'P,, =0, 'S,%, =0

2. Case 1). DBg € Ty. For any subspace F,, of F, we have
: —* — 0 = : —% — :
DB, = (T, gdu® + A, ;DI°)Bj + (0, zdu’ + A4, ﬂ)JXz,
i —% —4 - i ~*V ﬁ — V == ﬁ ;
DJI\[’ = (=0 gdu’ — A" ,sDI°)B} + (X, g’ + A4, DIP)N'.
In the case 1) these formulae become
(2.1) DB, = (T, ;du” + A, ;DI°)Bj,
2.2 DNi= (X, du’ + A, DI°)N'.
(2.2) Vi= (8, jdu’ + A, DI
In this case 8. gduf + Al 3DIP =0, for every du” and DIP, so
(2.3) 0, pdu’ =0, A} ,DI° =0

for all
a,f=12,....mu=m+1,...,n.

From (2.1), (2.3) and

guaﬁ = _auaﬂ’ Zuaﬂ = _Zuaﬁ
we obtain
(2.4) 005 =0 Auap=0
for all

a,f=12,... mpu=m+1,...,n.
As for any subspace F;,, we have
DI* = BDI* + Hpydu®

and for case 1)
DI* = D(Bk1*) = B¥ D1~
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we conclude that in this case

nguﬁ =
The above equation is true for any du® so that in case 1)
(2.5) Hy=0, k=1,...,n f=1,...,m
From (2.5) it follows that the corresponding equations for f:s 5 and X:V P reduce to
=* i * k
(26) Fa'yﬁ = giTB; (Bal F‘]lk‘Biﬁ)
(2.7) N 5= 9N (9N — (SOta(;Jy’I‘aé + T N7BE).

Tensors Aag, and A, are determined by

pN

(2.8) afy = A,-jkB;é’fr = L(u,@)2710,g0p(u, 1)
(2.9) Auvy = 9ijN?LOVN' + Ayju N'NI B
v w nov

v
The normal curvature N of a curve u® = u®(s) of the subspace F,, in the
14
direction of N; is given by

}IV(u,u) =L *(u, )8, gl oy (4® = du®/du®)
From (2.3) if follows that
(2.10) N(u, i) =0

for every curve u® = u®(s) through the point (u).
From (2.1) and (2.2) we obtain

i _a9 0
(211) [AD]Ba _Qa(da 5)B5 {2 1 am[duﬂ5u7]+
°P.’5, [du’ A1) + 27 1°5,°, [DI°AI"]} B}
i _YV i _1l= v
(21 [ADIN' =40, (d, )" = {2 YRy 4, [dufour]+

Py, ldu A + 27118, [DIPAIN

It may be seen that in case 1)

0 Iz
Rq B> Pa B> Sa By

The definitions of curvature tensors given above and in the sequel are given in [6].
?

Some vector field £¢(z(u)Ba%®) defined on the subspace F,,,, may be decom-
posed in the following way _ _ .
£ = Big* + Nigr
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Using the known formulae

[AD)¢" = {27'R)*,  [da"62*]) + P;*,  [da" Al + 27157, | [DI" AL}

dz" = Bhdu®
and for case 1)
Di" = B'Di®
we get
. 1_ v .
(2.14) R; hkf B aEBWEaB; + Ry mw)”

The above formula is true for tensors P and S. Comparing the coefficients of £*
and &£#* we obtain
hk _ 05 €
a) R; thgcﬁ'y o pyBe

bk _ 15
b) R NIBRL =R, N

¢ P Bk OE"’M;

J hk~afBy —
(2.15) i hk i
d) Py N'Byt="P,, N
hk _0g ¢
e) Sj thtjxﬂ'y Sa’p, B
£ SN By = ='5,", Ni

1
If we define the induced covariant differentiations % and T for some mixed tensor
TA# in the form

TPrY =0, TPl — 0, TPrT . — TEIT, I+
TOATL — TOINS + TN
TfVNT7 =LOTPr —TPFA + Tf,f‘Zm—
TOVAS, +TESAL,
then the Bianchi identities ([6], (3.1)—(3.3)) for the case 1) reduce to

_ 1 . P
a)  Ras,To+ Paysts + RauAdist

- - % 0
"Sass Koy = Pay 0T it = ~lsAg, Ko,
_ 1
(2.16) b) R To+ Pt + R A ot
- 1
S 0 By — lea‘sr W]u - —l(;A O ﬁ’Y’
C) ( R B’yTé + Pa B KO 76) + CyCI(/B’Y(S) = 07
d) ( Ru By s + Pu Boe Kojfy&) + cycl(By0) =0,
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B a5 Toy+ AP
o Blyls) 18] T Aa] 5 £|

=*E

6 ]Faﬂ,

0= ¢ 1 05 € N TR e
x\'y]+ Sa ’YﬁT,B+ Slab['y]O‘;]F%ﬁu -

1 1 v 1 1= o Skl Lo
f) “/J’[’YWTﬁ] +Al3] 5 P|,u + Sy ryﬁ—l—ﬁ+ S|u LM&;F”ﬁu =

kv

Llis0yX5-

7]

If we denote by D; the absolute differential in F), which corresponds to the
displacement (d;u®, d;4®) (i = 1,2) in F,,, then from (2.11), (2.12), (2.15a), (2.15b)
we have

(ID2D1]R; hk)fogﬁ =R ﬂvﬂs(dl,@)Bé

(2.17) R o (dr, do) By — "R’ Q5 (d1, o) By—
Ro’5 0 (1, do) BE,
((D2DiIRS", )N B X ='R,”",, ,,(dl,dQ)
(2.18) 'Ry, Q‘”(dl,dz) "B (dy, do) N

lﬁ“ Be 7(d17d2) X

Formulae of type (2.17), (2.18) are satisfied for tensors P and S and we may get
them substituting the letter R with P and S.

If the space F,, satisfies the relation
(2.19) [D2D1]R;,, =

then from (2.17) and (2.18) we have

(2.20) Z?a}?vﬁg(dla d2) — Zés}v?é(dl, do)—
Ra oy Qp(d1, d2) — " Ra g, (d1, d2) =0,

(2.21) i?”j)ﬁvﬁ; dy, dz) _ll_RwuygEf(dl,dz)—
R,". Q5(d,dy) — Ry'5. 0 (di, dy) = 0.

If the space F;, satisfies

(2.19) a) [D2D4)P;%,, =0 or b) [D:D4]S;%,, =0

then the induced curvature tensors of the subspace Opagﬁ,y, IF,,VM, ogaaﬁw lgu"ﬁv
satisfy the equations of type (2.20) and (2.21) and we get these equations when the
letter R is substituted by P or S.
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If (2.19) is true for every D1, D, i.e., the tensor R is parallel on the subspace

F,,, then from (2.20) and (2.21) we obtain

0= 0= ¢ 0w 6 05 = 0 0=
a) Rasﬂ'y RE P2 RE By Ra e Ra ey Rﬁ 1
0= ¢ 0= ¢ 0= 6 0=
b) Raﬂwpsm_ Rfﬂ'vpam_ Ras'vpﬁm_
0= [ 0= 6 0 - a
¢) Rapy See— Bepy Sa e — 'R’ 88—
(223) 1= ¢ 1= 1—= v - Y = v 1= ¢
d) RH By R¢ e R¢ By RH e R“ ey Rﬁ e
15 ¢ 15 1— v 1= 1,/) 15 v 15 €
e) Rllf By P"P L3t R¢ 67 P - RN ey P/B L3t
Y 1 1 1/) 1= v 15 ¢
f) Ru By S"/) e Su e RI‘ ey Sﬁ 1

Oﬁaéﬁsoﬁvi,{ —0
ORaéﬁEO?’YELM -0
ORadﬁso g’ys“{ -0
'R, e R,

~-'R,,."P," =0
1_u Ge Sw e =0

If (2.23) is true for every Dy, Ds, then we easily obtain equations similar to

(2.22) for the tensors P and S.

We shall examine what form the intrinsic connection coefficients take for case
1. In the subspace Fy, with respect to the intrinsic connection coefficients DB,

and DN’ take the form
m

fdu’ + AL DIP)N'

DB = [(Ti% + A2 p)du® + A2 5)du’ DIP|B; + (67,
DN’ = (6%} pdu” + A5 DI°)Dj + (X; sdu” + A, s DI°)N*
As

01, =0 — Al AN

Aapy =Aapy,  Aaps = Aapg,

DI® = DI = — A8 Ndu

we have in case 1)

(2.24) 07k = q" ap =0
(2.25) Appp = Aaps =0
DiP = DIP

From the last equation and

DI* = BEDI* = Hfydu”

it follows that
Hf =0

From
Als =

—Api; Bl gpé(HgBﬁ - BgH:f)
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and H% = 0 we get immediately
(2.26) A2 5=0
As T:pﬂ and T, 5 are connected by
Thyp = Dopp + Aik; By(HLBY — BLHE) — Ag54%,5N

using Hf = 0, N =0 we have

=%

(2.27) |
As
(2.28) Le=4

for any subspace from (2.24) — (2.28) we have:

THEOREM 2.1. If the subspace F,, of the Finsler space F,, has the property
DB € Ty for the mized lineelement P(u, ) and every (du®,du®), then the induced
and intrinsic conneetion coefficients are the same, from which it follows that the
induced and intrinsic curvature tensors are the same, and satisfy the same equations
at P.

In all previous equations every quantity and tensor was considered at the
fixed lineelement P(u,%). Let us denote by HF;, the subspace of case 1) for all
lineelements (u, %) where u is a fixed point and 4 is any direction in the subspace.
Then we have the following;:

THEOREM 2.2. The subspace F,, of the Finsler space F,, is HF,, iff one of
the following equivalent equations (2.1) (2.5) or (2.10) is satisfied for all directions
u at fized point u.

Proof. From the definition it is obvious that the subspace F), is HFy, iff (2.1)
for fixed v and u. Furthermore

(2.1) = (24) = (2.5)
To prove (2.5) = (2.1) from [* = BEI®, g;;(z,4) Nl = 0 we have
I

9;;DNV + g;;N'Dl! =0
u w
From (2.5) and the equation above we obtain g;; DN'BJ1* = 0 for all I%; so
DN'DU = (N pdu’ + 4, s DI°)N'
from which (2.1) follows.

— It
To prove (2.5) < (2.10) i. e, HZ =0 N=0forallaand y=m+1,...,n
we have the relation
TP = 81PN = N(u, i) N
B ap ’ :
[ I



56 Irena Comié

3. Case 2). DB; € Ty.

In this case the absolute differentials of tangent and normal vectorc take the
form:

(3.1) DB! = (@,/3du® + 4., DI°) N
w
: —x § = i ~*V — V=
(3.2) DN' = (6, 5du’ + A Y;DI°)B; + (X, pdu’ + 4, ﬁDl'@)]IY'
As in this case A [; = 0, we have:

(3.3) Anpy = 27 L(u, 1), g0p(u, @) = 0,

from which we conclude that the metric tensor of the subspace is not a function of
the direction u, i. e.,

9aB = gap(u)
and the subspace F;, of the Finsler space F, is Riemannian. From the equations

Tapy + Nagy = Tagy = Aaps A, N

*

(3.4) - o
Aaﬂ’)’ = 07 Faﬂ'y = 0;

we obtain that in case 2) the intrinsic connection coefficient is the tensor —Aqg,,
ie. Fag,y = —Aag,y.

The other connection coefficients are obtained from the same formulae as in
any other subspace.

Using the equations Zaéﬁ =0, anﬁ =0 for case 2) we get
i —k -3
[ADIB: = {2710, 050), 0 [du?5u"] + (0 5A, — 8, g AL )duP B+
_ _ 12 3
2 VAL A 0 [DIPAD} B + {271 (BB ) + O 15Ny ) [P 5u ]+
(LO,8,'5 — Og AL, — A 5N, o + 0,54, ) [du’ Al )+
- S M TV AP NPIBA i
2 l(LahA‘am] + A, 1841 )[DzﬂAn]}N :
[ADIN = {27 (BBl 1+ D1l Nl 1) 607+

“1(Ld, ouﬁ—agz + A=A o) A+
2N (LAp A gy + A, 54, ) [DIBIN} B
{270 X g + O, Belé\'y +)‘uw)\wm)[du Su]+
(Ld X, 5 — 6aA + X 5AL — A, AW—A S+ 0 A AP A+
LB AL gy = A5 g + A Al ) [du B,

Comparing the above formulae with those in [6] we obtain that in case 2) the

curvature tensors 0— 5 0— & 0— &
Ra By P, B> Sa By*
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=% J — 4
and some others are reduced, because of I , 3 =0, A, 5 = 0.

4. Case 3). DN € Ty.
I

In this case the absolute differentials of tangent and normal vectors take the
form:

(4.1) DB!, = (T, 3du® + A, 3DI°)B} + (8, sdu® + A,/3D1°) N,
i il — 4 i
(42) DN' = (8, gdu” + 4, 5DI°) B;
Also . B
12204 = 0’ Au’y = 07
hence
X = NN - 95N + T/ NI BE + 41, NTTTS) =o,

a4, —N(L6 N‘+A’kNJB’“) 0.

The other connection coefficients we get from the same formulae as in any other
subspace.

We also have that the absolute differentials of tangent and normal vectors
take the form:

i Sk Ak E
AD B {2 a ﬂ’)’ + 0(1 [ﬁ9|u|w])[duﬂ5u7]+
0= € 105 € —v — ¢ — 3 i
(Po5, 0,54, — AL 0, ﬂ)[duﬂAn] +2780 5, A, 134, ) [DIPAD]} Bi+
2 1R [duP 5w + *Poly [duP Aur] + 27108, [DlﬂAn]
[ADIN' = {27 (R, [du?6u"] + P, [du? Au) 475, m[duﬂM]}BH
271 @, (50, yldu’ Au] + (A, 8, 5 — A0, 5)[du’ Al ]+
-1 7 *¥ Vv IBA i
27" A, [pA s ) + [DIPAI}N'.

Finally we have
1= v 1= v lg v

RHm:O, Pﬂﬁ'y:()’ w gy =0

5. Case 2a) or 3a) (DB} € Ty) A (DN € Ty).
In this case we have

=x 3 — 3 — v —* v
(51) Fa'y:(]’ Aa,Y:O, Auﬁ:(]’ Auﬁzo
and
(5.2) DB! = (8, '5du” + Za‘},ﬁlﬁ)zlyi

(5.2) DN; = (8, jdu’ +4,5DI°)B;
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For the absolute differential of tangent and normal vectors we obtain:
—k —* g — 0§
[ADIB:, = {278,480, [du®su™) + @A — 0, AL ) [du BRI+
_ § =g i
27 A /154, [DIPAI]} Bi+

(5.4) B o _
{2749, |alm[duﬂAn] (LOy0,'5 — 0g Aty [du’ Al ]+
“HLOR A IB])[Dl'@A.l'V]}N’
[AD]N’— {21 3[79“4 [ [duPou) + (L0, 5 — 054,5)[du’ A"+
(55) 27110, A, [DIPAI]} Bi+

%8 — v

(2718, 140051 [du’6u™] + (B, 545", — 05 4 A, ) [du B+
§ Y Ea} i
27 A, 15 A 5 [DIPAPTIN'.

We also have:

0= & 0= & 0= 6
Ruﬂ,Y:O, Pum=0, Suﬂ,Y:O
1= v 15 v 15 v
R,,mzo, Pum:O: S,,mzo.
The intrinsic connection coefficients are:
FZM =—MAapy, Awp =0, Auwp=0, Aaugy =0

and the corresponding equations for the intrinsic curvature tensors are the same as
(4.6), (4.7) except for

05 6 5 2 5
Ry gy = =0 gy + AdTp + Ay -
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