ON N-DIMENSIONAL IDEMPOTENT MATRICES

Jin Bai Kim and James E. Dowdy

An $n \times n$ matrix $A = (a_{ij})$ will be called a 2-dimensional matrix of order n. We shall study 2 m-dimensional idempotent matrices of order n with respect to an associative matrix product.

1. Introduction. We shall denote the set of all $n \times n$ matrices over a field F by $M_{2,n}(F)$ and the set of all $n \times n \times \cdots \times n = n^m$ matrices over F by $M_{m,n}(F)$. Any matrix $A = (a_{ij...k})$ in $M_{m,n}(F)$ will be called an m-dimensional matrix of order n. For a determinant of an m-dimensional matrix, we refer [2, 3, 6] and [3, 6]. Let $A = (a_{i_1 i_2...i_{2m}})$ and $B = (b_{j_1 j_2...j_{2m}})$ be members of $M_{2m,n}(F)$. We define a matrix product $AB = C = (c_{k_1 k_2...k_{2m}})$ as follows:

$$c_{k_1 k_2 \dots k_{2m}} = \sum_{t_1=1}^n \sum_{t_2=1}^n \dots \sum_{t_m=1}^n a_{k_1 k_2 \dots k_m t_1 t_2 \dots t_m} b_{t_1 t_2 \dots t_m k_{m+1} \dots k_{2m}}.$$

This matrix product is associative (see [3]) and with respect to this matrix product AB = C, $M_{2m,n}(F)$ forms a semigroup (and a ring). A is an idempotent if AA = A. We shall count the number of idempotents in the semigroup $M_{2m,n}(F)$, where F is a finite field, and we shall classify the idempotents.

2. The number of idempotents. Let S be a semigroup and let $a, b \in S$. We define aLb (aRb) to mean that a and b generate the same principal left (right) ideal of S. If aLb, we say that a and b are L-equivalent. By L_a we mean that the set of all elements of S which are L-equivalent to a. The join of the equivalence relations L and R is denoted by D. If X is a subset of the semigroup S, then we define $E(X) = \{x \in X : xx = x\}$. We need the following lemma.

 $AMS\ Subject\ Classification\ (1980):\ Primary\ 15A99,\ Secondary\ 16A32.$

 $[\]label{eq:Keywords} \textit{Key words and phrases}: \ \text{Multidimensional matrices}, \ \text{idempotent}, \ \textit{n-dimensional idempotent} \\ \text{matrices}$

Lemma 1 [5, Lemma 5]. Let D, be the D-class of rank r in the semigroup $M_{2m,n}(F)$. Let |F|=p. Define $[p^k]=(p^k-1)(p^k-p)\dots(p^k-p^{k-1})=\prod_{i=1}^{k-1}(p^k-p^i)$. Then $|E(D_r)|=[p^n]/[p^r][p^{n-r}$. Let $t(r)=[p^n]/[p^r][p^{n-r}]$.

Theorem A. The number of all idempotent matrices in $M_{2m,n}(F)$ is equal to t:

$$t = \sum_{r=0}^{n^m} t(r).$$

Proof. If $A = (a_{ij...k}) \in M_{2m,n}(F)$ we identify A as $A' = (a'_{ij}) \in M_{2,n^m}(F)$. Then applying Lemma 1, we obtain the desired result.

Let S be a semigroup and let $a \in S$. We define $V(a) = \{x \in S : axa = a \text{ and } xax = x\}$. We need the following lemma to prove Theorem B.

Lemma 2 [4, Theorem 1]. If $A \in M_{2,n}(F)$, then the cardinal number of the inverse set V(A) is equal to $|F|^{2r(n-r)}$, where r is the rank of the matrix A.

Let r be an integer such that $0 \le r \le n^m$. We have the following. (We assume that $S = M_{2m,n}(F)$ and |F| = p).

THEOREM B. If $A \in D_r$, then |V(A)| is given by t, where $t = p^{2r(n^m - r)}$.

Proof. In the semigroup $M_{2m,n}(F)$ there are $n^m + 1$ *D*-classes D_r of rank r. (See the proof of Theorem A). Applying Lemma 2 and replacing n by n^m in $|F|^{2r(n-r)}$, we obtain the desired result. (Note that |F| = p).

3. Classification of idempotents. We define $V_r(n) = \{(i_1,i_2,\ldots,i_r): i_j \text{ are positive integers such that } 1 \leq i_j \leq n\}$. Let $A = (a_{ij,\ldots k}) \in M_{2m,n}(F)$. For any entry $a_{ij\ldots k}$ of A, there exists $\pi \in V_{2m}(n)$ such that $(ij\ldots k) = \pi$; we write $a_{ij\ldots k} = a_\pi$. For an element $\pi = (\pi_1, \pi_2, \ldots, \pi_m) \in V_m(n)$, we write $\pi\pi$ to mean that $\pi\pi = (\pi_1, \pi_2, \ldots, \pi_m, \pi_1, \pi_2, \ldots, \pi_m) \in V_{2m}(n)$. We define a matrix $E_\pi = (a_{ij\ldots k})$ as follows: $a_\pi = 1$ and $a_\mu = 0$ for all $\mu \in V_2m(n)$ such that $\pi \neq \mu$. We can see that $E_{\lambda\lambda}$ is an idempotent $(\lambda \in V_m(n))$ and we may call $E_{\lambda\lambda}$ a primitive idempotent. Define $I = \sum_{\lambda \in V_M(n)} E_{\lambda\lambda}$. Then we can see that IA = AI = A for all

 $A \in M_{2m,n}(F)$. We denote the zero matrix by 0. Then for $A = (a_{ij...k})$ we have $A = \sum_{\pi \in V_{2m}(n)} a_{\pi} E_{\pi} \ (a_{\pi} \in F)$. Define $(A)_{\pi} = a_{\pi}$ as the π -entry of A, and define $D(A) = \{\lambda \in V_m(n) : (A)_{\lambda\lambda} \neq 0\}$.

Types of idempotents. Let A be an idempotent. A is called an idempotent of type I if either $a_{\lambda\lambda}=1$ and $a_{\lambda\mu}=0$ ($\lambda\neq\mu$) for all $\lambda\in D(A)$ or if $a_{\lambda\lambda}=1$ and $a_{\mu\lambda}=0$ ($\mu\neq\lambda$) for all $\lambda\in D(A)$. A is called an idempotent of type II if A is not an idempotent of type I and if $a_{\lambda_i\lambda_i}=1$.

An idempotent A which is neither of type I nor type II will be called an idempotent of type III. We assume the zero matrix 0 is an idempotent of type I.

We consider the idempotents of type I. Let $F_k = \{\lambda_1, \lambda_2, \dots, \lambda_k\}$ be a non-empty subset of $V_m(n)$. Let U_i be a subset of $V_m(n) \setminus F_k = \{x \in V_m(n) : x \notin F_k\}$, $(i = 1, 2, \dots, k)$. Then:

$$A = \left(E_{\lambda_1 \lambda_1} + \sum_{\pi \in U_1} x_{\pi \lambda_1} E_{\pi \lambda_1}\right) + \left(E_{\lambda_2 \lambda_2} + \sum_{\pi \in U_2} x_{\pi \lambda_2} E_{\pi \lambda_2}\right) + \dots + \left(E_{\lambda_k \lambda_k} + \sum_{\pi \in U_k} x_{\pi \lambda_k} E_{\pi \lambda_k}\right)$$

and

$$B = \left(E_{\lambda_1 \lambda_1} + \sum_{\pi \in U_1} x_{\lambda_1 \pi} E_{\lambda_1 \pi}\right) + \left(E_{\lambda_2 \lambda_2} + \sum_{\pi \in U_2} x_{\lambda_2 \pi} E_{\lambda_2 \pi}\right) + \dots + \left(E_{\lambda_k \lambda_k} + \sum_{\pi \in U_k} x_{\lambda_k \pi} E_{\lambda_k \pi}\right)$$

where $x_{\mu} \in F(\mu \in V_{2m}(n))$. Now we can state the following theorem.

Theorem C. Every idempotent of type I is either of the form A or the form B. The number of all idempotents of type I in $M_{m,n}(F)$ is given by t:

$$t = 2\sum_{k=0}^{n^m} \binom{n^m}{k} p^{k(n^m-k)} - 2^{n^m}, \quad (p = |F|).$$

Proof. Let U, V, U_i and V_i be subsets of the set $V_m(n) \setminus F_k$, where $F_k = \{\lambda_1, \lambda_2, \dots, \lambda_k\} \subset V_m(n)$. Let $C = E_{\lambda_1 \lambda_1} + E_{\lambda_2 \lambda_2} + \dots + E_{\lambda_k \lambda_k}$,

$$D = \sum_{\pi_i \in U_i}^k x_{\lambda_i \pi_i} E_{\lambda_i \pi_i}, \qquad E = \sum_{\mu_u \in V_i}^k x_{\mu_i \lambda_i} E_{\mu_i \lambda_i}$$

and $G = \sum_{\substack{\mu \in U \\ \mu \in V}} x^{\mu\nu} E_{\mu\nu}$. Assume that X = C + D + G and Y = C + E + G are

idempotents of type I. The following is the product table for C, D, E and G.

			E		
C	C	D	O D' O E'	0	In the table, $DE = D'$ means that DE takes the form D but $D' \neq D$. Similarly for E' and G' .
D	0	O	D'	D'	
E	E	G'	O	O	
G	0	O	E'	G'	

Then from XX = X and YY = Y we have that X = C + D = B and Y = C + E = A. We now consider the number t of all idempotents of type I. We

note that $|V_m(n)| = n^m$. The number of the ordered sets F_k is equal to $\binom{n^m}{k}$; the number of all possible terms $\sum_{\pi \in V} x_{\pi \lambda_i} E_{\pi \lambda_i}$ (i = 1, 2, ..., k)

$$\left(\sum_{\pi \in U_i} x_{\lambda_i \pi_i} E_{\lambda_i \pi_i} \text{ in } B\right) \text{ in } A \text{ is equal to } p^{k(n^m - k)}.$$

In the expression of t, the factor 2 appears because of the two forms A and B and, because we counted the number of terms $E_{\lambda_1\lambda_1} + E_{\lambda_2\lambda_2} + \cdots + E_{\lambda_k\lambda_k}$ twice in the first term for t, we must subtract 2^{n^m} .

Remark. For 2-dimensional matrices, analogous results of Theorem A and Theorem B are respectively Lemma 5 [5] and Theorem 1 [4]. For Theorem C, we do not have any reference, but we find that t in Theorem C is correct for $M_{2,3}(Z/(2))$, where Z is the set of all integers and |Z/(2)| = 2. For $M_{2,3}(Z/(2))$, t = 44 from our D-class table of the semigroup.

REFERENCES

- [1] L. E. Dickson, Linear groups, Dovers (reprint), New York, 1965.
- R. Kaneiwa, N-dimensional matrices and n-th order invariant forms (Japanese, Surikaiseki K. K. 274 (1976), 83-97; MR 58-10955.
- [3] Jin B. Kim, James E. Dowdy, Determinants of n-dimensional matrices, J. Korean Math. Soc. 17 (1980), 63-68; MR 81k-15006.
- [4] J. B. Kim, On singular matrices, Czechoslovak. Math. J. 18-93 (1968), 274-277; MR37-4182.
- [5] J. B. Kim, On the structures of linear simigroups, J. Combin. Theory 11 (1971), 62-71; MR43-4936.
- [6] R. Oldenburger, Higher dimensional determinants, Amer. Math. Monthly 47 (1940), 25-33; MR1-194.
- [7] N. P. Sokolov, Spatial matrices and their applications (Russian), Gosudarstv. Izdat. Fiz-Mat. Lit., Moscow, 1960, 300 pp; MR24-A122.
- [8] N. P. Sokolov, On some multidimensional determinants with integral elements (Russian), Ukrain Mat. Ž 16 (1964), 126-132, MR2B-3963.

Department of Mathematics West Virginia University Morgantown, W. V. 26506 U.S.A,