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SIMPLE SKEW POLYNOMIAL RINGS

Michael G. Voskoglou

Abstract. We treat two questions. First we give the general conditions for the existence
of skew polynomial rings in finitely many variables over a given ring R (special cases of such rings
are well, known, typifield by the n-th Weyl Algebras) and second we obtain the necesary and
sufficient conditions for the simplicity of such rings.

Note that Amitsur [1] obtained conditions under which an Ore extension R[z,d] over a
simple ring R is simple, while more recently Jordan [6] obtained such conditions if R is d-simple.

1. Preliminaries. All the rings considered in this paper are with identities.
We recal that a map d : R — R such that d(a + b) = d(a) + d(b) and d(ab) =
d(a)b + ad(b), for all a,b in R is called a derivation of R. Given s in R it is easy to
check that the map d: R — R, defined by the relation d(r) = sr —rs for all 7 in R,
is a derivation of R called the inner derivation of R induced bu s. Any derivation
of R which is not inner is called an outher derivation of R.

Let D be a family of derivations of R, then an ideal I of R is said to be a
D-ideal if d(I) C I for all d in D, and R is called a D-simple ring if it has no
nonzero proper D-ideals. In the special case where D = {d} we write d-ideal and
d-simple ring respectively. It is clear that if R is d-simple for some d in D then
R is D-simple.

Every D-simple ring contains the field Fo = C(R)N[Ngep ker d], where C(R)
denotes the center of R, and therefore R is of characteristic either zero or of a
prime number p.

Consider now the set S of all polynomials in one variable, say x, over R and
define in S addition in the usual way and multiplication by the rule zr — rz*d(r)
for all » in R, where d is a given derivation of R.

Then it is well known (e. g. [2 p. 35]) that S becomes a ring denoted by
R[z,d], and it is called a skew polynomial ring, or an Ore extension over R.

n . .

Applying induction on n one finds that z"r = Y (7)di(r)z"* for all r in

i=0

R.
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2. Skew polynomial rings in finitely many varibales. We need first
the following lemma:

2.1 LEMMA. Let R and S be as before and let d’be an outer derivation of R. Then
d’extends to a derivation of S by d'(z) = 0 if and if d’commutes with d.

Proof . Tt is clear that d' extends to a derivation of S if d'(x) can be defined in
a way compaitible with the multiplication in S. Namely, if d'(x) = h, we should be
able to write d'(zr) = d'(rz) + d'(d(r)), or xd'(r) + hr = d'(r)z + rh + d'(d(r)), for
all r in R. But zd'(r) = d'(r)z+d(d'(r)) and therefore we get that hr +d(d'(r)) =
rh+d'(d(r)), for all r in R. Thus if h =0, d’ comutes with d and, conversely, if
that happens, one can extend d’ to a derivation of S by putting d'(z) = 0.

Using the lemma above and applying induction on n we get the following
result:

2.2 THEOREM. Let R be a ring and dy,ds, . .. ,d, be derivations of R. Consider the
set Sy, of all polynomials in n variables, say x1,%2,. .. ,x, over R. Define addition
in Sy, in the usual way and define multiplication by the relations: x;r = ra; + d;(r)
and z;x; = xjz; for all v in R and all 4,5 = 1,2,... ,n. Then S; becomes an
Ore extension of Si—1 for each i = 1,2,... ., n (where Sg = R) if and only if d;
commutes with d;, for all 4,5 =1,2,... ,n.0

We call the ring construced in the previous theorem a skew polynomial ring
in n variables over R (by derivations) and we denote it by

Sn = R[.Z'l,dl] Tt [mnadn]

3. Simple skew polynomial rings. Throughout this section S,, is un-
derstood to be a skew polynomial ring in n variables over a ring R, defined with
respect to a finite set D = {dy, ... ,d,} of commuting derivations of R.

We need the following two lemmas.

3.1 LEMMA. Let S = R|z,d] be an Ore extension over a ring R, where d is a
derivation of R. Then: (i) If I is a d-ideal of R, IS is an ideal of S, and (ii) If
I is an ideal of S, the set A(I) of the leading coefficients of the elements of I of
minimal degree together with zero is a d-ideal of R.

Proof. See Lemma 1.3 in [5].00.

3.2 LEMMA. Let f(x;) = Z;”:O CL]'Z"Z be a unit of S,, for some i =1,2,...n, where
aj is in R for each j and a,, is a regular element of R. Then m =0 and f is a
unit of R.

Proof. There exists a g in S, such that f- g =1. We write g = Y7 _, grz¥
with g = gr(21,... ,2_1,%i31,...,Zy) for each k. Assume that ¢ > 0, then
1 = amal"gex!+terms of lower degree with respect to z;. We can write g, =

>0 b(t)z®, with 2 = ] :c? and b(t) = b(t1,... ,t;_1,tir1,-..t,) in R, where
i#j=1
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the t1,... ,ti—1,ti+1,... ,t, are nonnegative integers and where the sum ¢; +--- +
ti1 + tiz1 + --- + t, is an integer from zero to a fixed positive integer. Then
a straigtforward calculation shows that @igy — g,z; = > () di(b(t))zV). Writing
x'gq = xgn_l(:ci 94) and applying the previous relation m times we finally get that
1= amgyt, 441 terms of lower degree with respect to z;, therefore a,,g, = 0 and
gq = 0. Thus we must have ¢ = 0 and f-go = 1. Assuming that m > 0 we get that
amz"go + (Z;:OI a;xl)go = 1, which gives that a,,go = 0; hence go = 0. Therefore
m =0 and f = ag is a unit of R.O
We are now ready to prove

3.3. THEOREM. Assume that S, is a simple ring. Then: (i) No element of D is
an inner derivation of R induced by some 0 # 1 in Ngep ker d, and (i) R is a
D-simple ring.

Proof. (i) Assume the contrary, and apply Lemma 3.2 to get a contradiction.

(ii) If I is a nozero D-ideal of R, then I.S; is a nonzero ds-ideal of Sy; therefore
1S, is a nonzero ideal of Sy etc. Finally we get that IS, is a nonzero ideal of S,
and therefore I = R.OJ

3.4. THEOREM. Let R be a D-simple ring of characteristic zero and let d; be an
outer deriwation of S;_1, for each i = 1,...,n (where So = R). Then S, is a
simple ring.

Proof. Assume the contrary, and let I be a nonzero proper ideal of S,,. Write
the elements of I as polynomials in z,, with coefficients in S,,_1; then the set A(I) =
I,_1 of Lemma 3.1 is a dp-ideal of S,_1 while A(l,_1) = I,_2 is a dp_1-ideal of
Sn—2. Moreover, given 0 # f in I,,_» there exists 0 # g in I,_; of minimal degree,
say k, with respect to x,_; and leading coefficient f. Then d,(g) = d,(f)z¥ ,+
terms of lower degree (since dp,(z,—1) = 0); therefore I,_» is a {d,, d,—1 }-ideal of
Spn—2. In the same way I; = A(I;11) is a nonzero {dy,dn_1,... ,d;y1}-ideal of S;,
for each 4 = 1,... ,n and therefore Iy = R. Hence, if s is the minimal degree in
I, there exists f1(z1) = z§ + Zf:é a;x} in I, with a; in R for each i.

Suppose first that s > 0, then fir = rzf + (sdi(r) + as_17)z5 '+ terms
of lower degree, for all r in R. Hence the polynomial fi(z1)r — rfi(21), which
is also in Iy, has degree less than s and therefore fi(z1)r = rfi(z1), for all r
in R. On comparing the coefficients of xffl in the last equation we get that
sdi(r) + a;_17 =ras_1, for all r in R.

But 0 # s and 1g belongs to the field Fy; therefore dy(r) = (—s~tas_17r —
r(s~las_1) for all 7 in R, a contradiction. Hence s = 0 and 1g is in I;. Therefore,
we can find fo(z) = 25 + terms of lower degree s’ in Ir. If s’ > 0, then repeating
the previous argument we find that ds is an inner derivation of S;; otherwise, we
continue in the same way.

Finally, in the f;’s keep having degree zero, we find some f,_1 in I,,_; on the

same form with degf,_1 > 0 (otherwise I = R). Then d,, is an inner derivation of
Sn_1, a contradiction. OI.
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An argument similar to the previous one gives the following result:

3.5. THEOREM. Let R be a D-simple ring of prime characteristic, say p. Set
F,=C(S,)n (ﬂ?:qJrl ker d;), 0 < g <n—1 (where Sy = R), and suppose that no

derivation of the form >\~ aid’,;z, with m a non negative integer and a; in Fi_,
for each i, is an inner derivation of Sp—1 induced by an element of ﬂ?:k ker dj,
forallk=1,... ,n. Then S, is a simple ring.

Conversely, if Sy, is a simple ring, then no derivation of the form > .- aidf,
with a; in Fy for each i, can be an inner derivation of R induced by some nonzero
element of ycp ker d, for all k =1,... ,n, and R is a simple ring.

The previous theorems give the following corollary for n = 1, due to Jordan
[6].

3.6. COROLLARY. Let R be a ring, and let S = S|z, d] be an Ore extension over R.
Then: (i) If R is of characteristic zero, S is simple if and only if, R is d-simple and
d is an outher derivation of r, and (i) if R is of prime characteristic, say p, S is
simple if and only if, R id d-simple and no derivation of the form Y .-, a;dP* with
a; in C(R)Nker d for each i, is an inner derivation of R induced by some nonzero
element of ker d.

4. Example. The following examples illustrate the previous results.

1) Le¢ R = T[y1,-.-,yn] be a polynomial ring over a given ring T .
Then the skew polynomial ring over R defined with respect to the set D =
{0/0y1,...,0/0yn} of derivations of R is called the n-th Weyl Algebra over T,
and it is denoted by A,(T). If T is a simple ring of characteristic zero, it is well
know that A, (T) is simple (cf. [3, Prop. 7.30, p. 354] and apply induction on n).
Alternatively, since R is D-simple, apply Theorem 3.4 to get the same result.

If T has nonzero characteristic, say p, since (y?,...,yP) is a nonzero proper
D-ideal of R, A,(T) iz not simple by Theorem 3.3 (otherwise show directly that
(z7,...,2P) is an ideal of A,(T)).

2) Let k be a field of prime characteristic, say p and let R’ = k[y1,... ,yn] be a
polynomial ring over k. Denote by d; the derivation of the ring R = R'/(y}, ... ,y?)
induced by 8/8y; in the obvious way. Then d? = 0, for each i = 1,... ,n, and
therefore S,, = R[z1,d;]---[zn,d,] is not simple by Theorem 3.5, although it is
easy to check that R is {di,... ,d,}-simple.

3) Let k be as before and let R = k(y1,- .. ,yn) be the field generated by the
indeterminates yi,... ,y, over k. Then d; = y;0/0y; is a derivation of R while
d; = d¥ — d; is the zero derivation of R, for each i = 1,... ,n. Hence the skew
polynomial ring over R defined with respect to the d;’s is not simple, by Theorem
3.5.

4) Let k be afield of characteristic zero and let R be a commutative k-algebra
with no zero divisors.

If R is a regular local ring of finitely generated type over k, then R is d-
simple [4], therefore we can construct simple skew polynomial rings over R. On
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the other hand, if R is either a finitely generated k-algebra or a complete local
ring, and it is also nonregular, then R is not d-simple (cf. [7] and [8]); therefore
we cannote construct simple Ore extensions in one variable over R.

(1]
(2]
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