MODEL THEORY FOR L_{AM} LOGIC

Miodrag Rašković

Abstract. In [3] Keisler introduced several probability logics $(L_{\mathcal{A}M}, L(\int)_{w1w},$ etc.) and developed model theory for them together with Hoover. We introduce $L_{\mathcal{A}M}$ which, instead of probability measure, has a σ -finite one and give a method how to transfer results from $L_{\mathcal{A}P}$ to our logic.

Measure logic $L_{\mathcal{A}M}$ is the logic which is like the infinitary logic $L_{\mathcal{A}}$ except that quantifiers $(M\mathbf{x} \geq r)$, $(M\mathbf{x} > r)$, $(M\mathbf{x} \leq r)$ and $(M\mathbf{x} < r)$ (\mathbf{x} is a finite sequence of variables and $r \in [0, \infty)$) are used instead of ordinary quantifiers $(\forall x)$ and $(\exists x)$.

Let $HC_{\mathfrak{m}}$ be the set of hereditarily countable sets over \mathfrak{M} . We assume that $\mathcal{A} \subseteq HC_{\mathfrak{m}}$ is an admissible set with urelements so that $\omega \in \mathcal{A}$.

Thus $L_{\mathcal{A}M} = \mathcal{A} \cap L_{\omega_1 M}$, where $L_{\omega_1 M}$ denotes $L_{HC_{\mathfrak{M}}M}$. Similarly $L_{\omega M}$ denotes $L_{HF\mathfrak{M}M}$ in case that the reals are contained in $HF_{\mathfrak{M}}$.

Let L be, throughout the paper, a countable A-recursive set of finitary relation and constant symbols. We suppose that the equality and a countable sequence $(R_n : n \in \omega)$ of unary relational symbols are logical symbols.

Let (A, \mathcal{B}, μ) be a σ -finite measure space such that singletons are measurable. Then $(A^n, \mathcal{B}^{(n)}, \mu^{(n)})$ is measure space such that $\mathcal{B}^{(n)}$ is the σ -algebra generated by the measurable rectangles and the diagonal sets $\{\mathbf{x} \in A^n : x_k = x_s\}$ and measure $\mu^{(n)}$ is the resticion of the completion of μ^n to $\mathcal{B}^{(n)}$.

Definition 1. A measure model for L is an order pair (\mathfrak{A}, μ) , where \mathfrak{A} is an ordinary model and μ is a σ -finite measure on A such that each singleton is measurable and each relation $R^{\mathfrak{A}} \subset A^m$ is $\mu^{(m)}$ -measurable.

The sequence $(R_i : i \in \omega)$ is a σ -cover of the set A.

The satisfaction relation $(\mathfrak{A}, \mu) \models [\mathbf{a}]$ for $\varphi(\mathbf{x}) \in L_{\mathcal{A}M}$, measure model (\mathfrak{A}, μ) and $\mathbf{a} \in A^n$ is defined as usually for propositional connectives. For the quantifier $(M\mathbf{x} > r)$.

$$(\mathfrak{A},\mu) \models (M\mathbf{x} > r)\varphi(\mathbf{x},\mathbf{y}) \, [\mathbf{a}] \ \text{ iff } \ \mu^{(n)}(\{\mathbf{b} \in A^n : (\mathfrak{A},\mu) \models \varphi[\mathbf{a},\mathbf{b}]\}) > r$$

AMS Subject Classification (1980): Primary 03 C 70, 03 C 90.

18 Rašković

and similarly for other quantifiers.

It can be shown that for each model (\mathfrak{A}, μ) , formula $\varphi(\mathbf{x}, \mathbf{y}) \in L_{\mathcal{A}M}$ and m-tuple \mathbf{a} in A^m , the set $\{\mathbf{b} \in A^m : (\mathfrak{A}, \mu) \models \varphi[\mathbf{a}, \mathbf{b}]\}$ is $\mu^{(n)}$ -measurable. So the satisfaction relation is well defined.

Let L_{AM} be a logic similar to L_{Ap} except that real numbers occurring in quantifiers are from the interval [0, m]. Specially, for m = 1, $L_{A1} = L_{AP}$.

We say that (\mathfrak{A}, μ) is Γ -elementary equivalent to (\mathfrak{B}, λ) and write $(\mathfrak{A}, \mu) \equiv_{\Gamma} (\mathfrak{B}, \lambda)$ provided that for each $\varphi \in \Gamma \subseteq L_{\omega_1 M}$

$$(\mathfrak{A}, \mu) \models \varphi \text{ iff } (\mathfrak{B}, \lambda) \models \varphi$$

For
$$\Gamma = L_{\mathcal{A}m}$$
 ($\Gamma = L_{\mathcal{A}m}$) we write simply $(\mathfrak{A}, \mu) \equiv (\mathfrak{B}, \lambda)((\mathfrak{A}, \mu) \equiv_m (\mathfrak{B}, \lambda))$

By using the following theorem for L_{Ap} logic we will prove similar result for our logic.

Theorem 1. [2] Let $\Gamma = \{(M\mathbf{x} \geq r)\psi : \psi \text{ is a conjuction of atomic formulas}\}$. Then:

- (i) $(\mathfrak{A}, \mu) \equiv_1 (\mathfrak{B}, \lambda)$ iff $(\mathfrak{A}, \mu) \equiv_{\Gamma} (\mathfrak{B}, \lambda)$
- (ii) For each formula $\varphi \in L_{\omega_1 M}$ there is a formula ψ which is a propositional (i. e. Boolean) combination of formulas from Γ such that $\models \varphi \leftrightarrow \psi$.

Let $R_i^n(\mathbf{x})$ be an abbreviation for the conjuction $R_i(x_{m_1}) \wedge \cdots \wedge R_i(x_{m_n})$. The following definition is of great importance.

Definition 2. The set of bounded formulas (that is B-formulas) of $L_{\mathcal{A}M}$ is the least set such that:

- i) each atomic formula is a B-formula,
- ii) a conjuction and a negation of B-formulas is a B-formula,
- iii) if φ is a B-formula then $(M\mathbf{x} \leq r)(\varphi(\mathbf{x}) \wedge R_i^n(\mathbf{x}))$ and $(M\mathbf{x} > r)(\varphi(\mathbf{x}) \wedge R_i^n(\mathbf{x}))$ are B-formulas for $r \in R$ and $i \in \omega$.

Lemma 1. For each formula φ of $L_{\mathcal{A}M}$ there is a B-formula τ of $L_{\mathcal{A}M}$ such that $\models \varphi \leftrightarrow \tau$.

 $Sketch\ of\ the\ proof$. The proof follows by induction on the complexity of formulas.

Let $\psi(\mathbf{x}, \mathbf{y})$ be a B-formula such that $\models \theta(\mathbf{x}, \mathbf{y}) \leftrightarrow \psi(\mathbf{x}, \mathbf{y})$

In the main quantifier step we use the following equivalences:

$$(M\mathbf{x} \le r)\theta(\mathbf{x}, \mathbf{y}) \leftrightarrow \bigwedge_{i>0} (M\mathbf{x} \le r)(\psi(\mathbf{x}, \mathbf{y}) \wedge R_i^n(\mathbf{x}))$$

$$(M\mathbf{x} > r)\theta(\mathbf{x}, \mathbf{y}) \leftrightarrow \bigvee\nolimits_{i > 0} (M\mathbf{x} > r)(\psi(\mathbf{x}, \mathbf{y}) \wedge R_i^n(\mathbf{x}))$$

$$(M\mathbf{x} \geq r)\theta(\mathbf{x},\mathbf{y}) \leftrightarrow \bigwedge_{n>0} \bigvee_{i>0} (M\mathbf{x} > r-1/n)(\psi(\mathbf{x},\mathbf{y}) \wedge R_i^n(\mathbf{x}))$$

$$(M\mathbf{x} < r)\theta(\mathbf{x}, \mathbf{y}) \leftrightarrow \bigvee_{n>0} \bigwedge_{i>0} (M\mathbf{x} \le r - 1/n)(\psi(\mathbf{x}, \mathbf{y}) \wedge R_i^n(\mathbf{x}))$$

for $r \in R$

$$\begin{split} &(M\mathbf{x} \leq \infty)\theta(\mathbf{x},\mathbf{y}) \leftrightarrow \bigwedge_{i \geq 0} \bigvee_{n > 0} (M\mathbf{x} \leq n)(\psi(\mathbf{x},\mathbf{y}) \wedge R_i^n(\mathbf{x})) \\ &(M\mathbf{x} > \infty)\theta(\mathbf{x},\mathbf{y}) \leftrightarrow \bigvee_{i \geq 0} \bigwedge_{n > 0} (M\mathbf{x} > n)(\psi(\mathbf{x},\mathbf{y}) \wedge R_i^n(\mathbf{x})) \\ &(M\mathbf{x} \geq \infty)\theta(\mathbf{x},\mathbf{y}) \leftrightarrow \bigwedge_{n > 0} \bigvee_{i \geq 0} (M\mathbf{x} > n)(\psi(\mathbf{x},\mathbf{y}) \wedge R_i^n(\mathbf{x})) \\ &(M\mathbf{x} < \infty)\theta(\mathbf{x},\mathbf{y}) \leftrightarrow \bigvee_{n > 0} \bigwedge_{i > 0} (M\mathbf{x} \leq n)(\psi(\mathbf{x},\mathbf{y}) \wedge R_i^n(\mathbf{x})) \end{split}$$

We say that $\bigwedge_{m\geq 0} \varphi_m$ is a monotone conjuction if $\models \varphi_{m+1} \to \varphi_m$ for each $m\geq 0$, and $\bigvee_{m>0} \varphi_m$ is a monotone disjunction if $\models \varphi_m \vec{\vee} \varphi_{m+1}$ for each $m\geq 0$.

Definition 3. The set monotone bounded formulas (MB-formulas) of $L_{\mathcal{A}M}$ is the least set such that:

- i) each B-formula of $L_{\omega M} \cap \mathcal{A}$ is a MB-formula,
- ii) a monotone conjunction of MB-formulas is a MB-formula,
- iii) a monotone disjunction of MB-formulas is a MB-formula.

Similarly, as in [3], we can prove the following lemma.

Lemma 2. Each B-formula φ is equivalent to some MB-formula ψ .

Now we produce a sequence of finite measure models $(\mathfrak{A}(i), \mu_i)_{i \in \omega}$ which approximate the given mesure model (\mathfrak{A}, μ) .

Definition 4. Let (\mathfrak{A}, μ) be a measure model and $(R_i : i \in \omega)$ a σ -cover of A. For each $i \in \omega$ we define the finite model $(\mathfrak{A}(i), \mu_i)_{i \in \omega}$ such that:

- i) $A_i = A \cap R_i^{\mathfrak{A}}$
- ii) for each n-placed relation $S: S^{\mathfrak{A}(i)} = S^{\mathfrak{A}} \cap (R_i^{\mathfrak{A}})^n$
- iii) for each constant symbol $c^{\mathfrak{A}}$, if $c^{\mathfrak{A}} \in R_i^{\mathfrak{A}}$ then $c^{\mathfrak{A}(i)} = c^{\mathfrak{A}}$
- iv) $\mu_i = \mu \upharpoonright dom(\mu) \cap R_i^{\mathfrak{A}}$

THEOREM 2. Let (\mathfrak{A}, μ) and (\mathfrak{B}, λ) be measure models of some similarity type and $\Gamma = \{(M\mathbf{x} \geq r)\psi : \psi \text{ is conjunction of atomic formulas }\}$. Then:

- i) $(\mathfrak{A}, \mu) \equiv (\mathfrak{B}, \lambda)$ iff $(\mathfrak{A}, \mu) \equiv_{\Gamma} (\mathfrak{B}, \lambda)$
- ii) For each formula φ of $L_{\omega_1 M}$ there is a formula ψ which is a Boolean combination of formulas from Γ such that $\models \varphi \leftrightarrow \psi$.

Sketch of the proof. A consequence of the theorem 1 and $(\mathfrak{A}, \mu) \equiv_{\Gamma} (\mathfrak{B}, \lambda)$ is $(\mathfrak{A}(i), \mu_i) \equiv_{m_i} \mathfrak{B}(i), \lambda_i)$ for each $i \in \omega$ (Where is $m_i = \mu(A_i) = \lambda(B_i)$).

The proof follows at once from clauses (i) and (ii) of the lemmas above.

What follows is the list of axioms and rules of inference:

- 1. All axioms of $L_{\omega_1\omega}$ without quantifiers,
- 2. Axioms about measure quantifiers

$$(M\mathbf{x} \geq r)\varphi(\mathbf{x}) \to (M\mathbf{x} \geq s)\varphi(\mathbf{x}), \ s < r; \ (M\mathbf{x} > r)\varphi(\mathbf{x}) \to (M\mathbf{x} \geq r)\varphi(\mathbf{x})$$
$$(M\mathbf{x} \geq r)\varphi(\mathbf{x}) \to (M\mathbf{y} \geq r)\varphi(\mathbf{y}); \ (M\mathbf{x} > r)\varphi(\mathbf{x}) \to (M\mathbf{y} > r)\varphi(\mathbf{y}); \ (M\mathbf{x} \geq 0)\varphi(\mathbf{x})$$

20 Rašković

3. Axioms of finite additivity

$$((M\mathbf{x} \le r)\varphi(\mathbf{x}) \land (M\mathbf{x} \le s)\varphi(\mathbf{x})) \to (M\mathbf{x} \le r + s)(\varphi(\mathbf{x}) \lor \psi(\mathbf{x}))$$

$$(M\mathbf{x} \ge r)\varphi(\mathbf{x}) \land (M\mathbf{x} \ge s)\psi(\mathbf{x}) \land (M\mathbf{x} \le 0)(\varphi(\mathbf{x}) \land \psi(\mathbf{x})) \to (M\mathbf{x} \ge r + s)$$
$$(\varphi(\mathbf{x}) \lor \psi(\mathbf{x}))$$

4. Axioms of continuity

$$\bigwedge_{n} \bigvee_{m} (M\mathbf{y} < 1/n)((M\mathbf{x} \ge r - 1/m)\varphi(\mathbf{x}, \mathbf{y}) \land (M\mathbf{x} < r)\varphi(\mathbf{x}, \mathbf{y})$$

$$\wedge R_i^s(\mathbf{y})) \ i \in \omega, \ r \in \mathbb{R}^+$$

$$\bigwedge_{n} \bigvee_{m} (M\mathbf{y} < 1/n)((M\mathbf{x} > r)\varphi(\mathbf{x}, \mathbf{y}) \wedge (M\mathbf{x} \le r + 1/m)\varphi(\mathbf{x}, \mathbf{y}) \wedge R_{i}^{s}(\mathbf{y}))$$

$$\bigwedge_{n} \bigvee_{\Phi_{0}} (M\mathbf{y} < 1/n)(\wedge \Phi_{0}(\mathbf{y}) \wedge \neg \wedge \Phi(\mathbf{y}) \wedge R_{i}^{s}(\mathbf{y})) \quad \Phi_{0} \text{ finite, } \Phi_{0} \subseteq \Phi$$

5. Axioms of σ -finitsnes

$$(Mx < \infty)R_i(x) \wedge (Mx > i)R_i(x), i \in \omega; (Mx \le 0)(R_i(x) \wedge \neg R_{i+1}(x))$$

6. Fubini axioms

$$(M\mathbf{x} \ge r)\varphi(\mathbf{x}) \leftrightarrow (Mx^{\pi} \ge r)\varphi(\mathbf{x}), \ (M\mathbf{x} > r)\varphi(\mathbf{x}) \leftrightarrow (Mx^{\pi} > r)\varphi(\mathbf{x})$$

Where π is a permutation of $\{1, \ldots, n\}$.

$$(\bigwedge_{1 \leq i \leq n-1} (M\mathbf{x} \leq r_i)((M\mathbf{y} \geq s_i)\varphi(\mathbf{x}, \mathbf{y}) \wedge (M\mathbf{y} < s_{i+1})\varphi(\mathbf{x}, \mathbf{y}) \wedge R_j^s(\mathbf{x}, \mathbf{y})) \wedge (M\mathbf{x} \leq 0)((M\mathbf{y} \geq s_n)\varphi(\mathbf{x}, \mathbf{y}) \wedge (M\mathbf{y} \leq \infty)\varphi(\mathbf{x}, \mathbf{y}) \wedge R_j^s(\mathbf{x}, \mathbf{y}))) \rightarrow (M\mathbf{x}\mathbf{y} \leq \sum r_i s_{i+1})(\varphi(\mathbf{x}, \mathbf{y}) \wedge R_j^s(\mathbf{x}, \mathbf{y})) \ j \in \omega \\ \bigwedge_{1 \leq i \leq n-1} (M\mathbf{x} \geq r_i)((M\mathbf{y} \geq s_i)\varphi(\mathbf{x}, \mathbf{y}) \wedge (M\mathbf{y} < s_{i+1})\varphi(\mathbf{x}, \mathbf{y}) \wedge R_j^s(\mathbf{x}, \mathbf{y})) \rightarrow (M\mathbf{x}\mathbf{y} \geq \sum r_i s_i)(\varphi(\mathbf{x}, \mathbf{y}) \wedge R_j^s(\mathbf{x}, \mathbf{y}))$$

Where $0 = s_1 \le s_2 \le ... \le s_n$ and s is the length of the sequence \mathbf{x}, \mathbf{y}

7. Axiom of product measurability

$$(M\mathbf{x}\mathbf{y}\mathbf{z} \ge s)R_n^k(\mathbf{x},\mathbf{y},\mathbf{z}) \to ((M\mathbf{x} \ge r)(M\mathbf{y} > 0)(M\mathbf{z} \ge r)(\varphi(\mathbf{x},\mathbf{y}) \leftrightarrow \varphi(\mathbf{y},\mathbf{z})) \wedge R_n^k(\mathbf{x},\mathbf{y},\mathbf{z}))$$
 for $n > 0$, $s^t > r^k$ (if $x = x_1, \dots, x_t$)

8. Axiom for constants

 $\bigvee_{i\in\omega} R_i(d)$ for each constant d

Ruels of inference

- 9. $\frac{\varphi, \varphi \to \psi}{\psi}$ Modus Ponens
- 10. $\frac{\varphi \to \psi \ \psi \in \Psi}{\varphi \Psi}$ Conjuction
- 11. $\frac{\psi \to \varphi(\mathbf{x})}{\psi \to (M\mathbf{x} \ge \infty)\varphi(\mathbf{x})} \frac{\psi \to \varphi(\mathbf{x})}{\psi \to (M\mathbf{x} \le 0) \neg \varphi(\mathbf{x})}$ Generalization
- 12. $\frac{\varphi \to (M\mathbf{x} \le r)(\psi(\mathbf{x}) \land R_i^n(\mathbf{x})) \ i \in \omega}{\varphi \to (M\mathbf{x} \le r)\psi(\mathbf{x})} \sigma$ -finiteness

Theorem 3. (Soundness) Any set Φ of sentences of $L_{\mathcal{A}M}$ which has a model is consistent.

Definition 5. A weak measure model for L_{AM} is a structure

$$(\mathfrak{A}, \mu) = \langle A, R_i^{\mathfrak{A}}, c_j^{\mathfrak{A}}, \mu_n^{\mathfrak{A}} \rangle_{i \in I, j \in J, n \in N}$$

such that each μ_n is a finitely additive σ -finite measure on A^n with each singleton measurable and the set $\{\mathbf{b} \in A^n : (\mathfrak{A}, \mu) \models \varphi[\mathbf{a}, \mathbf{b}]\}$ is μ_n -measurable for each $\varphi(\mathbf{x}, \mathbf{y}) \in L_{\mathcal{A}M}$ and \mathbf{a} in A^m .

Of course each measure model is a weak measure model.

Satisfaction is defined in a natural way.

THEOREM 4. (Weak completeness) Let A be countable. If a set Φ of sentences is consistent in L_{AM} , then Φ has a weak measure model.

Sketch of the proof. Let C be a countable set of new constants, and let $S = L \cup C$. Using the notion of consistence property we can extend Φ to a maximal $S_{\mathcal{A}M}$ -consistent set Γ_{ω} of sentences with the following properties:

- i) If $\Phi \subseteq \Gamma_{\omega}$ and $\wedge \Phi \in S_{\mathcal{A}M}$, then $\wedge \Phi \in \Gamma_{\omega}$
- ii) If $(M\mathbf{x} \geq 0)\varphi(\mathbf{x}) \in \Gamma_{\omega}$, then $\varphi(\mathbf{c}) \in \Gamma_{\omega}$ for some $\mathbf{c} \in \mathbb{C}^n$
- iii) If $(M\mathbf{x} > 0)\varphi(\mathbf{x}) \in \Gamma_{\omega}$ then $(M\mathbf{x} > 0)(\varphi(\mathbf{x}) \wedge R_i^n(\mathbf{x})) \in \Gamma_{\omega}$ for some $i \in \omega$ Let C^* be the set of all constants.

In the usual way Γ_{ω} induces a classical model $\mathfrak{A} = \langle A, R_i, c_j \rangle$ for S, where $A = \{c^{\mathfrak{A}} : c \in C^*\}$.

The axioms insure that a finitely aditive σ -finite measure μ_n can be well defined in the following way:

$$\mu_n\{c^{\mathfrak{A}}: \varphi(\mathbf{c}, \mathbf{d}) \in \Gamma_{\omega}\} = \sup\{r: (M\mathbf{x} \geq r)\varphi(\mathbf{x}, \mathbf{d}) \in \Gamma_{\omega}\}$$

For the weak model $(\mathfrak{A},\mu) = \langle A, R_i^{\mathfrak{A}}, c_j^{\mathfrak{A}}, \mu_n \rangle_{i \in I, j \in J, n \in N}$ it is easy to show by induction that $(\mathfrak{A},\mu) \models \Gamma_{\omega}$ and hence $(\mathfrak{A},\mu) \models \Phi$.

Let (\mathfrak{A}, μ) be a model from the last theorem. Similarly as in Definition 4 we interesect the model (\mathfrak{A}, μ) with $R_i^{\mathfrak{A}}$ to get the finite weak model $(\mathfrak{A}(i), (\mu)_i)$.

In the logic $L_{A\mu_i}(A_i)$ it is possible to prove the following theorem.

THEOREM 5. For any weak model $(\mathfrak{A}(i), (\mu)_i)$ there is a finite measure model $(\mathfrak{B}(i), \lambda_i)$ such that $(\mathfrak{A}(i), (\mu)_i) \equiv_{\mu_1(A_i)} (\mathfrak{B}(i), \lambda_i)$

22 Rašković

From Theorem 4 and the next one the completeness result follows.

Theorem 6. Let (\mathfrak{A}, μ) be a weak measure model. Then there is a measure model (\mathfrak{M}, λ) such that $(\mathfrak{A}, \mu) = \mathfrak{M}, \lambda$.

Proof. Let $(\mathfrak{B}(i), \lambda_i)$ $i \in \omega$ be the sequence as in the Theorem 5. Let us define a sequence $(\mathfrak{N}(i), \eta_i)$ $i \in \omega$ in the following way. Let $(\mathfrak{N}(0), \eta_0) = (\mathfrak{B}(0), \lambda_0)$. If we suppose that $(\mathfrak{N}(n), \eta_n)$ is defined let:

- 1) $N_{n+1} = N_n \cup (B_{n+1} \setminus B_n), B_n = R_n^{\mathfrak{m}}$
- 2) If S is k-placed relation symbol then

$$S^{\mathfrak{N}(n+1)} = S^{\mathfrak{N}(n)} \cup (S^{\mathfrak{B}(n+1)} \cap (M_{n+1}^k \backslash M_n^k))$$

- 3) For each $c \in L$, $[c^{\mathfrak{N}(n+1)}]$ is constant iff $c^{\mathfrak{N}(n+1)} \in N_n \cup (B_{n+1} \setminus B_n)]$ and [either $c^{\mathfrak{N}(n+1)} = c^{\mathfrak{N}(n)}$ if $c^{\mathfrak{N}(n+1)} \in N_n$ or $c^{\mathfrak{N}(n+1)} = c^{\mathfrak{B}(n+1)}$ otherwise].
- 4. dom $(\eta_{n+1}^{(k)}) = \{U \cup V : U \in \text{dom}(\eta_n^{(k)}), V \in \text{dom}(\lambda_{n+1}^{(k)}) \cap (B_{n+1} \setminus B_n)\}$ and $\eta_{n+1}^{(k)}(U \cup V) = \eta_n^{(k)} + \lambda_{n+1}^{(k)}(V)$, where $U \in \text{dom}(\eta_n^{(k)})$ and $V \in \text{dom}(\lambda_{n+1}^{(k)})$.

By induction on n is easy to show that for each formula without quantifiers

$$\eta_n^{(k)}(\{\mathbf{x}\in N_n^k: (\mathfrak{N}(n),\eta_n)\models\varphi(\mathbf{x})\})=\lambda_n^{(k)}(\{\mathbf{x}\in M_n^k: (\mathfrak{B}(n),\ \lambda_n)\models\varphi(\mathbf{x})\})$$

Therefore, by Theorem $2(\mathfrak{N}(n), \eta_n) \equiv_{n_1(N_n)} (\mathfrak{B}(n)\lambda_n)$.

Let

- 1) $M = \bigcup_{n>0} N_n$
- 2) $S = \bigcup_{n \geq 0} S^{\mathfrak{N}(n)}$ for k-placed relation symbol $S \in L$
- 3) $c^{\mathfrak{M}} = c^{\mathfrak{N}(n)}$ for some $n \geq 0$
- 4) $\lambda^{(k)} = \sup_{n} \eta_n^{(k)}$

It is obvious that (\mathfrak{M}, λ) is requested model.

The following completeness theorem is an immediate consequence.

Theorem 7. A countable set of sentences Φ of $L_{\mathcal{A}M}$ has a measure model iff Φ is consistent $L_{\mathcal{A}M}$.

REFERENCES

- [1] D. Hoover, *Probability logic*, Ann. Math. Logic **14** (1978), 287–313.
- [2] D. Hoover, A normal form theorem for $L_{\omega_1\omega}$ with applications, J. Symb. Logic 47 (1982), 605-624.
- [3] H. J. Keisler, Hyperfinite model theory, in Logic Colloquim 76, R. C. Gandy and J. M. E. Hyland (editors) 5-110 North-Holland Amsterdam, 1977.
- [4] H. J. Keisler, Probability quantifiers, manuscript.

Prirodno-matematički fakultet 34000 Kragujevac Yugoslavia (Received 01 06 1984)