SIMPLE SKEW POLYNOMIAL RINGS

Michael G. Voskoglou

Abstract. We treat two questions. First we give the general conditions for the existence of skew polynomial rings in finitely many variables over a given ring R (special cases of such rings are well, known, typifield by the n-th Weyl Algebras) and second we obtain the necesary and sufficient conditions for the simplicity of such rings.

Note that Amitsur [1] obtained conditions under which an Ore extension R[x,d] over a simple ring R is simple, while more recently Jordan [6] obtained such conditions if R is d-simple.

1. Preliminaries. All the rings considered in this paper are with identities. We recal that a map $d: R \to R$ such that d(a+b) = d(a) + d(b) and d(ab) = d(a)b + ad(b), for all a, b in R is called a derivation of R. Given s in R it is easy to check that the map $d: R \to R$, defined by the relation d(r) = sr - rs for all r in R, is a derivation of R called the inner derivation of R induced by s. Any derivation of R which is not inner is called an outher derivation of R.

Let D be a family of derivations of R, then an ideal I of R is said to be a D-ideal if $d(I) \subseteq I$ for all d in D, and R is called a D-simple ring if it has no nonzero proper D-ideals. In the special case where $D = \{d\}$ we write d-ideal and d-simple ring respectively. It is clear that if R is d-simple for some d in D then R is D-simple.

Every *D*-simple ring contains the field $F_0 = C(R) \cap [\cap_{d \in D} \ker d]$, where C(R) denotes the center of R, and therefore R is of characteristic either zero or of a prime number p.

Consider now the set S of all polynomials in one variable, say x, over R and define in S addition in the usual way and multiplication by the rule $xr - rx^+d(r)$ for all r in R, where d is a given derivation of R.

Then it is well known (e. g. [2 p. 35]) that S becomes a ring denoted by R[x,d], and it is called a skew polynomial ring, or an Ore extension over R.

Applying induction on n one finds that $x^n r = \sum_{i=0}^n \binom{n}{i} d^i(r) x^{n-i}$ for all r in R.

38 Voskoglou

- 2. Skew polynomial rings in finitely many varibales. We need first the following lemma:
- 2.1 LEMMA. Let R and S be as before and let d'be an outer derivation of R. Then d'extends to a derivation of S by d'(x) = 0 if and if d'commutes with d.

Proof. It is clear that d' extends to a derivation of S if d'(x) can be defined in a way compatible with the multiplication in S. Namely, if d'(x) = h, we should be able to write d'(xr) = d'(rx) + d'(d(r)), or xd'(r) + hr = d'(r)x + rh + d'(d(r)), for all r in R. But xd'(r) = d'(r)x + d(d'(r)) and therefore we get that hr + d(d'(r)) = rh + d'(d(r)), for all r in R. Thus if h = 0, d' comutes with d and, conversely, if that happens, one can extend d' to a derivation of S by putting d'(x) = 0.

Using the lemma above and applying induction on $\,n\,$ we get the following result:

2.2 Theorem. Let R be a ring and d_1, d_2, \ldots, d_n be derivations of R. Consider the set S_n of all polynomials in n variables, say x_1, x_2, \ldots, x_n over R. Define addition in S_n in the usual way and define multiplication by the relations: $x_i r = r x_i + d_i(r)$ and $x_i x_j = x_j x_i$ for all r in R and all $i, j = 1, 2, \ldots, n$. Then S_i becomes an Ore extension of S_{i-1} for each $i = 1, 2, \ldots, n$ (where $S_0 = R$) if and only if d_i commutes with d_j , for all $i, j = 1, 2, \ldots, n$.

We call the ring construced in the previous theorem a skew polynomial ring in n variables over R (by derivations) and we denote it by

$$S_n = R[x_1, d_1] \cdots [x_n, d_n].$$

3. Simple skew polynomial rings. Throughout this section S_n is understood to be a skew polynomial ring in n variables over a ring R, defined with respect to a finite set $D = \{d_1, \ldots, d_n\}$ of commuting derivations of R.

We need the following two lemmas.

3.1 Lemma. Let S = R[x,d] be an Ore extension over a ring R, where d is a derivation of R. Then: (i) If I is a d-ideal of R, IS is an ideal of S, and (ii) If I is an ideal of S, the set A(I) of the leading coefficients of the elements of I of minimal degree together with zero is a d-ideal of R.

Proof. See Lemma 1.3 in [5]. \square .

3.2 Lemma. Let $f(x_i) = \sum_{j=0}^m a_j x_i^j$ be a unit of S_n for some i = 1, 2, ..., n, where a_j is in R for each j and a_m is a regular element of R. Then m = 0 and f is a unit of R.

Proof. There exists a g in S_n such that $f\cdot g=1$. We write $g=\sum_{k=0}^q g_k x_i^k$ with $g_k=g_k(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)$ for each k. Assume that q>0, then $1=a_mx_i^mg_qx_i^q+$ terms of lower degree with respect to x_i . We can write $g_q=\sum_{(t)}b(t)x^{(t)}$, with $x^{(t)}=\prod_{i\neq j=1}^n x_j^{t_j}$ and $b(t)=b(t_1,\ldots,t_{i-1},t_{i+1},\ldots t_n)$ in R, where

the $t_1,\ldots,t_{i-1},t_{i+1},\ldots,t_n$ are nonnegative integers and where the sum $t_1+\cdots+t_{i-1}+t_{i+1}+\cdots+t_n$ is an integer from zero to a fixed positive integer. Then a straigtforward calculation shows that $x_ig_q-g_qx_i=\sum_{(t)}d_i(b(t))x^{(t)}$. Writing $x_i^mg_q=x_i^{m-1}(x_ig_q)$ and applying the previous relation m times we finally get that $1=a_mg_qx_{m+q}^i+$ terms of lower degree with respect to x_i , therefore $a_mg_q=0$ and $g_q=0$. Thus we must have q=0 and $f\cdot g_0=1$. Assuming that m>0 we get that $a_mx_i^mg_0+(\sum_{j=0}^{m-1}a_jx_j^j)g_0=1$, which gives that $a_mg_0=0$; hence $g_0=0$. Therefore m=0 and $f=a_0$ is a unit of R. \square

We are now ready to prove

- 3.3. Theorem. Assume that S_n is a simple ring. Then: (i) No element of D is an inner derivation of R induced by some $0 \neq r$ in $\cap_{d \in D} \ker d$, and (ii) R is a D-simple ring.
 - *Proof*. (i) Assume the contrary, and apply Lemma 3.2 to get a contradiction.
- (ii) If I is a nozero D-ideal of R, then IS_1 is a nonzero d_2 -ideal of S_1 ; therefore IS_2 is a nonzero ideal of S_2 etc. Finally we get that IS_n is a nonzero ideal of S_n and therefore $I = R.\square$
- 3.4. THEOREM. Let R be a D-simple ring of characteristic zero and let d_i be an outer derivation of S_{i-1} , for each $i=1,\ldots,n$ (where $S_0=R$). Then S_n is a simple ring.

Proof. Assume the contrary, and let I be a nonzero proper ideal of S_n . Write the elements of I as polynomials in x_n with coefficients in S_{n-1} ; then the set $A(I)=I_{n-1}$ of Lemma 3.1 is a d_n -ideal of S_{n-1} while $A(I_{n-1})=I_{n-2}$ is a d_{n-1} -ideal of S_{n-2} . Moreover, given $0 \neq f$ in I_{n-2} there exists $0 \neq g$ in I_{n-1} of minimal degree, say k, with respect to x_{n-1} and leading coefficient f. Then $d_n(g)=d_n(f)x_{n-1}^k+1$ terms of lower degree (since $d_n(x_{n-1})=0$); therefore I_{n-2} is a $\{d_n,d_{n-1}\}$ -ideal of S_{n-2} . In the same way $I_i=A(I_{i+1})$ is a nonzero $\{d_n,d_{n-1},\ldots,d_{i+1}\}$ -ideal of S_i , for each $i=1,\ldots,n$ and therefore $I_0=R$. Hence, if s is the minimal degree in I_1 , there exists $f_1(x_1)=x_1^s+\sum_{i=0}^{s-1}a_ix_1^i$ in I_1 , with a_i in R for each i.

Suppose first that s > 0, then $f_1 r = r x_1^s + (s d_1(r) + a_{s-1} r) x_1^{s-1} + \text{terms}$ of lower degree, for all r in R. Hence the polynomial $f_1(x_1)r - r f_1(x_1)$, which is also in I_1 , has degree less than s and therefore $f_1(x_1)r = r f_1(x_1)$, for all r in R. On comparing the coefficients of x_1^{s-1} in the last equation we get that $s d_1(r) + a_{s-1}r = r a_{s-1}$, for all r in R.

But $0 \neq s$ and 1_R belongs to the field F_0 ; therefore $d_1(r) = (-s^{-1}a_{s-1}r - r(s^{-1}a_{s-1}))$ for all r in R, a contradiction. Hence s = 0 and 1_R is in I_1 . Therefore, we can find $f_2(x_2) = x_1^{s'} + \text{terms of lower degree } s'$ in I_2 . If s' > 0, then repeating the previous argument we find that d_2 is an inner derivation of S_1 ; otherwise, we continue in the same way.

Finally, in the f_i 's keep having degree zero, we find some f_{n-1} in I_{n-1} on the same form with $\deg f_{n-1} > 0$ (otherwise I = R). Then d_n is an inner derivation of S_{n-1} , a contradiction. \square .

40 Voskoglou

An argument similar to the previous one gives the following result:

3.5. Theorem. Let R be a D-simple ring of prime characteristic, say p. Set $F_q = C(S_q) \cap (\bigcap_{j=q+1}^n \ker d_j), \ 0 \le q \le n-1$ (where $S_0 = R$), and suppose that no derivation of the form $\sum_{i=0}^m a_i d_k^{p^i}$, with m a non negative integer and a_i in F_{k-1} for each i, is an inner derivation of S_{k-1} induced by an element of $\bigcap_{j=k}^n \ker d_j$, for all $k=1,\ldots,n$. Then S_n is a simple ring.

Conversely, if S_n is a simple ring, then no derivation of the form $\sum_{i=0}^m a_i d_k^{p^i}$, with a_i in F_0 for each i, can be an inner derivation of R induced by some nonzero element of $\bigcap_{d \in D} \ker d$, for all $k = 1, \ldots, n$, and R is a simple ring.

The previous theorems give the following corollary for n = 1, due to Jordan [6].

- 3.6. COROLLARY. Let R be a ring, and let S = S[x,d] be an Ore extension over R. Then: (i) If R is of characteristic zero, S is simple if and only if, R is d-simple and d is an outher derivation of r, and (ii) if R is of prime characteristic, say p, S is simple if and only if, R id d-simple and no derivation of the form $\sum_{i=0}^{m} a_i d^{p_i}$ with a_i in $C(R) \cap \ker d$ for each i, is an inner derivation of R induced by some nonzero element of $\ker d$.
 - **4. Example.** The following examples illustrate the previous results.
- 1) Let $R = T[y_1, \ldots, y_n]$ be a polynomial ring over a given ring T. Then the skew polynomial ring over R defined with respect to the set $D = \{\partial/\partial y_1, \ldots, \partial/\partial y_n\}$ of derivations of R is called the n-th Weyl Algebra over T, and it is denoted by $A_n(T)$. If T is a simple ring of characteristic zero, it is well know that $A_n(T)$ is simple (cf. [3, Prop. 7.30, p. 354] and apply induction on n). Alternatively, since R is D-simple, apply Theorem 3.4 to get the same result.

If T has nonzero characteristic, say p, since (y_1^p, \ldots, y_n^p) is a nonzero proper D-ideal of $R, A_n(T)$ iz not simple by Theorem 3.3 (otherwise show directly that (x_1^p, \ldots, x_n^p) is an ideal of $A_n(T)$).

- 2) Let k be a field of prime characteristic, say p and let $R' = k[y_1, \ldots, y_n]$ be a polynomial ring over k. Denote by d_i the derivation of the ring $R = R'/(y_1^p, \ldots, y_n^p)$ induced by $\partial/\partial y_i$ in the obvious way. Then $d_i^p = 0$, for each $i = 1, \ldots, n$, and therefore $S_n = R[x_1, d_1] \cdots [x_n, d_n]$ is not simple by Theorem 3.5, although it is easy to check that R is $\{d_1, \ldots, d_n\}$ -simple.
- 3) Let k be as before and let $R = k(y_1, \ldots, y_n)$ be the field generated by the indeterminates y_1, \ldots, y_n over k. Then $d_i = y_i \partial/\partial y_i$ is a derivation of R while $d_i' = d_i^p d_i$ is the zero derivation of R, for each $i = 1, \ldots, n$. Hence the skew polynomial ring over R defined with respect to the d_i 's is not simple, by Theorem 3.5
- 4) Let k be a field of characteristic zero and let R be a commutative k-algebra with no zero divisors.
- If R is a regular local ring of finitely generated type over k, then R is d-simple [4], therefore we can construct simple skew polynomial rings over R. On

the other hand, if R is either a finitely generated k-algebra or a complete local ring, and it is also nonregular, then R is not d-simple (cf. [7] and [8]); therefore we cannote construct simple Ore extensions in one variable over R.

REFERENCES

- [1] S. A. Amitsur, Radicals of polynomial rings, Canad. J. Math. 8 (1965), 355-361.
- [2] P. M. Cohn, Free Rings and Their Relations, London Math. Soc.Monographs, Academic Press, 1974.
- [3] C. Faith, Algebra: Rings, Modules and Categories I, Springer-Verlag, Berlin-Heidelberg-New-York, 1973.
- [4] R. Hart, Derivations on regular local rings of finitely generated type, J. London Math. Soc. 10 (1975), 292-294.
- [5] D. Jordan, Noetherian Ore extension and Jacobson rings, J. London Math. Soc. 10 (1975), 291-291.
- [6] D. Jordan, Ore extensions and Jacobson rings, Ph. D. Thesis, Leeds, 1975.
- [7] A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. J. Math. 89 (1967), 22-42.
- [8] A. Seidenberg, Differential idelas in complete local rings, Amer. J. Math. 95 (1975), 52-58.

Institute of Technological Education Patras, Greece

(Received 23 01 1984)