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ON N-DIMENSIONAL IDEMPOTENT MATRICES

Jin Bai Kim and James E. Dowdy

An n x n matrix A = (a;;) will be called a 2-dimensional matrix of order n.
We shall study 2 m-dimensional idempotent matrices of order n with respect to an
associative matrix product.

1. Introduction. We shall denote the set of all n x n matrices over a field
F by M5 (F) and the set of all n x n X - - - x n = n™ matrices over F' by My, ,(F).
Any matrix A = (aij..k) in My, »(F) will be called an m-dimensional matrix of
order n. For a determinant of an m-dimensional matrix, we refer [2, 3, 6 and 7].
Let A = (as,iy...i5,,) and B = (bj,j,...jo,, ) be members of Moy, »,(F). We define a
matrix product AB = C = (Ckyks...ks,,) as follows:

n

n n
Chika...kom = E E E Oky koo B b1 ta .t Db1ta .. bom Komr oo izm *

t1=1t2=1 tm=1

This matrix product is associative (see [3]) and with respect to this matrix product
AB = C, Moy, n(F') forms a semigroup (and aring). A is an idempotent if A4 = A.
We shall count the number of idempotents in the semigroup May, ,(F'), where F
is a finite field, and we shall classify the idempotents.

2. The number of idempotents. Let S be a semigroup and let a,b € S.
We define aLb (aRb) to mean that a and b generate the same principal left (right)
ideal of S. If aLb, we say that a and b are L-equivalent. By L, we mean that the
set of all elements of S which are L-equivalent to a. The join of the equivalence
relations L and R is denoted by D. If X is a subset of the semigroup S, then we
define E(X) = {z € X : zz = z}. We need the following lemma.
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LEMMA 1 [5, Lemma 5]. Let D, be the D-class of rank r in the semigroup
k—1

Mam,(F). Let |F| = p. Define [p*] = (p" —1)(p*-p)... 0" -p* ") = H(p’“—p")-
Then |E(D,)| = [p"]/[p"][p" " Let t(r) = [p"]/[p"][p"""]- -

THEOREM A. The number of all idempotent matrices in Maop, n(F') is equal

to t: .
n
t=> tr).
r=0

Proof. It A = (asj..k) € Mam,n(F) we identify A as A" = (aj;) € Ma,m (F).
Then applying Lemma 1, we obtain the desired result.

Let S be a semigroup and let a € S. We define V(a) = {z € S : aza = a and
zax = z}. We need the following lemma to prove Theorem B.

LEMMA 2 [4, Theorem 1]. If A € M, ,(F), then the cardinal number of the
inverse set V(A) is equal to |F|*"("=7) where r is the rank of the matriz A.

Let r be an integer such that 0 < r» < n™. We have the following. (We
assume that S = Moy, n(F) and |F| = p).

THEOREM B. If A € D,., then |V (A)| is given by t, where t = p?"("" 7).

Proof. In the semigroup Mo, ,(F) there are n™ + 1 D-classes D, of rank
r. (See the proof of Theorem A). Applying Lemma 2 and replacing n by n™ in
|F|?7("=) | we obtain the desired result. (Note that |F| = p).

3. Classification of idempotents. We define V,.(n) = {(i1,i2,...,i,) :
ij are positive integers such that 1 < i; < n}. Let A = (ayj,.kx) € Momn(F).
For any entry a;;..; of A, there exists 7 € Vap(n) such that (ij...k) = m; we
write a;j..r = ar. For an element @ = (m,m2,...,Tm) € Vp(n), we write 7w
to mean that 7w = (w1, T2, ..., Tm, T1, T2y -+, ) € Vo (n). We define a matrix
E; = (aij..k) as follows: ay =1 and a, = 0 for all 4 € Vam(n) such that 7 # p.
We can see that Eyy is an idempotent (A € V,,(n)) and we may call Eyy a primitive
idempotent. Define I = Z E). Then we can see that A = ATl = A for all

AEVM(n)
A € Mop n(F). We denote the zero matrix by 0. Then for A = (a;;...x) we have
A= Z aEn (ar € F). Define (A), = a, as the m-entry of A, and define
wE€Vam (n)
D(A) = {)\ S Vm(n) : (A))\)\ 75 0}

Types of idempotents. Let A be an idempotent. A is called an idempotent of
type I if either ayy =1 and ay, = 0 (A # p) for all A € D(A) or if axy = 1 and
ayy =0 (u#X) for all A € D(A). A is called an idempotent of type IT if A is not
an idempotent of type I and if ay,, = 1.

An idempotent A which is neither of type I nor type IT will be called an
idempotent of type III. We assume the zero matrix 0 is an idempotent of type I.
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We consider the idempotents of type I. Let Fj, = {A1, A2,..., A} be a non-
empty subset of V,,,(n). Let U; be a subset of Vi, (n) \ Fi, = {z € Vip(n) : ¢ & Fi},
(:1=1,2,...,k). Then:

A= (E/\1/\1 + Z -757r)\1E7r)\1> + (E)\g)\g + Z .’L‘-,.—,\zEﬂ.,\2> + .-+

el €U

+ (Exkxk + Y wakEn)\k)

€U},

and

B = (E)\l)\l + Z '(L.A17I'E)\17r) + (Ek2k2 + Z wkgﬂEkgﬂ) + +

weUs €Uz
+ (Exkxk + Z HSAWE,\W)
T€UR
where z, € F(u € Va,(n)). Now we can state the following theorem.

THEOREM C. Every idempotent of type I is either of the form A or the form
B. The number of all idrmpotents of type I in My, »,(F) is given by t:

. n™ m m
t=2 f(n™=k) _ gn™ = |F|).
,;J(k>p (v=F)

Proof. Let U,V,U; and V; be subsets of the set Vi,(n) \ Fy, where Fj, =
{)\1,/\2,.. ;/\k} C Vm(n) Let C = E/\1/\1 +E>\2)\2 + .- +E/\kkk7

k k
D= Z m)\imEkiﬂ'n E= Z meE i\i
m; €U; Illue‘/i
and G = Za:’“’EW. Assume that X = C+D+G andY = C+ E + G are
pelU
veV

idempotents of type I. The following is the product table for C, D, E and G.

C D E G
¢ ¢ D 0 0 In the table, DE = D' means that DE
D 0 ) D' D takes the form D but D' # D. Similarly for E’
B B a0 0 and G'.
G ) 0 E &

Then from XX = X and YY = Y we have that X = C + D = B and
Y = C+ E = A. We now consider the number ¢ of all idempotents of type I. We
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note that |V;,(n)| = n™. The number of the ordered sets F}, is equal to (", ); the

k
number of all possible terms Z Tani Enx, (0=1,2,...,k)
TEV;

Z T Eaq, in B in A is equal to pF(™" =k,
weU;

In the expression of ¢, the factor 2 appears because of the two forms A and B and,
because we counted the number of terms Ejy, x, + Ex,a, + -+ + Ex 2, twice in the
first term for ¢, we must subtract 27" .

Remark. For 2-dimensional matrices, analogous results of Theorem A and
Theorem B are respectively Lemma 5 [5] and Theorem 1 [4]. For Theorem C,
we do not have any reference, but we find that ¢ in Theorem C is correct for
M>3(Z/(2)), where Z is the set of all integers and |Z/(2)| = 2. For M, 3(Z/(2)),
t = 44 from our D-class table of the semigroup.
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