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BASES FROM ORTHOGONAL SUBSPACES OBTAINED
BY EVALUATION OF THE REPRODUCING KERNEL

Dusan Georgijevié

Abstract. Every inner operator function § with values in B(E, E), E — a fixed (separable)
Hilbert space, determines a co-invariant subspace H(6) of the operator of multiplication by z in
the Hardy space H%. “Evaluating” the reproducing kernel of H(8) at “U-points” of the function
8 (U is unitary operator) we obtain operator functions 7:(2) and subspaces ¢ E. The main result
of the paper is: Let the operator I — 6(2)U* have a bounded inverse for every z, |z| < 1. If
(1 —7)~1Rp(rt) for definition of ¢ see (1) is uniform bounded in r, 0 < r < 1, for all ¢, [t| = 1,
except for a countable set, then the familly of subspaces v E is orthogonal and complete in H(9).
This generalizes an analogous result of Clark [3] in the scalar case.

1. Introduction. Throughout this paper we denote by D the unit disc
| z |[< 1 and by T the unit circe | z |= 1 of the complex plane C. Given a
separable Hilbert space E(E # {0}), let Hz be the standard Hardy space of analytic
E-valued functions on D. (See [1] or [2] for general references.) Writting inner
products and norms in H% we will omit designation of the space in the index. The
space H% possesses a so-called reproducing kernel. This is the function k,(z) =
(1-2zw)™!', we D, z € D, with the following properties: kya € Hs, w € D, a €
E, (kwa = ky(-) a) and (f,kya) = (f(w), a)g, f € Hi, w € D. If 6 is an
inner operator function [1] (defined on D and with values in B(E, E)), then let
H = H(9) = H% © 0H%. The reproducing kernel for the space H is the function
Ky(z) = (1 — zw) (I — 0(2)0(w)*), w € D, z € D, where by I is denoted the
identity mapping in E.

If U is a unitary operator in E, then we will also consider the following
operator functions:

(1) p(z) = pu(z) = I +0(x)U")I - 8(z)U*) ",
z€ D, (if (I —0(2)U*)"! exists) and
(2) 1(2) =t 2) = (1 —28)7 I - 8(2)U"),
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t €T, z € D. In the scalar case (dimE = 1) U is a number of modulus 1 and U*
shall be replaced by U.

In [3] Clark considered orhogonal sets in H obtained by evaluation of the
kernel K,,(z) on T, in the case dim E = 1. The purpose of this paper is to generalize
the criterion for completeness of such orhogonal sets which is contained in Theorem
7.1 of [3].

2. Bases from subspaces. Let Ty be the set of all points ¢ € T such that
via € H for some a € E, a # 0. Given t € T, we denote by 1 E the closure of
the set of all functions of the form va, a € F, lying in H. All such subspaces
form a family which we will denote by Gyy = {vE | t € Ty}. The problem we are
interested in is: when does the family Gy form an orhogonal basis from subspaces
of H, i. e. when does +wE L ~v:E, t # s and Cl(UnE, t € Ty) = H hold?
(Cl=closure).

We begin with some lemmas.

LEMMA 1. The mapping f — f(w) is a bounded operator from H% to E for
every w € D.

Proof. The statement follows from the inequality
1F @)lle = sup{| (f,kwa) : a € E, |a]] <1} < | fl|(ku(w)"/?, f € HE, we D.

Note that it follows by lemma 1. that if the operator I —60(z)U* has a bounded
inverse for at least one z € D then every function in 4 E has the form v;a, a € E.

LEMMA 2. Let Hy and H be Hilbert spaces with (scalar) reproducing kernels
[4], KL (2) and K2(2), w € D, z € D. If there exists a function h (from D into

C) such that h(z) # 0, z € D, and K2(z) = h(w)h(2)K}(z), w € D, z € D, then
multiplication by h is an isomorphism of spaces Hy and Hj.

Proof. We establish the equality
(3) (h‘fahg)QZ(fag)la fEHla geHl;

first in the case when f = h(w)K), w € D, and g = h(v)K}, v € D : (hf, hg)s =
K2 () = (f,9)1- By linearity it follows that (3) hodts also when f and g are
linear combinations of functions of the form h(w)KL, w € D. The same con-
clusion follows by continuity of the inner product and by completeness of the set
{h(w)K] | w € D} in H; also when f and g are arbitrary functions in Hy. Thus
multiplication by h preserves the inner product. Since the set {K2 | w € D} is

complete in Hy, hHy = Hs, i. e. multiplication by A is an isomorphism of spaces
H1 and HQ.

LEMMA 3. Let 0 be a scalar inner function and t € T. Then the following
are equivalent

(a) v € H for some complex number U of modulus 1,
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(b) the limit lim,_,1_ K, exists in the H-norm,

(¢) || Kre]| is bounded for r < 1.

Proof. (a) = (b). If v € H for some U, | U |= 1, then every function f € H
has a nontangential limit f(¢) at ¢ and the functional f — f(¢) is bounded [3]. By
the existence of the limit lim, ,;_ y(rt) = lim,_;_(10(rt)U)(1 — r)~! it follows
that lim,_,;_ 6(rt) = U and that lim,_,;_ K, (rt) = v (w) = (Ku, ), w € D.
This means that K, (t) = (Ky,7:), w € D, so f(t) = (f,v) for every f € H. In
particular

Jim (100D (A=) = lim () = [l
This implies that
Kpi(rt) = (1= 0(rt)U)(1 — )~ +0(rt)U (1 — 8(rt)U) (1 — )71

tends to ||y]|> as r — 1—.

Thus || K —7el|? = Kri(rt) —ve(rt) — v (rt) +||v:]|> = 0, as r — 1—, i. e. (b) holds.
(b) = (c) is clear.
(¢) = (a). Let € have the representation 6(z) = vB(z)S(z), z € D, where
lv|=1,
1 1
B(z) = [T ox(z) = I 1 2 | /2n (2 — 2)(1 = z25) 7,
k=1 k=1

z€D,withzy € Dfork=1,2,..., 1 (1<l<o0; |2 | [z =1, if 2z, =0) (if 8
has no zeros then B(z) = 1), and

S(z) = exp(— /0%(8 +2)(s— z)_ld,u(a:)), 2€ D, (s=¢€"),

where p is a finite, non-negative singular measure on 7. From boundedness of
|Kyi]|? = Kpi(rt) and from | B(rt) |>| 6(rt) | and | S(rt) |> 6(rt) | it follows that
(1— | B(rt) |)(1 = r?)"! and (1— | S(rt) |?)(1 — r?)~! are bounded. Since

A= Brt) A=) =0z ) [ L —rtz |72 +
1
+Y L1650t P A=z ) | 1= rtze [ 2
1
- Z(l— zi 2) |1 =%z |72 as r— 1—,
it follows that

l
(4) Sz P) |17 < oo
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Since | S(rt) |>= exp (—2(1—r2) f027r | s—rt |72 d,u(a:)), it follows from boundednes

of (1—| S(rt) |> (1 —r?)~! that f027r | s —rt |~2 du(z) is bounded for r sufficiently
near to 1, which gives

(5) /Owls—t|2du(a:)<oo.

Now, (4) and (5) impply that v, € H for some U, | U |= 1, [3]. This completes the
proof.

Remark 1. Let Rp(rt)(1 —7)~! be bounded, t € T(¢ = ¢1). Then ||K,|| is
bounded also. This is evident from the relation

K.i(rt) = Ro(rt)(1 —r2) "L | 1—0(rt) | .

LEMMA 4. Let the operator I — 6(z) have a bounded inverse for every z € D
and let Rp(rt) = 0, r = 1—, (¢ = ¢1) (at least in the weak operator convergence)
for a. e.t € T. Fiz a € E\{0} and put v,(z) = (p(2)a, a)g, z € D. Then the
function 0,(p, — 1)(pa + 1)~ is a (scalar) inner function and the corresponding
space H, = H(0,) is isometrically isomorphic to the subspace Ka of H generated
by functions of the form K, (z)(I — 0(w)*) ta, w € D. An isomorphism ® from
Ka to H, is given by ®f(2) = (1 —60,(2))((I —6(2))"*f(2), a)g, z € D, f € Ka.

Proof . Since [|6(2)|| <1, z € D, and
Rep(2) = (I - 0(2)) "1 (I —6(2)"0() (T — 6(2)") ",

it follows that Rp(z) > 0 and Ry, (z) > 0, which implies | 6, |< 1, z € D. Since
Rp(rt) = 0, r — 1—, for a. e. ¢t € T, it follows that the same holds for ¢, and
so radial limits of #, have modulus 1 for a. e. ¢t € T. Thus 6, is an inner function.

Now consider the mapping ®; defined by @, f(2) = ((I —6(2))"'f(2), a)g,
2 € D, f € Ka. Because of ®,f(2) = (f,Kz(I — 8(2)*)"1a) ®, is a regu-
lar mapping, ie. &1f = 0iff f = 0. So ®; maps Ka one-to-one onto a set
L = L, of scalar analytic (in D) functions. If we define in L the inner prod-
uct by (hy,h2)r = (<I>1_1h1, <I>1_1h2), h1, he € L, then L becomes a Hilbert space
isometrically isomorphism to Ka. The space L possesses also reproducing kernel.
This is the function

Juw(2) = 1K, (2)(T—0(W)*) ta = (pa(2) +pa(w))2  (1—2w) !, z€ D, w € D.

Finally, multiplication by the function 1—6,(z) is an isometrical isomorphism
from L onto H, (Lemma 2). Thus ® is really an isometrical isomorphism from
Ka onto H,.

LEMMA 5. Let the assumptions of Lemma 4 be satisfied and let t € Ty. Then
there exists an operator a(t) € B(E, E) such that

(6) Jim (1= r)(T = 001)*) = a()
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in the strong operator convergence. If a € A\{0}, then the function vy;(a(t)a(y:(2)
= y(t,2), see (2)) belongs to the subspace Ka (defined in Lemma 4) and it holds

(7 Tl_i)r{l_(l — 1)K (I —0(rt)*) 'a = yia(t)a

in the H-norm. If 0,,H, and ® are as in Lemma 4 and if ~] denotes the function
(1—6,))(1 — 28)7!, then v¢ € N, iff (a(t)a, a)g # 0 and it is also

(8) dya(t)a = (a(t)a, a)gyy.

Proof . Since t € Ty, it follows that v:b € H for some b € E\{0}. Let a € E
and (b,a)g # 0. Denote by P+b the projection of b to the subspace Ka.
Because of

(I =0(2)) ' Pru(2)b,a)p = (%, K.(I-6(2))""a) = (b,a)p(1 —28)~", z € D,
it must be
(9) ‘I)P’ytb = (b, a)Eyf.

Since (b,a)r # 0, the function ~f lies in H,. If K2(z) denotes the reproducing
kernel in H,, then by Lemma 3 ¢ = lim,_,;_ K¢ in the H,-norm. Since & is
an isomorphism (Lemma 4) and @ 'K? = (1 —8,(rt))K+(I — 6(rt)*)~'a we have
also

Oyt = lim (1 —6,(rt)) K (I —0(rt)*) ta

r—1—

in the H-norm. Regarding the fact that
Tim (1= 0,(r)) (1 =) = lim (o, Kf), = ¢,
we obtain

(10) @197 = [P tim (1= ) Kol - 6t)°) .

If we consider pointwise convergence (Lemma, 1) in the last relation, we can conclude
that there exists

(11) lim (1—7)(I —0(rt)*)‘a ¥ a(t)a
r—1—

in the E-norm and that (7) must hold, which gives also v;a(t)a € Ka. In fact, the
limit (11) exists and the relation (7) holds for every a € E, for if (b,a)g = 0 we can
write a = (a+b) —b. Since a in (11) may be arbitrary, a(t) is a (bounded) operator
and (6) follows. Putting b = «(t)a in (9) we obtain (8). Now (10) and (7) imply
& 198 = ||y2]|*y;a(t)a. Comparing this with (8) we see that (a(t)a, a)r = ||72|| 2.
Hence it is evident that «f € H, implies (a(t)a, a)g # 0 and (8) shows that the
converse is also true.

LEMMA 6. In Lemma 5 all functions of the form va(t)a, a € E, form a
complete set in v E.
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Proof . If b € E and vb L ya(t)a, a € E, then by (7) 0 = (b, ea(t)a) =
lir{l (1 —7r) (b, Kre(I — 6(rt)*) ta) = (b,a)g, a € E,i. e. b =0 and ;b = 0.
r—1—

LEMMA 7. Let the assumptions of Lemma 4 be satisfied. Then the set G = G
is orthogonal.

Proof. Let t € T;, s € T1, t # s, and let yza(t)a € E and ;b € v, E. Then
it follows by (7) that

(yea(t)a,vsb) = Tl_i)r{l_(l —7)(1 —rts) *(a,b)p = 0.

By completeness of the set {va(t)a | a € E} in E it follows that wE L . E.
Thus the family G is orthogonal.

THEOREM. Let 6 be an inner operator function, U a unitary operator in
E and let the operator I — 0(z)U* have a bounded inverse for every z € D. If
(1 —r) ' Rp(rt) is bounded in r for all t € T except for a countable set, then the
family Gy is orthogonal and complete in H.

Proof. Since H(OU*) = H(0) for each unitary operator U (in E), it is
enough to give the proof only in the case U = I. Thus let U = I. The assumption
on boundedness of (1 —7)~!Rp(rt) implies that lim,_,; Rp(rt) = 0 in the strong
operator convergence for all t € T except for a countable set. So the assumptions
of Lemmas 4, 5, 6, 7 are satisfied.

Orthogonality of the family G is proved in Lemma 7. Let us prove the
completeness of G. It is clear that whenever (1 — r)"1Rp(rt) is bounded then
(1—7) " Ry, (rt) is too, for a € E (p, asin Lemma 4). By Remark 1 and by Lemma
3 it follows that the condition (a) in Lemma 3 is satisfied for all ¢ € T' except for
a countable set. By Theorem 7.1 and Lemma 3.1 in [3] it follows that the set of
functions of the form v¢, ¢ € T', which belong to H, is complete in H,. By Lemma 5
(relation (8)), ® maps the set of all functions of the form vy;a(t)a, t € Tr, v € C (a
fixed), onto the set of all functions of the form v, t € T, v € C, which belong to
H,. This implies that the set of functions of the form v;a(t)a, t € T, is complete
Ka. If afunction f in H is orthogonal to all subspaces of the type v E, t € Ty, it is
orthogonal also to all functions of the form y;«a(t)a, t € Ty, a € E. Since the above
set, of functions for fixed a is complete in Ka, that implies f 1 Ka for every a € E.
However, this implies that (I — 8(w))~'f(w), a)g = (f, Ku(I — 8(w)*)"1a) =0
for every a € E and every w € D, so that f = 0. Thus, the set G is complete in
H . This completes the proof.

Remark 2. If the function 6 admits analytic continuation across some point
t € T and if 6(t) = U, then ya € H for every a € E and (z) is obtained by
evaluation of the (analytically continued) reproducing kernel K, (z) for w = ¢. In
the general case the situation is, in a sense, similar. Namely, it follows easily by
(7) that, for t € T1, a € E and z € D, lim,,;_ K4 (2)a(t)a = v (2)a(t)a in the
E-norm. With the help of the last relation K, (z) can be extended for every ¢t € T
along the radius {rt | 0 < r < ¢} at least as an operator function with values in
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the set of bounded operators from «(t)E into «(t)E, so that we can consider 7;(z)
also in the general case as an evaluation of K, (z) for w = t.
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