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SOME CHARACTERISTICS OF THE PROCESS MEASURE
OF THE AMOUNT OF INFORMATION

Branislav D. Vidakovié

Signs and symbols. a = ajas . ..a, — binary word of length n.
A — empty word.
X - the space of all finite words over {0,1}. (A € X by definition)
I(a) — the length of word a.

a = a1a1a203 - . . Apa,01 — manner of recording the word a required to record two
or more words in the form of one word. For example for the words z, y and z the
record is Tyz. From the word T gz it is possible to decode the words z, y or z by
means of general, recursive functions m;, 7, and 73. (We also have A = 01.)

a C b means b= aw, w € X (aw is a concatenation of words a and w).
f(z) < g(z) means (3C)(Vz € X) f(z) < g(z) + C.
f(z) < g(z) means f(z) < g(z) and g(z) < f(z).

n

The function F(aias ...a,) =2"—1 +Z a;2" % gives a one-to-one correspondence

i=1
of the set X and the set {0,1,2,...}. The symbol a will denote both the word and
its corresponding number.

Introduction. The partial recursive function F : X™t! — X of m + 1
arguments is called a process according to argument p if the following applies:
for a word p, F(p,y1,-..,Ym) exists and if ¢ C p, then F(q,y,...,yn) exists and
‘7:(q7y17"'7ym) C f(p7y17"'7ym)'

Definition 1. The conditional process complexity of (xi,...,%,), given
(y1,---,Ym), with respect to the processes Fi,...,Fy, is
KPr, . 7. (1, - Zn /Y1, Ym) =
= ;Iél)lg{a(p)/]:l(pa Yi,--- 7ym) =T1,--- 7]:n(p7y17 T 7ym) = .’L'n}
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The function a(p) is a criterion of complexity and it is usually taken as log, p,
which in the alphabet 0 — 1 is equal to I(p) + C.

THEOREM 1. There is a set of optimal m + 1 dimensional processes accord-
ing to argument P(F°(D,Y1s---,Ym)s-- > FulD:Y1,---,Ym)) such that for any other
set of m + 1 dimensional processes according to argument p(Gi (D, Y1,---,Ym);-- -5
Gn(P,y1,---,ym)) and for any (z1,...,%,)

KPro,  ro(x1, s Tn/yts-- s Ym) S KPgo, . ge(T1,- s Tn /Y15 Ym)-
The proof of Theorem 1. is standard for this theory and similar with the
proof in [2, p. 91 Theorem 1.2].

From now on, the complexity K Pre . ro(Z1,--.,Zn/Y1,--,Ym) Will be des-
ignated with K P(x1,...,Zn/Y1,---,Ym)- KP(x1,...,2,) means KP(x1,...,2,/A
., A).
We have the following characteristics of the process complexity:
(i) KP(z/y) < KP(z) < KP(z/y) + 2K P(y)
where K (y) is the Kolmogorov complexity of the word y. Let KP(z/y) = l(p),
that is, F°(p,y) = x. Let us form the function

S {fO(WQ(z),F"(m(z))), if z has the form ab

, othervise.

JF° is an optimal two-dimensional process, and F° an optimal function for Kol-
mogorov complexity. Let K(y) = I(py). The function S is a process by construc-
tion. For the program z = p,p the results is z. Further more, we have

KP(z) < KPy(x) < U(p,) + KP(c/y) < KP(z/y) + 2K (y).

Remark. The constant 2 may be replaced with 1 + € by a more appropriate
coding of the program z.

(i) KP(z/y) < K(z/y) + 2log, K(z/y)
Let us form a process
2 _ | F°(A(2),y), if z has the formab and I(b) > a
ACT) {A, otherwise

where A(I(p)pg) = p is general recursive (p,q € X). For F°(p,,y) = z and z =
I(pz)pr we have

KP(z/y) < KP7(z/y) <1U(z) = U((p.)) + K (z/y) < K(2/y) + 20(K (z/y))-
(iii) If F(=) is a process, then KP(F(z)) < KP(z).
If for F(x) there exists an inverse function that is also a process, then K P(F(x)) <
KP(z).
(iv) KP(z/y) » KP(z/y,2) (1.1)
P(z/y) = min{l(p)/F°(p,y) = «} = min{l(p)/G(p,y,2) = x} =
= min{l(p)/F°(p,y, 2) = v} = KP(x/y,2).
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The function G(p,y,2) = F°(p,y) has z as a fictive argument.
(v) For every partial recursive function F' we have

KP(y/z, F(x)) < KP(y/z)
KP(y/z, F(x)) = min{l(p)/F°(p,z, F(x)) =y} =
= min{l(p)G(p, ) = y} = KP(y/=).
(vi) If F' is an invertible partial recursive function, then
KP(z/F(z)) x KP(F(z)/z) <0 (1.2)
KP(z/F(z)) =min{l(p)/F°(p, F(x)) = z} < min{l(p)/G(p, F(z)) = z} <0,
where G(p, F(x)) = F~1(F(z)), which is trivially a process according to p.
KP(F(z)/z) = min{l(p)/ F*(p,x) = F(2)} < min{l(p)/G(p, z) = F(z)} <0,

where G(p,z) = F(x), which is also a process according to p.

Measure of the amount of information. The process complexity of a
word z is very suitable for defining the concept of randomness. Namely, (Schnornr
in [4] shows that to a Martin-L6f random binary sequences w applies K P(w™) < n,
where w", is a fragment of the sequences w of length n. On the other hand, the
complexity is also suitable for defining the measure of information. Kolmogorov
defines in [1]) the measure of information carried by a word y about word z as

I(y : 2) = K(2) - K(x/y) (2.1)

Levin ([5]) also defines the measure of information as IP(y : z) = KP(z) —
KP(z/y), where KP4(z) = min{l(p)/A(p) = z} and A(p) is a function such if
A(p) = z, then A(pq) = z. (Those are the so-called prefix algorithms.)

Definition 2. The quantity

JWiyo oy Ym 2 X1,y T )21,y 2k) = KP(21,...,&n /21, ., 2k)—
—KP(Z1, s Tn Y1y ey Ymy 21y -+, Zk)

is termed the process measure of the amount of information that (y1, ..., ym) carries
on (x1,...,%,) if (21,...,2k) is known. We have the following characteristics of
measure J:

(i) J(y:z) %0 (2.2)

The property (2.2) follows from the relation (1.1).
(i) J(z :z) < KP(z) (2.3)

The relation (2.3) is a direct consequence of (1.15). It can be also shown that
J(ps : 2) < KP(x), where p, is such that F°(p;) = .

(iii) J(xy:2z)=Jx:2)+J(y: z/x) (2.4)
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The proof results directly from the definition of the measure .J.

(iv) The process measure of information may be compared with measure I,
introduced by (2.1)

Ty : ) — 2logy K(o/y) < J(y ) < Iy - 2) + 2o, K ()
Ty ) = KP@)— KP(z/y) < K(x) + 2log, K(z) — K(a/y) =
I(y : z) + 2log, K(x).

(v) If F is partial recursive and invertible function, J(F(z) : z) x KP(x),
J(z: F(z)) < (F(z)), J(F(z) :y) < J(z : y).

(vi) Tt is known that the algorithm measure of the amount of information is
not commutative ([2], [3]), that is, it can be shown only as |J(y : z) — I(z : y)| %
12-I(K(z,y)). Since |J(y : z) — I(y : )| X (1 +¢€)l(K(x)), for the process measure
J we have

|J(y : z) = J(z : y)| < (14 + 26) (K (z,y)).

(vii) For every word z we have J(I(z) : z) < 2- K(I(z)).
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