CONDITIONAL PROBABILITY IN NONSTANDARD ANALYSIS

Vesna Mušicki-Kovačević

Abstract. In this paper we apply the theory of Loeb measure to conditional probability for hyperfinite Loeb spaces. We show that conditional probability ${}^{\sim}P(\cdot/A)$ on a Loeb space $(V,\mathfrak{M}({}^{\sim}P),{}^{\sim}P)$ for $A\in{}^{*}\mathfrak{P}(V)$ (P(A)>0 and $P(A)\approx{}'0^{1}$ is a Loeb measure and for $A\in{}^{*}\mathfrak{M}({}^{\sim}P)$ (${}^{\sim}P(A)>0$) can be represented by a Loeb measure. For the case $A\in{}^{*}\mathfrak{M}({}^{\sim}P)$ we prove that there exists a set $C\in{}^{*}\mathfrak{P}(V)$ such that ${}^{\sim}P(\cdot/A)$ is equal to the Loeb conditional probability $L(P(\cdot/C))$. We introduce internal conditional probability relative to an internal subalgebra ${}^{*}\mathfrak{P}(V)$ as in case of finite standard probability spaces. We show, analogously to a well-known probability result, that internal conditional probability $P(A/\mathfrak{A})$, $A\in{}^{*}\mathfrak{P}(V)$, and internal conditional expectation $E(X/\mathfrak{A})$, X is S-integrable, are P-a. s. unique, in nonstandard sense, random variables on (V,\mathfrak{A},P) . Finally, we give a nonstandard characterization of conditional probability ${}^{\sim}P(A/\mathfrak{M}(\mathfrak{A}))$, $A\in{}^{*}\mathfrak{M}({}^{\sim}P)$ on a Loeb space $(V,\mathfrak{M}({}^{\sim}P),{}^{\sim}P)$. We prove that there exists a set $C\in{}^{*}\mathfrak{P}(V)$ such that $P(C/\mathfrak{A})$ is the lifting of ${}^{\sim}P(A/\mathfrak{M}(\mathfrak{A}))$.

Introduction. In this paper we concern ourselves with conditional probability for hyperfinite Loeb spaces. We use the well-known results from the theory of Loeb measure [8] and nonstandard probability [2], [10] and the methodology developed by P. Loeb, J. Keisler, R. Anderson and others.

In the first part we define internal conditional probability $P(\cdot/A)$, $A \in {}^*\mathfrak{P}(V)$ for a hyperfinite probability space $(V, {}^*\mathfrak{P}(V), P)$ and give the nonstandard representation of conditional probability ${}^{\sim}P(\cdot/A)$, $A \in \mathfrak{M}({}^{\sim}P)$ on the Loeb space $(V, \mathfrak{M}({}^{\sim}P), {}^{\sim}P)$. We show that for $A \in {}^*\mathfrak{P}(V)$ with P(A) > 0 and $P(A) \approx' 0 {}^{\sim}P(\cdot/A)$ is a Loeb measure on $(V, \mathfrak{M}({}^{\sim}P))$ and for $A \in \mathfrak{M}({}^{\sim}P)$ with ${}^{\sim}P(A) > 0$ there exists a set $C \in {}^*\mathfrak{P}(V)$ such that ${}^{\sim}P(\cdot/A)$ can be represented by the Loeb conditional probability $L(P(\cdot/C))$.

In the second part we define, analogously to the definition of internal conditional expectation $E(X/\mathfrak{A})$, [10], internal conditional probability $P(A/\mathfrak{A})$ $A \in {}^*\mathfrak{P}(V)$, is an internal subalgebra of ${}^*\mathfrak{P}(V)$ for a hyperfinite probability space $(V, {}^*\mathfrak{P}(V), P)$. We show that so-introduced $P(A/\mathfrak{A})$ $(E(X/\mathfrak{A}))$ as well) is

AMS Subject Classification (1980): Primary 03H10

 $^{^1 \! \}approx'$ is the negation of \approx

P-a. s. unique random variable on (V, \mathfrak{A}, P) . The P-a. s. uniquess of the $P(A/\mathfrak{A})$ $(E(X/\mathfrak{A}))$ is introduced in theorem 4, corresponding to the same concept from standard probability. Finally, we give a nonstandard characterization of conditional probability $P(A/\mathfrak{M}(\mathfrak{A}))$ $(A \in \mathfrak{M}(^{\sim}P), (A \in \mathfrak{M}(^{\sim}P))$ $\mathfrak{M}(\mathfrak{A})$ is a sub- σ -algebra of $\mathfrak{M}(^{\sim}P)$ on a Loeb space $(V,\mathfrak{M}(^{\sim}P), ^{\sim}P)$. We show that for $A \in \mathfrak{M}(^{\sim}P)$ there exists a set $B \in {}^*\mathfrak{P}(V)$ such that $P(B/\mathfrak{A})$ is lifting of ${}^{\sim}P(A/\mathfrak{M}(\mathfrak{A}))$.

We assume $(V, \mathfrak{P}(V), P)$ to be a hyperfinite probability space and $(V, \mathfrak{M}(^{\sim}P), ^{\sim}P)$ a Loeb space constructed from it, i.e. Loeb measure $^{\sim}P$ is defined by

$${}^{\sim}P(F) = \inf\{\operatorname{st}(P(A)) | F \subseteq A \text{ and } A \in {}^{*}\mathfrak{P}(V)\}$$

$$= \sup\{\operatorname{st}(P(A)) | A \subseteq F \text{ and } A \in {}^{*}\mathfrak{P}(V)\}$$
for $F \subseteq V$

and $\mathfrak{M}({}^{\sim}P)$ is a σ -algebra of all ${}^{\sim}P$ -measurable sets $F \subset V$.

According to standard probability, for $A \in \mathfrak{P}(V)$ with P(A) > 0 we define internal conditional probability $P(\cdot/A)$ of an internal event B relative to A by

$$P(B/A) = P(A \cap B)/P(A)$$

It is easy to show that $(V, {}^*B(V), P(\cdot/A))$ is a hyperfinite probability space, so it gives rise to a Loeb space denoted by $(V, \mathfrak{M}(L(P(\cdot/A))), L(P(\cdot/A)))$.

On the other hand, for a Loeb space $(V, \mathfrak{M}(^{\sim}P), ^{\sim}P)$, conditional probability $^{\sim}P(\cdot/A)$ of an event $B \in \mathfrak{M}(^{\sim}P)$ relative to $A \in \mathfrak{M}(^{\sim}P), ^{\sim}P(A) > 0$, is standardly defined by

$$^{\sim}P(B/A) = ^{\sim}P(A \cap B)/^{\sim}P(A)$$

It is well known that ${}^{\sim}P(\cdot/A)$ is a probability measure on $(V,\mathfrak{M}({}^{\sim}P))$ but not necessary a Loeb measure. However, for $A \in {}^*\mathfrak{P}(V)$ with P(A) > 0 $P(A) \approx' 0$, ${}^{\sim}P(\cdot/A)$ is a Loeb measure and we shall show it in this paper.

Let $\sigma({}^{\sim}P(\cdot/A))$ be σ -algebra of all ${}^{\sim}P(\cdot/A)$ -measurable sets, i.e.

$$\sigma({}^{\sim}P(\cdot/A)) = \{ F \subseteq V | F \cap A \in \mathfrak{M}({}^{\sim}P) \}$$

It is obvious that $\mathfrak{M}({}^{\sim}P) \subset \sigma({}^{\sim}P(\cdot/A))$. From the theory of Loeb measure we know that ${}^{\sim}P$ is a complete measure on $(V,\mathfrak{M}({}^{\sim}P))$ and that $\mathfrak{M}({}^{\sim}P)$ is a completion of L(V) relative to ${}^{\sim}P$. We have the same for ${}^{\sim}P(\cdot/A)$:

Lemma 1. Probability measure ${}^{\sim}P(\cdot/A)$ is a complete measure on $(V,\mathfrak{M}({}^{\sim}P))$ and $\mathfrak{M}({}^{\sim}P)$ is a completion of $\c L(V)$ relative to ${}^{\sim}P(\cdot/A)$ in the sense that for $F\in\mathfrak{M}({}^{\sim}P)$ there exist sets $Z\in\c L(V)$ and $N\subseteq V$ such that

$$F = Z \cup N$$
, $N \subseteq U$, and ${}^{\sim}P(U/A) = 0$.

Proof Let $F \in \mathfrak{M}({}^{\sim}P)$, ${}^{\sim}P(F/A) = 0$ and $M \subseteq F$. Than is $F \cap A \in \mathfrak{M}({}^{\sim}P)$, $M \cap A \subseteq F \cap A$ and ${}^{\sim}P(F \cap A) = 0$. Since ${}^{\sim}P$ is a complete measure, $M \cap A \in \mathfrak{M}({}^{\sim}P)$ and ${}^{\sim}P(M \cap A) = 0$. This implies that M is ${}^{\sim}P(\cdot/A)$ – measurable and ${}^{\sim}P(M/A) = 0$.

Let $F \in \mathfrak{M}({}^{\sim}P)$. Then there exist sets $Z \in \c L(V)$ and $N \subseteq V$ such that $F = Z \cup N, \ N \subseteq U$ and ${}^{\sim}P(U) = 0$. Since $U \cap A \subseteq U$ and ${}^{\sim}P$ is a complete measure, it follows that ${}^{\sim}P(U \cap A) = 0$, i.e. ${}^{\sim}P(U/A) = 0$. Hence $\mathfrak{M}({}^{\sim}P)$ is a completion of $\c L(V)$ relative to ${}^{\sim}P(\cdot/A)$.

The next theorem shows that conditional probability ${}^{\sim}P(\cdot/A)$ for $A \in {}^*\mathfrak{P}(V)$, P(A) > 0, and $P(A) \approx {}'0$ is a Loeb measure on $(V, \mathfrak{M}({}^{\sim}P))$.

THEOREM 1. Let $A \in \mathfrak{P}(V)$, P(A) > 0 and $P(A) \approx 0$. Then $(V, \mathfrak{M}(^{\sim}P), ^{\sim}P(\cdot/A))$ is a Loeb probability space.

Proof. We show that ${}^{\sim}P(\cdot/A)$ is a Loeb measure obtained from internal conditional probability $P(\cdot/A)$. Using notations already defined we prove that

$$L(P(B/A)) = {}^{\sim}P(B/A) \qquad \text{for } B \in \mathfrak{M}({}^{\sim}P) \tag{1}$$

Let $F \in \mathfrak{P}(V)$. Since P(A) > 0 and $P(A) \approx' 0$

$${}^{\sim}P(F/A) = {}^{\sim}P(F \cap A)/{}^{\sim}P(A) = \operatorname{st}(P(F \cap A))/\operatorname{st}(P(A)) =$$
$$= \operatorname{st}(P(F \cap A)/P(A)) = L(P(F/A)).$$

Let $F \in L(V)$. The definition of Loeb measure

$$L(P(F/A)) =$$

$$= \sup\{\operatorname{st}(P(C/A)) | C \in \mathfrak{P}(V), C \subset F\} = \inf\{\operatorname{st}(P(D/A)) | (D \in \mathfrak{P}(V), D \supset F\}$$

implies that for $\varepsilon \in {}^{\sigma} R^+$ there exist sets $C, D \in {}^* \mathfrak{P}(V)$ such that

$${}^{\sim}P(C/A) \le {}^{\sim}P(F/A){}^{\sim}P(D/A)$$
 and (2)

$$^{\sim}P(D/A) - \varepsilon < L(P(F/A)) < ^{\sim}P(C/A) + \varepsilon$$
 (3)

Relations (2) and (3) imply

$${}^{\sim}P(F/A) - \varepsilon < L(P(F/A)) < {}^{\sim}P(F/A) + \varepsilon$$
 i.e. $L(P(F/A)) = {}^{\sim}P(F/A)$

Let $F \in \mathfrak{M}({}^{\sim}P)$. Then, according to [8], there exist sets $C, D \in \c L(V)$ such that $C \subseteq F \subseteq D$ and ${}^{\sim}P(C) = {}^{\sim}P(F) = {}^{\sim}P(D)$. We show that $F \in \mathfrak{M}(L(P(\cdot/A)))$ and that $L(P(F/A)) = {}^{\sim}P(F/A)$. Since

$$^{\sim}P(DUA) = ^{\sim}P(D) + ^{\sim}P(A) - ^{\sim}P(D \cap A) \le ^{\sim}P(D) + ^{\sim}P(A) - ^{\sim}P(C \cap A) =$$

= $^{\sim}P(C) + ^{\sim}P(A) - ^{\sim}P(C \cap A) = ^{\sim}P(C \cup A) < ^{\sim}P(D \cup A)$

it follows that ${}^{\sim}P(D\cap A)={}^{\sim}P(C\cap A),$ whence, and from ${}^{\sim}P(C\cap A)\leq{}^{\sim}P(F\cap A)\leq{}^{\sim}P(D\cap A)$ we get

$${}^{\sim}P(C/A) = {}^{\sim}P(F/A) = {}^{\sim}P(D/A) \tag{4}$$

From (1) and (4) it follows that

$$L(P(C/A)) = L(P(D/A)) = {}^{\sim}P(F/A) \tag{5}$$

and $L(P(D\mathbf{C}/A)) = 0$. For the set $F \in \mathfrak{M}(^{\sim}P)$ we have the following representation:

$$F = C \cup (FC)$$
 where $C \in L(V), FC \subseteq DC$ and $L(P(DC/A)) = 0$.

So $F \in \mathfrak{M}(L(P(\cdot/A)))$. Since $C \subseteq F \subseteq D$ and $C, D, F \in \mathfrak{M}(L(P(\cdot/A)))$ we have that $L(P(C/A)) \leq L(P(F/A)) \leq L(P(D/A))$ which, in view of (5), implies

$$\sim P(F/A) < L(P(F/A)) < \sim P(F/A)$$
 i.e. $L(P(F/A)) = \sim P(F/A)$

Later on, whenever $A \in \mathfrak{P}(V)$, P(A) > 0 and $P(A) \approx' 0$, the conditional probability $^{\sim}P(\cdot/A)$ on $(V,\mathfrak{M}(^{\sim}P))$ will be denoted by $L(P(\cdot/A))$; assuming that it is a Loeb measure.

We now prove a representation theorem for conditional probability ${}^{\sim}P(\cdot/A)$ $(A \in \mathfrak{M}({}^{\sim}P) \text{ and } {}^{\sim}P(A) > 0)$ on $(V, \mathfrak{M}({}^{\sim}P))$. We shall show that there exists a set $C \in {}^{*}\mathfrak{P}(V)$ with P(C) > 0 and $P(C) \approx {}^{\prime}0$ such that the conditional probability ${}^{\sim}P(\cdot/A)$ is equal to the Loeb conditional probability $L(P(\cdot/C))$.

THEOREM 2. Let $A \in \mathfrak{M}(^{\sim}P)$ with $^{\sim}P(A) > 0$. Then, there exists a set $C \in ^*\mathfrak{P}(V)$ with P(C) > 0 and $P(C) \approx ' 0$ such that

$$L(P(F/C)) = {}^{\sim}P(F/A), \quad \text{for any } F \in \mathfrak{M}({}^{\sim}P)$$

Proof. According to [8] exists a set $C \in \mathfrak{P}(V)$ such that ${}^{\sim}P(C\triangle A) = 0$. We show that P(C) > 0 and $P(C) \approx' 0$: For sets $A, C \subseteq V$ we have that $C \setminus A \subseteq C\triangle A$, and $A \setminus C \subseteq C\triangle A$, so, by completeness of measure ${}^{\sim}P$

$$^{\sim}P(C \setminus A) = ^{\sim}P(A \setminus C) = 0$$

Since $C = (C \setminus A) \cup (C \cap A)$ and $A = (A \setminus C) \cup (A \cap C)$ and sets A, C satisfy (1)

$$^{\sim}P(C) = ^{\sim}P(C \setminus A) + ^{\sim}P(C \cap A) = ^{\sim}P(C \cap A) = ^{\sim}P(A \setminus C) + (C \cap A) = ^{\sim}P(A)$$
 (2)

Hence P(C) > 0 and $P(C) \approx' 0$,

Let $F \in \mathfrak{M}(^{\sim}P)$. Then

$$F \cap C = (F \cap A \cap C) \cup ((C \setminus A) \cap F)$$
 and $F \cap A = (F \cap A \cap C) \cup ((A \setminus C) \cap F)$ (3)

From (3), $(C \setminus A) \cap F \subseteq A \triangle C$, $(A \setminus C) \cap F \subseteq A \triangle C$, ${}^{\sim}P((C \setminus A) \cap F) = 0$ and ${}^{\sim}P((A \setminus C) \cap F) = 0$ it follows that

$${}^{\sim}P((A \setminus C) = {}^{\sim}P(F \cap A \cap C) + {}^{\sim}P((C \setminus A) \cap F) = {}^{\sim}P(F \cap A \cap C) =$$

$$= {}^{\sim}P(F \cap A \cap C) + {}^{\sim}P((A \setminus C) \cap F) = {}^{\sim}P(F \cap A)$$

$$\tag{4}$$

Finally, according to theorem 1 (2) and (4) imply

$$L(P(F/C)) = {^{\sim}P(F/C)} = {^{\sim}P(F \cap C)}/{^{\sim}P(C)} = {^{\sim}P(F \cap A)}/{^{\sim}P(A)} = {^{\sim}P(F/A)}$$

The following theorem is a simple consequence of the Loeb theorem [8], but can be quite useful when working in nonstandard probability.

THEOREM 3. Let $A \in \mathfrak{M}(^{\sim}P)$ with $^{\sim}P(A) > 0$. Than, for any set $F \in \mathfrak{M}(^{\sim}P)$ there exists a set $C \in \mathfrak{P}(V)$ such that $^{\sim}P(F/A) = ^{\sim}P(C/A)$.

Proof. For $F \in \mathfrak{M}({}^{\sim}P)$, by the Loeb theorem [8], there exists a set $C \in {}^{*}\mathfrak{P}(V)$ such that ${}^{\sim}P(F\triangle C)=0$. Since $F\cap A=(F\cap A\cap C)\cup ((F\setminus C)\cap A)$ $C\cap A=(F\cap A\cap C)\cup ((C\setminus F)\cap A)$ $(F\setminus X)\cap A\subseteq F\triangle C$ and $(C\setminus F)\cap A\subseteq F$ triangle C, by the same arguments as in theorem 2, we get that ${}^{\sim}P(F\cap A)={}^{\sim}P(C\cap A)$, i.e. ${}^{\sim}P(F/A)={}^{\sim}P(C/A)$.

In the second part of this paper we are dealing with internal conditional expectation $E(X/\mathfrak{A})$ of an internal random variable $X:V\to^*R$ relative to \mathfrak{A} , where \mathfrak{A} is an internal subalgebra of ${}^*\mathfrak{P}(V)$ and $P(A/\mathfrak{A})$ denotes the internal conditional probability of an event $A\in^*\mathfrak{P}(V)$ elative to \mathfrak{A} .

We consider a hiperfinite probability space $V, \mathfrak{P}(V), P)$, $A \in \mathfrak{P}(V)$ and internal subalgebra of $\mathfrak{P}(V)$. The hyperfinitness of \mathfrak{A} implies, by transfer principle, that \mathfrak{A} is generated by a hyperfinite partition $\{V_1, V_2, \ldots V_H\}$ $\{H \in \mathfrak{P}(N \setminus N)\}$ of the set V. It permits us to definer $P(A/\mathfrak{A})$ in the same way as M the case of finite standard probability spaces:

$$P(A/\mathfrak{A})(v) = \sum_{i=1}^{H} P(A/V_i)I_{V_i}(v) \quad \text{for } v \in V$$
 (1)

where $P(A/V_i) = P(A \cap V_i)/P(V_i)$ i = 1, 2, ..., H. Since

$$P(A/\mathfrak{A})(v) = \sum_{i=1}^{H} P(A/V_i)I_{V_i}(v)$$

$$= \sum_{i=1}^{H} (P(A \cap V_i)/P(V_i))I_{V_i}(v)$$

$$= \sum_{i=1}^{H} ((P(V_i)^{-1} \sum (P(u)I_A(u), u \in V_i))I_{V_i}(v)$$

$$= \sum_{i=1}^{H} E(I_A/V_i)I_{V_i}(v)$$

$$= E(I_A/\mathfrak{A})(v) \quad \text{i.e.}$$

$$P(A/\mathfrak{A}) = E(I_A/\mathfrak{A}). \tag{2}$$

in the further work we shall use both (1) and (2) as definitions of internal conditional probability.

For internal random variable $X:V\to^*R$ on $(V,^*\mathfrak{P}(V),P)$ internal conditional expectation $E(X/\mathfrak{A})$ has already been defined [6]. In [10] it is proved

that $E(X/\mathfrak{A})$ is an S- \mathfrak{A} -integrable random variable on (V, \mathfrak{A}, P) provided X is S-integrable. This result applied to $P(A/\mathfrak{A})$ implies that $P(A/\mathfrak{A})$ is an S- \mathfrak{A} -integrable random variable on (V, \mathfrak{A}, P) since I_A is S-integrable, [9]. In [10] it is proved that

$$E(E(X/\mathfrak{A})) = E(X). (i)$$

Taking (2) as definition of $P(A/\mathfrak{A})$, from (i) it follows, [9], that

$$E(P(A/\mathfrak{A})) = P(A) \tag{ii}$$

Results (i) and (ii) make the Theorem of probability completeness for $E(X/\mathfrak{A})$ and $P(A/\mathfrak{A})$ hold for hyperfinite probability spaces.

We now prove a nonstandard version of the well known probability theorem, namely, that conditional probability and expectation relative to σ -subalgebra β are μ -a. s. unique random variables on (V, β, μ) , [11].

THEOREM 4. Let $(V, *\mathfrak{P}(V), P)$ be a hyperfinite probability space, $\mathfrak{A} \subseteq *\mathfrak{P}(V)$ an internal subalgebra generated by a hyperfinite partition $\{V_1, V_2, \ldots, V_H\}$ $(H \in *N\mathbf{N})$ of $V, X : VV \to *R$ an S-integrable random variable on $(V, *\mathfrak{P}(V), P)$ and $A \in *\mathfrak{P}(V)$. Then

(i)
$$\sum (X(v)P(v), v \in U) = \sum (E(X/\mathfrak{A})(v)P(v), v \in U)$$
 for $U \in \mathfrak{A}$

(ii) $E(X/\mathfrak{A})$ is the P-a. s. unique internal random variable on (V,\mathfrak{A},P) which satisfies (i), i.e. for any other S-integrable $Y:V\to^*R$ on (V,\mathfrak{A},P) satisfying (i)

$$Y(v) \approx E(X/\mathfrak{A})(v)$$
 P-n. s.

and for any S-integrable $H: V \to^* R$ on V, \mathfrak{A}, P) with

$$\begin{split} &\sum (|(H(v)-E(X/\mathfrak{A})(v)|P(v),v\in V)\approx 0 \quad \text{one has} \\ &\sum (H(v)P(v),v\in U)\approx \sum (E(X/\mathfrak{A})(v)P(v),v\in U) \quad \text{for } U\in \mathfrak{A}. \end{split}$$

(iii) For any set $B \in \mathfrak{A}$

$$P(A \cap B) = \sum (P(A/\mathfrak{A})(v)P(v), v \in B).$$

(iv) $P(A/\mathfrak{A})$ is the P-a. s. unique internal random variable on (V,\mathfrak{A},P) in the sense given in (ii).

Proof (i) Since
$$U = \bigcup_{i=1}^{H} (U \cap V_i)$$
, for $v \in U \cap V_i E(X/\mathfrak{A})(v) = E(X/U \cap V_i)$

one has

$$\sum (E(X/\mathfrak{A})(v)P(v), v \in U) = \sum_{i=1}^{H} (E(X/\mathfrak{A})(v)P(v), v \in \bigcup_{i=1}^{H} (U \cap V_i))$$

$$= \sum_{i=1}^{H} (E(X/\mathfrak{A})(v)P(v), v \in U \cap V_i))$$

$$= \sum_{i=1}^{H} (E(X/U \cap V_i)P(U \cap V_i)$$

$$= \sum_{i=1}^{H} ((P(U \cap V_i)^{-1} \sum (X(u)P(u), u \in U \cap V_i))P(U \cap V_i)$$

$$= \sum (X(u)P(u), u \in \bigcup_{i=1}^{H} (U \cap V_i))$$

$$= \sum (X(u)P(u), u \in U)$$

(ii) Let $F(v) = E(X/\mathfrak{A})(v)$. Then, in view of the Projection Theorem for Integrability, [1], S- \mathfrak{A} -integrability of $F: V \to *R$ implies that ${}^{\sim}F: V \to R$ is a ${}^{\sim}P$ -integrable random variable on $(V, \mathfrak{M}(\mathfrak{A}), {}^{\sim}P)$. If $Y: V \to *R$ is any S- \mathfrak{A} -integrable random variable on (V, \mathfrak{A}, P) which satisfies (i) then ${}^{\sim}Y: V \to R$ is a ${}^{\sim}P$ -integrable random variable on $(V, \mathfrak{M}(\mathfrak{A}), {}^{\sim}P)$ as well. Therefore, for $U \in \mathfrak{A}$

$$\int\limits_{U}{^{\sim}}Yd^{\sim}P=\operatorname{st}(\sum(Y(u)P(u),u\in U))=\operatorname{st}(E(F(u)P(u),u\in U))=\int\limits_{U}{^{\sim}}Fd^{\sim}P$$

Let $M \in \mathfrak{M}(\mathfrak{A})$. Then, by [8], there exists a set $U \in \mathfrak{A}$ such that ${}^{\sim}P(U \triangle M) = 0$. Since U satisfies (1), we have

$$\int\limits_{M}{^{\sim}}Yd^{\sim}P=\int\limits_{U}{^{\sim}}Yd^{\sim}P=\int\limits_{U}{^{\sim}}Fd^{\sim}P=\int\limits_{M}{^{\sim}}Fd^{\sim}P$$

and hence ${}^{\sim}Y(v) = {}^{\sim}F(v)$ P-a. s.. This implies that

$$P\{v \in V | |Y(v) - F(v)| > n^{-1}\} \approx 0 \text{ for every } n \in N.$$

According to [4, Robinson's lemma about sequences] there exists $h \in NN$ such that for every $k \in N$, $k \leq h$

$$P\{v \in V | |Y(v) - F(v)| > k^{-1}\} \approx 0$$

Therefore, the set $U = \{v \in V | |Y(v) - F(v)| > h^-\} \approx 0$ satisfies: $U \in \mathfrak{A}$, $P(U) \approx 0$, $U \supset \{v \in V | Y(v) \neq F(v)\}$ and $Y(v) \approx E(X/\mathfrak{A})(v)$ for $u \notin U$. Hence

$$Y(v) \approx E(X/\mathfrak{A})(v)$$
 P-a. s.

i.e.

Let $H: V \to^* R$ be an S- $\mathfrak A$ -integrable random variable on $(V, \mathfrak A, P)$ with $\sum (|H(v) - F(v)|P(v), v \in V) \approx 0$. Since ${}^{\sim}H$, ${}^{\sim}F$ are ${}^{\sim}P$ -integrable random variables on $(V, \mathfrak M(\mathfrak A), {}^{\sim}P)$ and

$$\int_{V} |^{\sim} H - {^{\sim}} F | d^{\sim} P = \operatorname{st}(\sum (|H(v) - F(v)| P(v), v \in V)) = 0$$

we have that ${}^{\sim}H(v) = {}^{\sim}F(v)$ P-a. s.. Therefore, for $U \in \mathfrak{A}$

$$\sum (H(v)P(v), v \in U) \approx \int_{U} {^{\sim}} H d^{\sim} P = \int_{U} {^{\sim}} F d^{\sim} P \approx \sum (F(v)P(v), v \in U) \quad \text{i.e.}$$

$$\sum (H(v)P(v), v \in U) \approx \sum (E(X/\mathfrak{A})(v)P(v), v \in U)$$

(iii) According to def (2) for $P(A/\mathfrak{A})$ and (i), for $B \in \mathfrak{A}$ we have

$$\sum (P(A/\mathfrak{A})(v)P(v), v \in B) = \sum (E(I_A/\mathfrak{A})(v)P(v), v \in B)$$
$$= \sum (I_A(v)P(v), v \in B) = P(A \cap B)$$

(iv) Let $F(v) = P(A/\mathfrak{A})(v)$. Then, since F is $S-\mathfrak{A}$ -integrable, ${}^{\sim}F:V \to R$ is a ${}^{\sim}P$ -integrable random variable on $(V,\mathfrak{M}(\mathfrak{A}),{}^{\sim}P)$, so, for an S- \mathfrak{A} -integrable random variable $G:V \to {}^*R$ on (V,\mathfrak{A},P) which satisfies (iii), we have that for $B \in \mathfrak{A}$

$$\int\limits_{B}{^{\sim}Gd^{\sim}P}=\operatorname{st}(\sum(G(v)P(v),v\in B))=\operatorname{st}(\sum(F(v)P(v),v\in B))=\int\limits_{B}{^{\sim}Fd^{\sim}P}$$

Hence, by the same arguments as in proof of (ii)

$$G(v) \approx F(v) = P(A/\mathfrak{A})(v)$$
 P-n. s.

For $H:V\to {}^*R$ which is S- $\mathfrak A$ -integrable and satisfies $\sum (|H(v)-F(v)|P(v),v\in V)\approx 0$, like in (ii), we have that ${}^\sim H(v)={}^\sim F(v)$ P-a. s. implies that for any $B\in\mathfrak A$

$$\operatorname{st}(\sum (H(v)P(v), v \in B)) = \int_{B} {}^{\sim} H d^{\sim} P = \int_{B} {}^{\sim} F d^{\sim} P$$
$$= \operatorname{st}(\sum (F(v)P(v), v \in B)) = \operatorname{st}(P(A \cap B))$$
$$\sum (H(v)P(v), v \in B) \approx P(A \cap B)$$

In [10] it is proved that for S-integrable random variable $X:V\to {}^*R$ on $(V,{}^*\mathfrak{P}(V),P)$ the internal conditional expectation $E(X/\mathfrak{A})$ is a lifting of ${}^{\sim}E({}^{\sim}X/\mathfrak{M}(\mathfrak{A})), {}^{\sim}E({}^{\sim}X/\mathfrak{M}(\mathfrak{A}))$ being the conditional expectation of ${}^{\sim}X:V\to R$ relative to sub- σ -algebra $\mathfrak{M}(\mathfrak{A})\subseteq \mathfrak{M}({}^{\sim}P)$. From this result we derive the following nonstandard characterization of the conditional probability ${}^{\sim}P(A/\mathfrak{M}(\mathfrak{A})),$ $A\in\mathfrak{M}({}^{\sim}P)$ on a Loeb space.

THEOREM 5. Let $(V, {}^*\mathfrak{P}(V), P)$ be a hyperfinite probability space, \mathfrak{A} an internal subalgebra of ${}^*\mathfrak{P}(V)$ and ${}^{\sim}P(A/\mathfrak{M}(\mathfrak{A}))$ the conditional probability of $A \in \mathfrak{M}({}^{\sim}P)$ relative to sub- σ -algebra $\mathfrak{M}(\mathfrak{A}) \subseteq \mathfrak{M}({}^{\sim}P)$. Then there exists a set $B \in {}^*\mathfrak{P}(V)$ such that

$$\operatorname{st}(P(B/\mathfrak{A})) = {}^{\sim}P(A/\mathfrak{M}(\mathfrak{A}))$$
 P-a. s.

Proof. For $A \in \mathfrak{M}(^{\sim}P)$ there is a set $B \in {}^*\mathfrak{P}(V)$ such that ${}^{\sim}P(A\triangle B) = 0$. The indicator function I_B

$$I_B(v) = \begin{cases} 1, v \in B \\ 0, v \notin B \end{cases}$$

is an internal, S-integrable random variable on $(V, *\mathfrak{P}(v), P)$. Since

$$P\{v|I_A(v)neqI_B(v)\} = P(A\triangle B) = 0$$

 I_B is an S-integrable lifting of I_A . In view of [10], this implies

$$^{\sim}E(I_B/\mathfrak{A}) = ^{\sim}E(I_A/\mathfrak{M}(\mathfrak{A}))$$
 P-a. s. and so $\operatorname{st}(P(B/\mathfrak{A})) = ^{\sim}P(A/\mathfrak{M}(\mathfrak{A}))$ P-a. s.

REFERENCES

- R. M. Anderson, A non-standard representation for Brownian motion and Ito Integration, Israel J. Math. 25 (1976), 15-46.
- [2] R. M. Anderson, Star finite probability theory, Ph. D. Thesis, Yale University, 1977.
- [3] N. J. Cutland, Nonstandard measure theory and its applications, Bull. London Math. Soc. 15 (1983), 529-589.
- [4] M. Devis, Applied Non-standard Analysis, Wiley, New York, 1977.
- [5] W. Feller, An Introduction to Probability Theory and its Applications, vol I, II, Wiley New York, 1966.
- [6] J. H. Keisler, An infinitesimal approach to stochastic analysis, Amer. Math. Soc. 297 (1984), 1-183.
- [7] A. N. Kolmogorov, Foundations of the Theory of Probability, Chelsea, New York, 1956.
- [8] P. A. Loeb, Conversion firom nonstandard to standard measure spaces and applications in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113-122.
- [9] V. Mušicki-Kovačevic, Zasnivanje verovatnoće u nestandardnoj analizi, Magistarski rad, Prirodno-matematički fakultet, Beograd, 1984, unpublished.
- [10] K. D. Stroyan, J. M. Bayod, Foundations in Infinitesimal Stochastic Analysis, to appear.
- [11] А. Н. Ширяев, Вепоятность. Наука, Москва, 1980.

Ekonomski fakultet Univerzitet u Beogradu 11000 Beograd Jugoslavija (Received 20 05 1985)