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ON THE CONSTRUCTION OF FINITE DIFFERENCE SCHEMES
APPROXIMATING GENERALIZED SOLUTIONS

Endre E. Siili. Bosko S. Jovanovié, Lav D. Ivanovié

Abstract. We consider Dirichlet’s problem for Poisson’s equation in n-dimensional Eu-
clidean space assuming that the generalized solution belongs to the Sobolev space WP, 1 < s < 4,
1 < p < co. We construct finite difference schemes converging to the generalized solution in integer
order discrete Sobolev-like norms.

1. Introduction. Recently there have been many theoretical advances in
constructing finite difference schemes approximating generalized solutions of bound-
ary value problems. For example, Lazarov [4] presents a finite difference approx-
imation of Dirichlet’s problem for Poisson’s equation with a generalized solution
belonging to the integer order Sobolev space W22, s = 2,3 and proves that it is
convergent in discrete norms using the so called Bramble-Hilbert Lemma [1].

Unfortunately, the Bramble-Hilbert Lemma is stated only for integer order
Sobolev spaces. Recently Dupont and Scott [3] gave a constructive proof of this
Lemma using averaged Taylor series and extended it to fractional order Sobolev
spaces.

In this paper a basic framework is given which allows the application of the
finite difference method in order to approximate generalized solutions belonging to
the Sobolev space WP, 1<s<4, 1< p< 0.

For simplicity, the analysis in this paper deals only with Dirichlet’s problem
for Poisson’s equation in rectangular domains. Extensions to other elliptic bound-
ary value problems in less special domains are possible.

2. Preliminaires and Notations. Let .4 be an open set in n-dimensional
Euclidean space R™ with the restriced cone property and 1 < p < oo. Throughout
the paper W#?(A) is the Sobolev space of order s > 0 [8] equipped with the Sobolev
norm

s 1/p 1/p
lully it = (Z |u|z,p,,4) with fulipA = ( ) ||Dau||‘zp(A)) ,
k=0

lal=k
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if s is integer and

lallspt = (all?y 0+ Jul?, )7

if s = [s] + o, with [s] =integral part of s, 0 < o < 1 and

B |Du(z) — D (y)|P Y
[uls,pa = ( Z]/A/A o — gt oxdy .

lee|=[s
N will stand for the set of nonnegative integers. P!(A) will denote the set of
polynomials in n variables of degree < [ over the set A, for any [ € N.

The following lemma is an easy consequence of Theorem 6.1 of [3] (the case
o =1, p=2 follows from the Bramble-Hilbert Lemma [1]).

LEMMA. Suppose that s =1+ o, where 0 < o0 <1 andl € N. Let n be a
bounded linear functional on W*P(A) such that P'(A) C kernel (). There exists
a positive constant C (depending on A,s and p) such that for any u € W5P(A)

In(u)| < Clulspa-

Remark 1. This lemma may also be proved using either Tartar’s (unpublished)
Lemma [2] or Peetre’s Lemma [5].

Let D'(Q2) denote the space of distributions on 2 for any open set  C R™ and
A the Laplace operator on D’'(2). We shall assume for the sake of simplicity that
 is an open rectangle in R™ and consider the following boundary value problem:

Given f € W 1?(Q), find a function u that satisfies

(1) Au=—f in Q, in the sense of distributions
(2) uw =0 on 0, in the sense of trace theorems.

By changing variables, we may assume, without loss of generality, that the
rectangle is = (0,1)™.

3. Mollifiers. Let us consider the function
si 2)\v
(M) 240
Sy(z) = z/2
1, z =0,
with v € N. By the Paley-Wiener-Schwartz Theorem [7] there exists a distribution
0, with compact support and with a Fourier transform equal to S,,.

Remark 2. An easy argument shows that ©g is the Dirac distribution, ©; the
characteristic function of the interval (—1/2,1/2) and

1—|z|, ze(-1,1)
0; $¢(_171)
Let v = (v1,...,v,) € N*, 2 = (21,...,2,) € R", G, a distribution

defined by G,(z) = h "O(z/h) with ©, the tensor product of distributions
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O, i = 1,...n and h a positive parameter. For u € D'(R™) the operator T,

given by T,u = u x G, will be called mollifier.

Let u € D'(R?) and v* € D'(R"™) any extension of u. T,u will denote the
restriction of T,u* to the rectangle Q, = {z € R™;hy;/2 < 2; < 1— hy;/2, i =
1,...,n}. Finally let us observe that t,u does not depend on u* thus it is well

defined.

4. Construction of Finite Difference Schemes. Let ng > 2 be an integer

and h = 1/ng. We define the following grids:

Ry ={z = (a{",... ,a(") € R": 2 =ij - h, Jijl <o0, j=1,...

wp =QNRE, v =00N Ry, Wr =wh U,
vl =y, N ((0,1)77 x {0,1} x (0,1)"79), j=1,...,n
Y =y N U (0,1)77 x {0} x (0,1)™7

+ _ n+1
wp =wp Uy, .

For v function of discrete arguments defined on R}, set

x +ejh) — v(z) _ v(z) —v(z —ejh)
h ) (VJV)(Z.) - h )

with e; = (1, .. ,0n;) and define the discrete Laplace operator A by

(A =2

Ahl/ = iAjij.

i=1
Finally let us introduce the following discrete norms:

[ =(hn S <m)|p)””

TEWH

[llo,p,h =<h” > |V(.Z')|p>1/p

zEw:

n 1/p
ES VT MY

j=1

- =(||u|

1Lz =(||u|

i#£] i=1
Consider the following finite difference scheme
(3) —Apz = Z Ajanj, T € wp

j=1

(4) z(x) =0, T E Ty

n 1/p
ont S A+ S IAT )

7n}
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with 7; defined on wy, U'y,]; and equal to zero on ’yg, j=1,...,n. An easy argument
based on the discrete multiplicator techniques shows that

(5) [zllo,pn < C D Imsllo,p,n
i=1

(6) I2llpn < C D N[Asmjll0,p,n
i=1

(7) 2ll2,,0 < C Y 11A;Vi5l0,p,
i=1

with C positive constant independent of z and h.

Boundary value problem (1), (2) has a unique solution u € Wol’p Q) ={ue
WbhP(Q) :u = 0on 0N}, 1 < p < oo. Let Q* = (—1,2)". Extension of u by 0
outside Q is a continuous mapping of Wo1 P(Q) into W1P(Q*) [6]. Hence,

u — u* = odd extension of «

is a continuous mapping of W, P(Q) into W'P(Q*). Let f* = Au* and e =
(1,...,1). Applying T5. we have

n
ZA]‘VJ‘TQC_eru* = _(T26f*)($), T € Wp-
j=1
T f* is a continuous function on Qe and Toe f* = Toe f on Q.. Thus,
n
(8) ZAjva2€—2€j u* = —(Tgef)(il,'), r € wp
7j=1
Similarly, T.u* is a continuous function on Q., Teu* = T.u on 2, and
9) (Tew™)(x) =0, = € Y.

We associate to (1), (2) the finite difference scheme

(10) Ay = —(Toe f)(z), = € wp
(11) v(z) =0, Z€ .

5. Convergence of the Finite Difference Scheme

THEOREM. Let u be the solution of boundary value problem (1), (2), v the
solution of discrete problem (10), (11) and k € {0,1,2}. If u belongs to W*P(2)
with1 <s<k+2and 1< p< oo, the following error estimate holds

ITew — v|lk,p,n < Ch87k|“|s,p,97
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with a positive constant C independent of h. Moreover, if s > k then finite differ-
ence scheme (10), (11) converges in the dicrete norm || - || p.n-

Proof. We shall give the proof for k = 0. The procedure is similar for k = 1
and k = 2. By (8)—(11) function 2 = v — Teu* is defined on Wy, and satisfies (3),
(4) with n; = Teu* — The_2e;u*. Function n; is defined on wy U fyfl and equal to
zero on 7. Thanks to inequality (5) it suffices to estimate ||njllo,p,n, 5 =1,... , 7.
For 1 <i; <mng — 1 we introduce the squares
E(i1,... ip)={z=(21,... ,2,) e R" :(3; —1)h <z; < (i +1)h, j=1,...,n}
E={t=(t1,.-.,tn) ER": -1<t; <1, j=1,...,n},
and the affine mapping
= (T1,---,Zn) € BE(iy,... ,in) >t = (t1,-.. ,tn) € E, with T Zijh+tjh, j=
1,...,n. Set @(t) = u*(x(t)). Then,

1/2 1/2
nj(ilh,...,inh):/ / At £)Ot - Gt

—1/2 —1/2
1 1
—/-~/ﬁe%qwah”w%muh”wmwh~6q4&ﬁy~&w
-1 -1

Furthermore, 7;(i1h,... ,iph) is a bounded linear functional on W*P(E), s > 1
and P'(E) Ckernel (9;(i1h,... ,inh)). By the lemma,

Inj(irhs ... yinh) < |Cliilspp, 1<s<2,

thus
Inj(irh, ... sinh| < CH™Pl*|, b gy, i), 1< 8<20
Finally,
Injllop,n < Chlulspe, 1<s<2
and

ITew = vllopn = I Tew” = vllopn = ll2llo,pn < CP®lulsp0, 1<s<2.
That completes the proof.

Remark 3. Introducing fractional order discrete Sobolev like norms || - ||x,p,n
and using the discrete interpolation technique it is possible to show that the state-
ment of the theorem holds for all k£, 0 <k < 2.
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