SOME CHARACTERISTICS OF THE PROCESS MEASURE OF THE AMOUNT OF INFORMATION

Branislav D. Vidaković

Signs and symbols. $a = a_1 a_2 \dots a_n$ – binary word of length n.

 Λ – empty word.

X – the space of all finite words over $\{0,1\}$. $(\Lambda \in X \text{ by definition})$

l(a) – the length of word a.

 $\overline{a} = a_1 a_1 a_2 a_2 \dots a_n a_n 01$ – manner of recording the word a required to record two or more words in the form of one word. For example for the words x, y and z the record is $\overline{x} \overline{y} z$. From the word $\overline{x} \overline{y} z$ it is possible to decode the words x, y or z by means of general, recursive functions π_1, π_2 and π_3 . (We also have $\overline{\Lambda} = 01$.)

 $a \subset b$ means b = aw, $w \in X$ (aw is a concatenation of words a and w).

 $f(x) \preceq g(x)$ means $(\exists C)(\forall x \in X) f(x) \leq g(x) + C$.

 $f(x) \approx g(x)$ means $f(x) \preccurlyeq g(x)$ and $g(x) \preccurlyeq f(x)$.

The function $F(a_1 a_2 \dots a_n) = 2^n - 1 + \sum_{i=1}^n a_i 2^{n-i}$ gives a one-to-one correspondence

of the set X and the set $\{0, 1, 2, \ldots\}$. The symbol a will denote both the word and its corresponding number.

Introduction. The partial recursive function $\mathcal{F}: X^{m+1} \to X$ of m+1 arguments is called a process according to argument p if the following applies: for a word $p, \mathcal{F}(p, y_1, \ldots, y_m)$ exists and if $q \subset p$, then $\mathcal{F}(q, y, \ldots, y_m)$ exists and $\mathcal{F}(q, y_1, \ldots, y_m) \subset \mathcal{F}(p, y_1, \ldots, y_m)$.

Definition 1. The conditional process complexity of (x_1, \ldots, x_n) , given (y_1, \ldots, y_m) , with respect to the processes $\mathcal{F}_1, \ldots, \mathcal{F}_n$ is

$$KP_{\mathcal{F}_1,\ldots,\mathcal{F}_n}(x_1,\ldots x_n/y_1,\ldots,y_m) = \min_{p \in X} \{\alpha(p)/\mathcal{F}_1(p,y_1,\ldots,y_m) = x_1,\ldots,\mathcal{F}_n(p,y_1,\ldots,y_m) = x_n\}.$$

The function $\alpha(p)$ is a criterion of complexity and it is usually taken as $\log_2 p$, which in the alphabet 0-1 is equal to l(p)+C.

THEOREM 1. There is a set of optimal m+1 dimensional processes according to argument $p(\mathcal{F}^{\circ}(p,y_1,\ldots,y_m),\ldots,\mathcal{F}^{\circ}_n(p,y_1,\ldots,y_m))$ such that for any other set of m+1 dimensional processes according to argument $p(\mathcal{G}_1(p,y_1,\ldots,y_m),\ldots,\mathcal{G}_n(p,y_1,\ldots,y_m))$ and for any (x_1,\ldots,x_n)

$$KP_{\mathcal{F}_1^{\circ},\ldots,\mathcal{F}_n^{\circ}}(x_1,\ldots,x_n/y_1,\ldots,y_m) \preceq KP_{\mathcal{G}_1^{\circ},\ldots,\mathcal{G}_n^{\circ}}(x_1,\ldots,x_n/y_1,\ldots,y_m).$$

The proof of Theorem 1. is standard for this theory and similar with the proof in [2, p. 91 Theorem 1.2].

From now on, the complexity $KP_{\mathcal{F}_1^{\circ},\ldots,\mathcal{F}_n^{\circ}}(x_1,\ldots,x_n/y_1,\ldots,y_m)$ will be designated with $KP(x_1,\ldots,x_n/y_1,\ldots,y_m)$. $KP(x_1,\ldots,x_n)$ means $KP(x_1,\ldots,x_n/\Lambda)$ Λ).

We have the following characteristics of the process complexity:

(i)
$$KP(x/y) \leq KP(x) \leq KP(x/y) + 2KP(y)$$

where K(y) is the Kolmogorov complexity of the word y. Let KP(x/y) = l(p), that is, $\mathcal{F}^{\circ}(p,y) = x$. Let us form the function

$$\mathcal{S} = \begin{cases} \mathcal{F}^{\circ}(\pi_2(z), F^{\circ}(\pi_1(z))), & \text{if } z \text{ has the form } \overline{a}b \\ \Lambda, & \text{othervise.} \end{cases}$$

 \mathcal{F}° is an optimal two-dimensional process, and F° an optimal function for Kolmogorov complexity. Let $K(y) = l(p_y)$. The function \mathcal{S} is a process by construction. For the program $z = \overline{p}_{y}p$ the results is x. Further more, we have

$$KP(x) \preceq KP_{\mathcal{G}}(x) \leq l(\overline{p}_{y}) + KP(x/y) \approx KP(x/y) + 2K(y).$$

Remark. The constant 2 may be replaced with $1+\varepsilon$ by a more appropriate coding of the program z.

(ii)
$$KP(x/y) \preceq K(x/y) + 2\log_2 K(x/y)$$

Let us form a process

$$\mathcal{J}^2(z,y) = \begin{cases} F^{\circ}(A(z),y), & \text{if } z \text{ has the form} \overline{a}b \text{ and } l(b) \geq a \\ \Lambda, & \text{otherwise} \end{cases}$$

where $A(\overline{l(p)}pq) = p$ is general recursive $(p, q \in X)$. For $F^{\circ}(p_x, y) = x$ and $z = \overline{l(p_x)}px$ we have

$$KP(x/y) \preceq KP_{\mathcal{T}}(x/y) < l(z) = l(\overline{(p_x)}) + K(x/y) \simeq K(x/y) + 2l(K(x/y)).$$

(iii) If $\mathcal{F}(x)$ is a process, then $KP(\mathcal{F}(x)) \leq KP(x)$.

If for $\mathcal{F}(x)$ there exists an inverse function that is also a process, then $KP(\mathcal{F}(x)) \times KP(x)$.

(iv)
$$KP(x/y) \succcurlyeq KP(x/y, z)$$
 (1.1)
 $KP(x/y) = \min\{l(p)/\mathcal{F}^{\circ}(p, y) = x\} = \min\{l(p)/\mathcal{G}(p, y, z) = x\} \succcurlyeq$
 $\succcurlyeq \min\{l(p)/\mathcal{F}^{\circ}(p, y, z) = x\} = KP(x/y, z).$

The function $\mathcal{G}(p, y, z) = \mathcal{F}^{\circ}(p, y)$ has z as a fictive argument.

(v) For every partial recursive function F we have

$$\begin{split} KP(y/x,F(x)) &\asymp KP(y/x) \\ KP(y/x,F(x)) &= \min\{l(p)/\mathcal{F}^{\circ}(p,x,F(x)) = y\} = \\ &= \min\{l(p)\mathcal{G}(p,x) = y\} \succcurlyeq KP(y/x). \end{split}$$

(vi) If F is an invertible partial recursive function, then

$$KP(x/F(x)) \approx KP(F(x)/x) \approx 0$$
 (1.2)

$$KP(x/F(x)) = \min\{l(p)/\mathcal{F}^{\circ}(p, F(x)) = x\} \preceq \min\{l(p)/\mathcal{G}(p, F(x)) = x\} \simeq 0,$$

where $\mathcal{G}(p, F(x)) = F^{-1}(F(x))$, which is trivially a process according to p.

$$KP(F(x)/x) = \min\{l(p)/\mathcal{F}^{\circ}(p,x) = F(x)\} \preccurlyeq \min\{l(p)/\mathcal{G}(p,x) = F(x)\} \asymp 0,$$

where $\mathcal{G}(p,x) = F(x)$, which is also a process according to p.

Measure of the amount of information. The process complexity of a word x is very suitable for defining the concept of randomness. Namely, (Schnornr in [4] shows that to a Martin-Löf random binary sequences ω applies $KP(\omega^n) \approx n$, where ω^n , is a fragment of the sequences ω of length n. On the other hand, the complexity is also suitable for defining the measure of information. Kolmogorov defines in [1]) the measure of information carried by a word x as

$$I(y:x) = K(x) - K(x/y)$$
(2.1)

Levin ([5]) also defines the measure of information as $IP(y:x) = \overline{KP}(x) - \overline{KP}(x/y)$, where $\overline{KP}_A(x) = \min\{l(p)/A(p) = x\}$ and A(p) is a function such if A(p) = x, then A(pq) = x. (Those are the so-called prefix algorithms.)

Definition 2. The quantity

$$J(y_1, \dots, y_m : x_1, \dots, x_n/z_1, \dots, z_k) = KP(x_1, \dots, x_n/z_1, \dots, z_k) - KP(x_1, \dots, x_n/y_1, \dots, y_m, z_1, \dots, z_k)$$

is termed the process measure of the amount of information that (y_1, \ldots, y_m) carries on (x_1, \ldots, x_n) if (z_1, \ldots, z_k) is known. We have the following characteristics of measure J:

$$(i) J(y:x) \geq 0 (2.2)$$

The property (2.2) follows from the relation (1.1).

(ii)
$$J(x:x) \approx KP(x) \tag{2.3}$$

The relation (2.3) is a direct consequence of (1.15). It can be also shown that $J(p_x:x) \times KP(x)$, where p_x is such that $\mathcal{F}^{\circ}(p_x) = x$.

(iii)
$$J(x, y : z) = J(x : z) + J(y : z/x)$$
 (2.4)

The proof results directly from the definition of the measure J.

(iv) The process measure of information may be compared with measure I, introduced by (2.1)

$$\begin{split} I(y:x) - 2\log_2 K(x/y) & \preccurlyeq J(y:x) \preccurlyeq I(y:x) + 2\log_2 K(x) \\ J(y:x) &= KP(x) - KP(x/y) \leqslant K(x) + 2\log_2 K(x) - K(x/y) = \\ I(y:x) + 2\log_2 K(x). \end{split}$$

- (v) If F is partial recursive and invertible function, $J(F(x):x) \times KP(x)$, $J(x:F(x)) \times (F(x))$, $J(F(x):y) \times J(x:y)$.
- (vi) It is known that the algorithm measure of the amount of information is not commutative ([2], [3]), that is, it can be shown only as $|J(y:x) I(x:y)| \leq 12 \cdot I(K(x,y))$. Since $|J(y:x) I(y:x)| \leq (1+\varepsilon)l(K(x))$, for the process measure J we have

$$|J(y:x) - J(x:y)| \leq (14 + 2\varepsilon)l(K(x,y)).$$

(vii) For every word x we have $J(l(x):x) \leq 2 \cdot K(l(x))$.

REFERENCES

- [1] А. Н. Колмогоров, *Три подхода к опеределению понятия "количество информации"*, Проблени передачи информации, **1** (1965) 3-7.
- [2] А. К. Звонкин, Л. А. Левин, Сложнось конечних обетов и обоснование понятии информации и случйности с помощу теории алгоритмов, УМН, ХХV, 6, 1970, 85—127.
- [3] В. Н. Агафонов, Сложность алгоритмов и вычислений ч, II НГУ 1975, 1–146.
- [4] C. P. Schnorr, Process Complexity and Effective Random Tests, J. Comp. Syst. Sci. 7 (1973), 376-388.
- [5] Л. А. Левин, Законы сохранения (невозрастания) информации и вопросы обоснования теории вероятностей, Проблеми передачи информации X, 3, 1974, 30-35.

Katedra za matematiku, Mašinski fakultet, Beograd, Jugoslavija.