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ISOTROPIC SECTIONS AND CURVATURE PROPERTIES
OF HYPERBOLIC KAEHLERIAN MANIFOLDS

Georgy Ganchev and Adrijan Borisov

Abstract. In [4,2] curvature properties of pseudo-Riemannian manifolds were investigated
with respect to isotropic vectors and isotropic sections. Further, analogous properties have been
treated in [1] for Kaehlerian manifolds with an indefinite metric. In this paper we consider hyper-
bolic Kaehlerian manifolds, and study how the curvature properties of one- and two-dimensional
isotropic tangential spaces determine the curvature properties of the manifold.

1. Preliminaries

Let M be a 2n-dimensional hyperbolic Kaehlerian manifold, i.e. M is a Rie-
mannian manifold with an indefinite metric g and an almost product structure
satisfying the conditions:

(1) p*=id,  g(PX,PY)=—g(X)Y)

for arbitrary vector fields X, Y and VP = 0. The metric g is of signature (n,n)
and P trace = 0.

R, p and T will stand for the curvature tensor, the Ricci tensor and the scalar
curvature respectively. The curvature tensor R satisfies the condition

(2) R(X,Y,Z,U) = —R(X,Y, PZ, PU)

for arbitrary vectors in the tangential space T', M, p in M. The Ricci tensor p has
the property

(3) p(X,Y)=—p(PX,PY); X,Y in T,M.
Further, we consider the tensors:
SO(Ya Z; U) = g(Y, Z)p(X, U) - g(X, Z)p(Y, U)
Y(X,Y,Z,U) = —g(Y,PZ)p(X, PU) + g(X, PZ)p(Y, PU)
= 9(X, PU)p(Y,PZ) + g(Y, PU)p(X, PZ)
+29(X, PY)p(Z, PU) + 2(Z, PU)p(X, PY);
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7Tl(*Xa Y, Z, U) = g(Ya z)g(X, U) - g(Xa Z)g(Ya U):
m(X,Y, Z,U) = —g(Y,PZ)g(X, PU) + g(X, PZ)g(Y, PU)
+2¢(X, PY)g(Z, PU).

Let « be a section (2-plane) in T, M. The section a is said to be nondegenerate,
weakly isotropic, strongly isotropic, if the rank of the restriction of the metric g on
a is 2, 1, 0 respectively. With respect to the structure P a section « is said to be
holomorphic (totally real) if Pa = a(Pa # «, Pa L a).

We shall use two kinds of special bases of T,,M:

1) An adapted basis {a; ...,an;%1,...,2,} is characterized with the property
that the matrices g and P with respect to such a basis are

_(-I, 0 (0 I,
o= ) = %)

where I, is the unit matrix.

2) A separate basis {m,...,mn;&1,...,&n} consists of eigen vectors of P, so
that {&1,...,&,} form a basis of the eigen space V', corresponding to the eigen
value +1 of P. The vectors {n,...,n,} form a basis of the eigen space V' ~. With
respect to a separate basis the matrices g and P are

0 —I, _(-I, ©
p=( ) (L)

The following equation is fulfilled T, M = V't @ V'~ (nonorthogonal). The second
condition of (1) implies that every eigen vector £ of P is isotropic, i.e. g(£,&) = 0.
Given an adapted basis, one obtains a separate basis by the formulae:

& = (ai +7)/V2, mi=(ai—2:)/V2; i=1,...,n.

These formulae give also an inverse transition.

In what follows, z, y, z will denote unit space-like vectors, i.e. g(z,z) = 1; a,
b, ¢ will denote unit time-like vectors, i.e. g(a,a) = —1; u, r, v will denote isotropic
vectors which are not eigen vectors, i.e. g(u,u) = 0, Pu # *u; £, n, ¢ will denote
eigenvectors of P, i.e. P{ = £¢£.

Taking into account both structures, we find the following types of holomor-
phic and totally real sections in T}, M:

A. Holomorphic sections.

Al. Nondegenerate holomorphic sections. These sections have an orthonor-
mal basis of type {z, Pz} or {a, Pa} and a basis of type {¢,n}, P{¢ =&, Pnp = —n,
9(&;m) #0.
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A2. Strongly isotropic holomorphic sections of hybrid type. These sections
exist by n > 2, and have a basis of type {u, Pu}. Another kind of useful bases for

such sections are {€,7}, PE = &, Pn= —n, g(€,1) # 0.

A3. Strongly isotropic holomorphic sections of pure type. By n > 2 these
sections are the sections in V* and in V~.

B. Totally real sections.

Bl. Nondegenerate totally real sections of pure type. These sections exist
by n > 2 and have an orthonormal basis of type {z,y}, g(z,Py) = 0 or {a,b},
g(a, Pb) = 0.

B2. Nondegenerate totally real sections of hybrid type. These sections exist
by n > 2 and have an orthonormal basis of type {z,a}, g(z, Pa) = 0.

B3. Weakly isotropic totally real sections of the I type. These sections exist
by n > 2 and have a basis of type {z, ¢}, g(z,€) = 0; {a,&}; 9(a, &) = 0.

B4. Weakly isotropic totally real sections of the II type. These sections exist
by n > 3 and have a basis of type {z,u}, g(z,u) = g(x, Pu) = 0; {a,u}, g(a,u) =
g(a, Pu) = 0.

B5. Strongly isotropic totally real sections of the I type. These sections exist
by n > 3 and have a basis of type {&,u}, g(&,u) = 0.

B6. Strongly isotropic totally real sections of the II type. These sections exist
by n > 4 and have a basis of type {u,v}, g(u,v) = g(u, Pv) = 0.

2. Holomorphic curvatures

If o is a nondegenerate section in T, M with a basis {X, Y}, its curvature is
given by
K(a,p) = K(Xa Y) = R(X, Y, YJX)/’/Tl(Xa Y, YaX)

For an isotropic section such a curvature cannot be defined. If {X, Y} forms a basis
of an isotropic section a and
4) R(X,Y,Y,X) =0,

this is a geometric property of the section a.

Now, let a be a nondegenerate holomorphic section. Curvatures of such sec-
tions will be called holomorphic sectional curvatures. As for Kaehlerian manifolds,
we have.

LEMMA 1. Let T be a tensor of type (0,4) over T,M with the properties:

1) T(X,Y,Z,U)=-T(,X,ZU);
2) T(X,Y,Z,U)=-T(X,Y,U,Z);

(5) 3) T(X,Y,Z,U)+T(,Z,X,U)+T(Z,X,Y,U) = 0;
4) T(X,Y,Z,U)=-T(X,Y,PZ, PU).
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If T has zero holomorphic sectional curvatures, then T = 0.

Proof. From the condition of the lemma it follows that
(6) T(X,PX,PX,X)=0
for an arbitrary nonisotropic vector X in T,M. Let Y be an arbitrary isotropic
vector. Then Y = A(z + a), A — real number, g(z,z) = —g(a,a) = 1, g(z,a) = 0.
Substituting the vector z + ta, |t| < 1 in (6), we obtain a polynomial identity

f(t) =co+cit+ 02t2 + 63t3 + C4t4 =0.

for |t| < 1. This implies ¢g = -+ = ¢4 = 0 and in particular f(1) = 0, i.e.
T(Y,PY,PY,Y) = 0. Thus, (6) is fulfilled for an arbitrary vector. Now, as in the
case of a Kaehlerian manifold [5], it follows that T = 0.

A hyperbolic Kaehlerian manifold is said to be of constant holomorphic sec-
tional curvature p if K(a,p) = u, does not depend on the choice of the nondegen-
erate holomorphic section o in T, M, p in M. The curvature identity characterizing

these manifolds has been found in [7] with respect to local coordinates. We shall
derive this identity from Lemma 1.

PROPOSITION. [7] A hyperbolic Kaehlerian manifold is of constant holomor-
phic sectional curvature u if and only if

(7) R=p(m +m)/4,  p=1/n(n+1).

Proof. The proposition follows by applying Lemma 1 to the tensor T =
R — (u/4)(m + m2).

The equality (7) implies p = p((n + 1)/2)g, i.e. M is Einsteinian. Hence, if
M is connected, pu is a constant on M.

Remark. In [7], hyperbolic Kaehlerian manifolds of constant holomorphic
sectional curvature have been called manifolds of almost constant curvature.

Let K be the vector space of the tensors over T, M having the properties (5).
For T in K, p(T') and 7(T') will stand for the Ricci tensor and the scalar curvature
with respect to T. The metric g induces in a natural way an inner product in K.
Using the same method as in [6, 8], we obtain the following decomposition theorem
for K.

THEOREM 1. The following decomposition of K is orthogonal:
K=Ki®Ks® Ky,

where

—_

K1 ={T € K|T = p(m + m2)/4};

Kw ={T € K| p(T) = 0};

Ko is the orthogonal complement K, in ICf‘;
K1 @& {T € K| p(T) = 7(T)g/2n};

K ® {T € K|7(T) = 0}.

=W N
= D D = —

(S
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The curvature tensor R of a hyperbolic Kaehlerian manifold has the properties
(5). The component B(R) of R in K,, (Weyl component) is said to be the Bochner
curvature tensor. It is easy to check that this component is

®  BR)=R-g(ptd)+ g

2n(n + 2) (n+1)(n+2) (1 + 72)-

COROLLARY 1. A hyperbolic Kaehlerian manifold M (2n > 4) is of constant
holomorphic sectional curvature if and only if M is Einsteinian and B(R) = 0.

The Ricci curvature of a direction determined by a nonisotropic vector X is
given by p(X) = p(X, X)/g(X,X). Applying Lemma 1 we obtain

COROLLARY 2. Let M(2n > 4) be a hyperbolic Kaehlerian manifold. M has
a vanishing Bochner curvature tensor if and only if

9) K(X,PX) - ni_”p(X) + m =0

for an arbitrary nonisotropic vector X in T, M, p in M.

THEOREM 2. Let M(2n > 4) be a hyperbolic Kaehlerian manifold. The
following conditions are equivalent.

1) R(u,Pu,Pu,u) = 0 for arbitrary u in T,M, i.e. the strongly isotropic
holomorphic sections of hybrid type have the property (4);

2) B(R) = 0.

Proof. Let {ai,...,an;%1,...,2,} be an adapted basis for T, M. From the
condition 1) of the theorem we have R(a; + ;,a; + zi,a; + 2,0, + ;) =0, 0 # j.
These equalities imply

(10) 6K (ai,z;) + 2K (a;,a;) = K(a;,z;) + K(aj, x;); i# 7.
Using v = a; + z; + aj — xj, i # j and the condition 1) we obtain
(11) K(ai,a;) = K(as, x5), i #7J.

The equalities (10) and (11) give

T

K(x;, Pz;) — m

n+ 2p
which is equivalent to (9) and hence B(R) = 0. The inverse is a simple verification.
3. Totally real sections

The curvatures of nondegenerate totally real sections are said to be totally
real sectional curvatures.
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LEMMA 2. Let M (2n > 6) be a hyperbolic Kaehlerian manifold. The following
conditions are equivalent:

1) R(z,a,a,z) = 0 whenever a L ©, Pz, i.e. the totally real sectional curva-
tures of hybrid type are zero;

2) R(z,y,y,z) = 0 whenever x Ly, Py, i.e. the totally real sectional curva-
tures of pure type are zero;

3) R=0.

Proof. Let {z,y,a} be an orthogonal triple spanning a 3-dimensional totally
real space. For the pair {z,a’' = (a + ty)/v1—1t2}, |t| < 1 we have ¢’ L z, Pz.
Substituting this pair into the condition 1) of the lemma, we get R(z,a + ty,a +
ty,z) = 0. The corresponding polinomial identity gives R(x,y,y,z) = 0, i.e. 1)
implies 2). The inverse follows in a similar way.

Now, let {z,y, 2z} be orthogonal and span a 3-dimensional totally real space.
Applying 1) to the vectors (z — y)/v/2, (Px + Py)/v/2 and using 2) we find
K(z,Px) + K(y,Py) = 0. Analogously, K(y,Py) + K(z,Pz) = K(z,Pz) +
K(z,Pz) = 0. Therefore K (z, Px) = 0 and Lemma 1) implies R = 0.

The following theorem has an easy proof using Lemma 2.

THEOREM 3. Let M(2n > 6) be a hyperbolic Kaehlerian manifold. The
following conditions are equivalent:

1) M is of constant totally real sectional curvature of hybrid type. i.e.
K(a,z) = v, whenever L x, Px;

2) M is of constant totally real sectional curvature of pure type, i.e. K(z,y) =
v(K(a,b) = v), whenever x L y, Py (a L b, Pb);

3) M is of constant holomorphic sectional curvature p = 4v.

THEOREM 4. Let M(2n > 4) be a hyperbolic Kaehlerian manifold. The
following conditions are equivalent:

1) R(z,&,€,x) = 0 whenever {x,&} spans a weakly isotropic totally real section
of I type;
2) B(R) = 0.

Proof. Let the pair {z,y} be orthogonal and span a totally real section.
Applying the condition 1) of the theorem to the pair {z,£{ = y + Py} we obtain

(12) R(z,y,y,z) + R(z, Py, Py,x) = 0.

Now, we substitute the pair {z,y} in (12) by {(z + v)/V2, (z — y)/V/2} and lin-
earizing we find

(13) 8K(z,y) = K(z, Pz) + K(y, Py).

Further, as in the proof of Theorem 2, (12) and (13) give B(R) = 0.
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The inverse follows immediately by taking into account that p(&,£) = 0.

THEOREM 5. Let M(2n > 6) be a hyperbolic Kaehlerian manifold. The
following conditions are equivalent:

1) R(z,u,u,z) = 0, whenever {z,u} spans a weakly isotropic totally real
section of the II type;
2) M is of constant holomorphic sectional curvature.

Proof. Let {a1,-..,an;%1,...,%,} be an adapted basis for T, M. Applying
the condition 1) of the theorem to the pairs {z;,z; + ax} (i,7,k - different), we
find K(a;,z;) = const; i # j. This is equivalent to the condition 1) of Theorem 3.
Hence, M is of constant holomorphic sectional curvature.

The inverse is easy to check.

THEOREM 6. Let M(2n > 6) he a hyperbolic Kaehlerian manifold. The
following conditions are equivalent:

1) R(&u,u,&) = 0, whenever {&,u} spans a strongly isotropic totally real
section of the I type;
2) B(R) = 0.

Proof. Let {n1,...,mn;&,--.,&n} be a separate basis for T, M. Applying the
condition 1) to the pair {&,n; + A}, A # 0 (4, j, k - different) we obtain

(14) 02R(§Zan]7nja£z)7 175.7

The pairs {&;,7;},  # j span strongly isotropic holomorphic sections of hybrid type
and (14) is equivalent to the condition 1) of Theorem 2. Hence, B(R) = 0.

THEOREM 7. Let M(2n > 8) be a hyperbolic Kaehlerian manifold. The
following conditions are equivalent:

1) R(u,v,v,u) = 0, whenever {u,v} spans a strongly isotropic totally real
section of the II type;

2) B(R) =).

Proof. Let {m1,...,0n;&1,.--,&n} be a separate basis for T, M. Substituting
{u=&+ M, v=A +m}, N #0 (4,4, k,1 - different) in the condition 1), we get
R(&,m,m,&) =0, 1 # 1, which is (14) and therefore B(R) = 0.

THEOREM 8. Let M(2n > 8) be a hyperbolic Kaehlerian manifold. The
following conditions are equivalent:

1) R(z;, zj, zk, 1) = 0, (i,4,k,1 - different), whenever {a1,...,an;Ti, ..., Tn}
is an adapted basis;

2) K(z;,x;) + K(zp,21) = K(zj,zx) + K(zj,21), (3,5, k,1 - different) when-
ever {ay,...,an;Ti,...,xT,} is an adapted basis;

3) B(R) = 0.
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This theorem is analogous to a theorem in [9] for Kaehlerian manifolds and it

can be checked in a similar way taking into account the properties of the structure
P.

4. Pinching problems

A Ricci curvature cannot be defined for an isotropic direction. If X is an
isotropic vector and p(X,X) = 0, this is a geometric property of the isotropic
direction, defined by X.

The following statement is a slight modification of a result in [3].

LEMMA 3. Let M be a hyperbolic Kaehlerian manifolod. The following condi-
tions are equivalent:

1) p(u,u) =0, for arbitrary u;
2) p=(1/2n)g, i.e. M is Einsteinian.
THEOREM 9. Let M(2n > 4) be a hyperbolic Kaehlerian manifold. If the

holomorphic sectional curvatures in every point are bounded, i.e. for an arbitrary
nondegenerate holmorphic sertion a in T, M

(15) |K(a,p)| < c(p),

then M is of constant holomorphic sectional curvature.

Proof. Let © = u+ a, a L u, Pu and a be the holomorphic section spanned
by {(z + ta/v/1 —t2, (Px + tPa)/v/1 — t2, |t| < 1. From condition (15) we get

|R(z + ta, Pz + tPa, Pz + tPa,z + ta) < (1 — t*)%c(p).
Hence, R(u, Pu, Pu,u) = 0 and Theorem 2 implies B(R) = 0, i.e.

4 T
ny2r@ = K@ Pa)+ n+1)(n+2)

This equality gives that the Ricci curvatures in every point are bounded

(16) lp(@)| < ¢'(p).

Substituting z by (z + ta)/v/1 — 12, |[t| < 1 in (16), we find p(u) = 0 and Lemma 3
implies that M is Einsteinian. Now, the statement follows from Corollary 1.

THEOREM 10. Let M(2n > 6) be a hyperbolic Keahlerian manifofd. If the
totally real sectional curvatures of hybrid type are bounded in every point, i.e. if

(17) |K(z,a)| <c(p);  alaz, Pz,
then M is of constant holomorphic sectional curvature.

Proof. Let u = z + a and {z,a,b} span a totally real 3-dimensional space.
Substituting the pair {z,a} in (17) by {(z + ta)/v/1 — t?,b}, |t| < 1, we obtain

|R(z + ta,b, b,z + ta)| < (1 —t*)c(p).
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Therefore, R(u,b,b,u) = 0, and Theorem 5 implies that M is of constant holomor-
phic sectional curvature.

Remark. The totally real curvatures of hybrid type in Theorem 10 can be
replaced by totally real curvatures of pure type.

THEOREM 11. Let M(2n > 6) be a hyperbolic Kaelalerian manifold. If the
totally real sectional curvatures are bounded from above, i.e. if

K(z,a) <c(p);  alw,Pr,

(18) K(z,y) < c(p); z Ly, Py,

then M is of constant holomorphic sectional curvature.

Proof. Let u = y + a and {z,y,a} span a 3-dimensional totally real space.
The first condition of (18) implies R(z,a,a,x) > —c(p). Substituting here the
vector a by (a+ty)/V1 —12, |t| < 1, we get R(z,u,u,z) > 0. Using, the inequality
R(z,y,y,z) < ¢(p) and substituting the vector y by (y + ta)/vV1—1t2, |t| < 1, we
obtain R(z,u,u,z) < 0. Therefore R(z,u,u,z) = 0 and the theorem follows now
from Theorem 5.

5. Plane axioms

Let M (dim M = m > 3) be a differentiable manifold with a linear connection
of zero torsion. M is said to satisfy the axiom of r-planes (2 < r < m), if, for each
point p and for any r-dimensional subspace E of T, M, there exists an r-dimensional
totally geodesic submanifold N containing p such that T,N = E.

THEOREM 12. (Axiom of nondegenerate totally real 2-planes of hybrid type)
Let M(2n > 6) be a hyperbolic Kaehlerian manifold. If for any nondegenerate
totally real section a in T, M of hybrid type there exists a 2-dimensional totally
geodesic submctnifold N containing p such that T,N = «, then M is of constant
holomorphic sectionai curvature.

Proof. Let {z,y,b} be orthogonal and let it span a 3-dimensional totally real
space in T, M. The pair {z,y’ = (b+1ty)/v1 —t2}, |t| < 1 spans a 2-plane «, which
is nondegenerate totally real of hybrid type. By the condition of the theorem, it
follows that R(y',z)z is in a and R(y',z)x L y", where y" = y + tb. From this, it
follows that R(x,u,u,z) = 0, where u = y + b. Now, the proposition follows from
Theorem 5.

Remark. The nondegerate totally real 2-planes of hybrid type in Theorem 12
can be replaced with nondegenerate totaly real 2-planes of pure type.

THEOREM 13. (Axiom of weakly isotropic totally real 2-planes of the I type)
Let M(2n > 6) be a hyperbolic Kaehlerian manifold. If for any weakly isotropic
totally real 2 plane o in T,M of the I type there exists a 2-dimensional totally
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geodesic submanifold N, containing p such that T,N = a, then M has a vanishing
Bochner curvature tensor.

Proof. Let a be an arbitrary weakly isotropic totally real 2-plane of the I type
with a basis {£,z} € L x, & — eigen. By the condition of the theorem, it follows that
R(&,z)x is in a and therefore, R(§, z,z,£) = 0. Now, the proposition follows from
Theorem 4.

THEOREM 14. (Axiom of weakly isotropic totally real 2-planes of the II type)
Let M (2n > 6) be a hyperbolic Kaehlerian manifold. If for every weakly isotropic
totally real 2 plane in T, M of the II type there exists a 2-dimensional totally geodesic
submanifold N containing p such that TyM = «, then M is of constant holomorphic
sectional curvature.

The proof is similar to the proof of Theorem 13 and we omit it.

THEOREM 15. (Axiom of strongly isotropic totally real 2-planes of the I
type (II type)) Let M(2n > 8) be a hyperbolic Kaehlerian manifold. If for every
strongly isotropic tolally real 2-plane a in T,M of the I type (II type) there exists
a 2-dimensional totally geodesic submanifolod N containing p such that T,N = a,
then M has a vanishing Bochner curvature tensor.

The proof is similar to the proof of Theorem 13 and it is based on Theorem
6 (Theorem 7).

THEOREM 16. (Axiom of nondegenerate holomorphic 2-planes) Let M (2n >
4) be a hyperbolic Kaehlerian manifold. 1If for erery mondegenerate holomorphic
2-plane o in Ty M there exists a 2-dimensional totally geodesic submanifold N con-
taining p surh that T,N = «, then M is of constant holomorphic sectional curvature.

Proof. Let x be arbitrary and a L z, Pzx. If o is the holomorphic section
spanned by {z, Pz}, from the condition of the theorem it follows that R(z, Pz)Pz
is in a. Hence,

(19) R(z,Px,Px,a) = 0.
Substituting the pair {z,a} in (19) by {(z + ta)/V1— 2, (a + tz)/V1 — 2},

[t| < 1, we obtain R(u,Pu,Pu,u) = 0, where u = a + 2. Theorem 2 implies
B(R) = 0. By using (19) and formula (8) we find

(20) p(z,a) =0,

Substituting the pair {z,a} as above, we get p(u,u) = 0. Now, from Lemma
3 it follows that (20) implies p = (7/2n)g. This condition and B(R) = 0 give the
proposition.

THEOREM 17. (Axiom of strongly isotropic holomorphic 2-planes) Let
M(2n > 4) be a hiperbolic Kaehlerian manifold. If for every strongly isotropic



Istotropic sections and curvature properties of hyperbolic Kaehlerian manifolds 193

holomorphic 2-plane a in T, M of hybrid type there exists a 2-dimensional total-
ly geodesic submanifold N containing p such that T,N = «, then M a vanishing
Bochner currature tensor.
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