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THE REGULATION NUMBER OF A GRAPH

Jin Akiyama, Frank Harary

Abstract. The regulation number r(G) of a graph G with maximum degree d is defined
as the smallest number of new points in a d-regular supergraph. It is shown that for d > 3, every
possible value of 7(G) between zero and the maximum established by Akiyama, Era and Harary,
namely, d(mod 2)+1 + d, is realized by some graph. Also, a characterization is given for G to
have r(G) = n.

1. Introduction. The regulation number r(G) of a graph G with maxi-
mum degree d is the maximum number of new point needed to get a d-regular
supergraph. Akiyama, Era and Harary [1] determined the following bounds.

THEOREM A. For a graph G with mazimum degree d > 3,

(1) r(G) < d+ 2 when d is odd,
(2) r(G) <d+1 when d is even

Our first purpose is to demonstrate the interpolation theorem that for each n
between 0 and the upper bounds in (1) and (2), there exists a graph with regulation
number n. This is accomplished by constructing such a graph.

A necessary and sufficient condition is then derived for a graph to have reg-
ulation number n, using the notion of an “f-factor” due to Tutte, [5].

In general we follow the notation and terminology of [bf 4].

2. Interpolation. We shall show that for each d > 3, every integer n
between zero , the smallest possible value of r(G), and the maximum value d + 1
od d+ 2 depending on the parity of d,n is realized as the regulation number of
some graph. In the construction of such a graph, it is convenient to use the notation
G1 + G2 + G5 of [2] for the iterated join of three disjoint graphs G; defined as the
union (G1+ G2)U (G2 +G3). Similarly, the iterated join of n > 3 disjoints graphs is
written G1 +G2+G3+- - -+G,, and is defined as (G +G2)U(G2+G3)U- - -U(Gp_1+
G,). We shall encounter the special case K1 + K1 + -+ K1 + Ggy1 +--- + G,
where Gy1 # K; and will abbreviate it by P, + Ggy1 + --- + G, (as i this case
the join of the first k copies of K; gives the path Py).
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THEOREM 1. Let d > 3.

1. If d is odd and 0 < n < d + 2, then there is a graph H, with maximum
degree d and r(H,) = n.

2. If d is even and 0 < n < d+ 1, then there is a graph J, with mazimum
degree d and r(J,) = n.

Proof. When n = 0 and d > 3 is odd, one can take Hy as a d-regular
graph or as a spanning supgraph of such a graph. For n = d + 2, we have H,, =
Ki + K3 + K4_1- (The case d = 3 was illustrated in [1]). Now for any positive
integer n properly between 0 and d + 2, one possible choice is

H, =Pj_pnis+ Ko+ Kq_1.
The proof when d is even is analogous, with

Jn =Py ni2+ K+ Kq 1. O
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Figure 1. Realization graphs for regulation number interpolation

Figure 1 shows the graphs H; to Hs when d = 3. The smallest 3-regular
graph containing these H,, is shown in Figure 2. As noted in [bf 4], this is the
smallest cubic graph with a bridge.

Figure 2. The smallest cubic graph with a bridge

3. Characterization, Let G be any graph with p points V' = {1,2,...p}.
Let f = (f1,...,fp) be a vector of p non-negative integers. Then an f-factor is a
spanning subgraph F' of G such that the degree of point ¢ in F' is f;. We recall
the following result of Tutte [5] giving a criterion for the existence of an f-factor.

THEOREM B. A graph G has an f-factor if and only if for any two disjoint
subsets X and Y of V, with o(X,Y") the number of odd components of G—X -V,
and d(i,G — X) the degree of i in G — X we have

(3) o(X,Y) + Y {fi—d(i,G - X)} < fie
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Let d; = d(i,G) and let the deficiency of v; in G be f; = d —d;. Then it can
easily be verified that G' has regulation number 0 if and only if G' has an f-factor,
where f = (f1,..., fp) is the vector of deficiencies. We will extend this observation
to obtain a criterion for a graph to have regulation number n. Fix n properly
between 0 and d + 2 and define the join I, = G + P,, with the additional points
labelled p+1,... ,p+n. Set Iy =G. If n > 0,let f=dforj=p+1,... ,p+n
and set f = (f1,..., fptn)-

THEOREM 2. Let 0 <n < d+ 2 and let G be a graph with mazimum degree
d. Then r(G) = n if and only if n is smallest integer such that I, has an f-factor.

Proof. Suppose 7(G) = n and consider the set of lines added to G + K, to
form a d-regular graph. These edges form an f-factor in I,,. Suppose there is some
integer j < n such that I; contains an f-factor. Then it is easily verified that these
edges would regularize G + K, contradicting the fact that r(G) = n. The converse
holds by a similar argument. O

Theorem A and Theorem 2 together yield an algorithm which can be used to
determine 7(G) for a given graph G. However, the paper [3] by Erdods and Kelly
implicitly contains an 0(n) algorithm for this purpose even though they studied
and determined the induced regulation number of a graph.
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