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MODEL THEORY FOR L4y LOGIC

Miodrag Raskovié

Abstract. In [3] Keisler introduced several probability logics (L anr, L([)wiw, etc.) and
developed model theory for them together with Hoover. We introduce L 43s which, instead of
probability measure, has a o-finite one and give a method how to transfer results from L 4p to
our logic.

Measure logic L 4as is the logic which is like the infinitary logic L4 except
that quantifiers (Mx > r), (Mx > r), (Mx < r) and (Mx < r) (x is a finite
sequence of variables and r € [0,00)) are used instead of ordinary quantifiers (Vz)
and (3z).

Let HC}, be the set of hereditarily countable sets over 9t. We asume that
A C HCy, is an admissible set with urelements so that w € A.

Thus L aps = ANLy, p, where Ly, pr denotes Lgcyy, pr- Similarly L, ps denotes
Lyronnm in case that the reals are contained in H Fgy.

Let L be, throughout the paper, a countable A-recursive set of finitary relation
and constant symbols. We suppose that the equality and a countable sequence
(Ry, : n € w) of unary relational symbols are logical symbols.

Let (A, B, 1) be a o-finite measure space such that singletons are measurable.
Then (A", B™ (™) is measure space such that B(" is the -algebra generated by
the measurable rectangles and the diagonal sets {x € A" : z; = z;} and measure
p{™) is the resticion of the completion of u” to B(™.

Definition 1. A measure model for L is an order pair (2, u), where 2 is
an ordinary model and p is a o-finite measure on A such that each singleton is
measurable and each relation R* C A™ is u{™)-measurable.

The sequence (R; : i € w) is a o-cover of the set A.

The satisfaction relation (U, u) |= [a] for ¢(x) € L 4pr, measure model (2, u)
and a € A" is defined as usually for propositional connectives. For the quantifier
(Mx >r).

(&, 1) = (Mx > r)p(x,y) [a] iff u™({b € A" : (A, 1) = pla,b]}) > r
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and similarly for other quantifiers.

It can be shown that for each model (2, ), formula o(x,y) € Lay and
m-tuple a in A™, the set {b € A™ : (A, u) = p[a,b]} is u(™-measurable. So the
satisfaction relation is well defined.

Let L aam be a logic similar to L 4, except that real numbers occurring in
quantifiers are from the interval [0,m]. Specially, for m =1, La; = L ap.

We say that (A, u) is I'-elementary equivalent to (8, \) and write (2, u) =p
(B, ) provided that for each ¢ € ' C L, s

@, p) o iff (B,A) e

For I' = L am (T = L) we write simply (2, p1) = (B, ) (A, 1) =m (B, A)
By using the following theorem for L 4, logic we will prove similar result for
our logic.

THEOREM 1. [2] Let T' = {(Mx > r)¢ : ¢ is a conjuction of atomic
formulas}. Then:

(i) &, p) =1 (B, A) iff (A, p) =r (B, A)
(ii) For each formula ¢ € Ly, there is a formula ¢ which is a propositional
(i. e. Boolean) combination of formulas from T’ such that |= ¢ ¢ .

Let R?(x) be an abbreviation for the conjuction R;(Zm,) A -+ A Ri(zm,).
The following definition is of great importance.

Definition 2. The set of bounded formulas (that is B-formulas) of L aps is
the least set such that:

i) each atomic formula is a B-formula,

ii) a conjuction and a negation of B-formulas is a B-formula,

iii) if ¢ is a B-formula then (Mx < r)(p(x) A R?(x)) and (Mx > 7)(p(x) A
R?™(x)) are B-formulas for r € R and i € w.

(2

LEMMA 1. For each formula @ of Lanr there is a B-formula 7 of Loy such
that = ¢ & 7.

Sketch of the proof. The proof follows by induction on the complexity of
formulas.

Let ¢(x,y) be a B-formula such that = 6(x,y) ¢ ¥(x,y)

In the main quantifier step we use the following equivalences:
(Mx <1)0(x,y) < Niso(Mx <7)(¢(x,5) A R (x))

(Mx >1)0(x,y) € Viso(Mx > 7)((x,y) A R} (X))

(Mx 21)0(x,y) € Apso Viso(Mx >71 —1/n)(4(x,y) A R} (%))
(Mx <1)0(x,¥) © V50 Aiso(Mx <7 = 1/n)(4(x,¥) A R} (x))
forre R

’
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(Mx < 00)0(x,¥) ¢ Aizo Vnso(Mx < n)(3(x,y)
(Mx > 00)0(%,¥) ¢ Viso Anso(Mx > n)((x,y)

(Mx > 00)0(x,y) ¢ Apso Viso(Mx > n)((x,y) A R” X

(Mx < 00)0(x,y) ¢ Vps0 Aiso(Mx < 1)(d(x,y) A R} (%))

We say that /\m20 ©m is a monotone conjuction if = Ymi1 = ¢y for each
m >0, and \/,,~, ¥m is a monotone disjunction if = ¢, V @1 for each m > 0.

7

Definition 3. The set monotone bounded formulas (M B-formulas) of L 4ps is
the least set such that:

i) each B-formula of L, N A is a M B-formula,
ii) a monotone conjunction of M B-formulas is a M B-formula,

ili) a monotone disjunction of M B-formulas is a M B-formula.

Similarly, as in [3], we can prove the following lemma.

LEMMA 2. Each B-formula ¢ is equivalent to some M B-formula 1.

Now we produce a sequence of finite measure models ((7), p;)ic Which ap-
proximate the given mesure model (2, ).

Definition 4. Let (A, u) be a measure model and (R; : ¢ € w) a o-cover of A.
For each ¢ € w we define the finite model (A(7), 4;)icw such that:

i) A;=ANRY

i) for each n-placed relation S : %) = §%* N (R?)"

iii) for each constant symbol c*, if c* € R? then c*() = c¥

iv) p; = p [dom(p) N RY

THEOREM 2. Let (2, p) and (B, \) be measure models of some similarity type
and T' = {(Mx > r)¢ : ¢ is conjunction of atomic formulas }. Then:

) (&, p) =(B,2) iff (A p) =r (B,A)

ii) For each formula ¢ of Ly, p there is a formula v which is a Boolean
combination of formulas from T’ such that = ¢ < .

Sketch of the proof. A consequence of the theorem 1 and (2, x) =r (B, A) is
(A1), p;) =m; B(i), \;) for each i € w (Where is m; = p(A;) = AM(By)).-

The proof follows at once from clauses (i) and (ii) of the lemmas above.
What follows is the list of axioms and rules of inference:
1. All axioms of L, without quantifiers,
2. Axioms about measure quantifiers
(Mx > r)p(x) = (Mx > s)p(x), s <13 (Mx > 1)p(x) = (Mx > 1)p(x)
0o §MX > r)p(x) = (My > r)e(y); (Mx > r)p((x) = (My > r)p(y); (Mz >
x
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3. Axioms of finite additivity
(Mx < r)p(x) A (Mx < s)p(x)) = (Mx <1+ 5)(0(X) V(%))

(Mx > r)ip(x) A (Mx > s)b(x) A (Mx < 0)(ip(x) A(x)) = (Mx > 7+ 5)
(p(x) V 9(x))

4. Axioms of continuity

AV WMy <1/n)(Mx > —1/m)p(x,y) A (Mx < 1)p(x,y)

s AR:!(y))i€w, re R
AV My <1/n)(Mx > r)p(x,y) A (Mx <+ 1/m)p(x,y) A Ri(y))

AV My < 1/n)(A%o(y) A~ A &(y) ARI(y)) %o finite, T C
n ®0

5. Axioms of o-finitsnes
(Mz < ©0)Ri(z) AN (Mz > i)Ri(x), i € w; (Mz <0)(Ri(z) A - Ritp1(x))
6. Fubini axioms
(Mx > r)p(x) & (Ma™ > r)p(x), (Mx > r)p(x) & (Ma™ > r)p(x)
Where 7 is a permutation of {1,...,n}.

( /\ (Mx < ri)(My 2 s:)p(%,¥) A (My < si41)9(%,5) A R (%,¥))A

(Mx <0)(My > sn)p(x,¥) A (My < 00)p(x,y) A R (x,¥))) =
(Mxy < risit1)(e(x,y) AR(x,y)) j €w

N x> r)(My > s)p(x,y) A (My < si11)p(x,y) AR} (x,y)) =
1<i<n—1

(Mxy > risi)(p(x,y) A Ri(x.y))
Where 0 = 51 < 55 < ... < s, and s is the length of the sequence x,y
7. Axiom of product measurability
(Mxyz > s)R;(x,y,2) = (Mx > r)(My > 0)(Mz > r)(p(x,y) ¢ ¢(¥,2))A

RE(x,y,2)) for n >0, s >r¥(Gf 2 =21,... 1)

8. Axiom for constants
Ve, Ri(d) for each constant d
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Ruels of inference
9. 9—‘?’9 Modus Ponens
10. Jwiw—lﬂ Conjuction

1/’—’ (x) Y—o(x) ..
11. qp_)(fooo)‘p(x) 55 (Mx<0)-p(x) Generalization
= (MxZr)(P(x)AR? (x)) i€
12. £ Sz,_:(MxQ,)d,(x) €Y ; finiteness

THEOREM 3. (Soundness) Any set ® of sentences of L aps which has a model
s consistent.

Definition 5. A weak measure model for L 4,/ is a structure

(Q[a l‘b) <A Rm: ] JMH)ZEI:JGJ’HEN

such that each u,, is a finitely additive o-finite measure on A™ with each singleton
measurable and the set {b € A™ : (%A, u) E ¢[a,b]} is p,-measurable for each
p(x,y) € Lap and a in A™.

Of course each measure model is a weak measure model.

Satisfaction is defined in a natural way.

THEOREM 4. (Weak completeness) Let A be countable. If a set ® of sentences
is consistent in L opr, then ® has a weak measure model.

Sketch of the proof. Let C be a countable set of new constants, and let
S = LUC. Using the notion of consistence property we can extend ® to a maximal
S anr-consistent set I, of sentences with the following properties:

))If®CT, and A® € Sanm, then A® €T,

ii) If (Mx > 0)p(x) € Ty, then ¢(c) € T, for some ¢ € C™

i) If (Mx > 0)p(x) € T, then (Mx > 0)(¢(x) AR} (x)) € T, for some i € w

Let C* be the set of all constants.

In the usual way I, induces a classical model A = (A, R;,¢;) for S, where
A={c*:ceC*}.

The axioms insure that a finitely aditive o-finite measure u, can be well
defined in the following way:

pn{c® : o(c,d) € T} =sup{r: (Mx > r)p(x,d) € T, }

For the weak model (A, ) = (4, R¥,c cj A lnYiel jesnen it is easy to show by
induction that (A, ) =T, and hence (A, u) E @.

Let (A, 1) be a model from the last theorem. Similarly as in Definition 4 we
interesect the model (%A, ) with R to get the finite weak model ((i), (u):)-

In the logic L 4,,(A;) it is possible to prove the following theorem.

THEOREM 5. For any weak model (A(i), (u);) there is a finite measure model
(B(i), As) such that (A(i), (n)i) =py(as) (B(i), A)
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From Theorem 4 and the next one the completeness result follows.

THEOREM 6. Let (%, u) be a weak measure model. Then there is a measure
model (M, \) such that (A, ) = M, N).

Proof. Let (%B(i),);) i € w be the sequence as in the Theorem 5. Let us
define a sequence (N(i),n;) 7 € w in the following way. Let (91(0),70) = (28B(0), Xo)-
If we suppose that (9t(n),n,,) is defined let:

1) Nn+1 =N, U (Bn+1\Bn), B, = RTn:
2) If S is k-placed relation symbol then

g§o(ntl) — gMN(n) (5%(n+1) N (M::H \Mrl:))

3) For each ¢ € L, [¢™(™+1) is constant iff '™t € N,, U (B,41\B,)] and
[either ¢R(nH1) = (M) if MU+ € N, or MU+ = B H)otherwise].

4. dom (nM)) = {UUV : U edom(n¥), V edom(A"),) N (Bni1\B,)} and
ngle(U uv) = ngk) + )\sﬁzl(V), where U Edom(ng“)) and V Gdom()\(n?l).

By induction on n is easy to show that for each formula without quantifiers

) ({x € Ny = (n),ma) F o(x)}) = AP ({x € M - (B(n), M) = (x)})

Therefore, by Theorem 2(N(n), ) =n,(n,) (B(n)An).

Let

1) M= Unzo N,

2) S =U,>o S7n) for k-placed relation symbol S € L

3) ™ = ™™ for some n > 0

4) \®) = sup,, n%k)

It is obvious that (91, \) is requested model.

The following completeness theorem is an immediate consequence.

THEOREM 7. A countable set of sentences ® of L aps has a measure model iff
® is consistent L aps-
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