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BI-QUOTIENT IMAGES OF ORDERED SPACES
Ljubisa Kocinac
Abstract. The class of bi-quotient images of orderable spaces is characterized.

1. Introduction

In [9] Michael defined bi-sequential spaces as spaces in which whenever a
filter base F accumulates at a point p (i.e. p € F for every F € F) then there is
a decreasing sequence {4; : ¢ € N} which meshes with F (i.e. every A; intersects
every F' € F and converges to p. He also showed that a space X is bi-sequential if
and only if X is a bi-quotient image of a metrizable space [9] (3.D.1. and 3.D.2.).
Herrlich [5] defined radial and pseudo-radial spaces (see [2], [6]) and proved that
these spaces are exactly pseudo-open and quotient images, respectively, of ordered
spaces.

In this paper we define one subclass of radial spaces as a generalization of
the bi-sequential spaces; these spaces are called biradial. We also show (the main
result) that a space is biradial if and only if it is a bi-quotient image of an ordered
space.

We shall use the usual notations and terminology [3]. A mapping f from
X onto Y is bi-quotient if whenever a filter base F accumulates an y in Y, then
f~Y(F) accumulates at some z € f~!(y). Ordered space is a linearly ordered set
with the interval topology. All spaces are assumed to be Hausdorff and all maps
are continuous surjections.

2. Definition and characterization of biradial spaces

Definition 2.1. A space X is called biradial if whenever a filter base F accu-
mulates at a point x then there is a family S of subsets of X so that

(i) S is linearly ordered by inclusion.

(i) N{S: S € S} = {z}.

(iii) For any neighbourhood U of z there is an S € S such that z € S C U.
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(iv) S meshes with F.

Following [6], we say that S is an r-network (c-network in [2] at = in X if S
satisfies conditions (i)-(iil) of the above definition.

The following proposition is a reformulation of Definition 2.1.

PROPOSITION 2.2 A space X is biradial if and only if whenever a filter base
F accumulates at a point z, then there is a chain {z, : o € L} which converges to
z and every F' € F intersects in a cofinal subchain.

Here “chain” means a net whose directed set is linearly ordered.

Remark 2.3. Since each linearly ordered set contains a cofinal and well-ordered
subset, we may assume that L in Proposition 2.2. is well-ordered.

(Easy) Ezamples 1) Obviously, each space in which each point has a linearly
ordered neighbourhood base (so-called lob-spaces or “sphérique” in [10]) is biradial.

In particular, every R-space in the sence of Kurepa [7] (i.e. a space which
has a base which is a tree with respect to reverse inclusion) and every linearly uni-
formizable space [4], [11] (= “pseudodistanciés” [8] = k-metrizable [4]) is biradial.
Let us note that R-spaces are called non-archimedean (see [4]).

2) All metric, all ordered and all subordered spaces are biradial.

3) Every subspace of a biradial space is biradial.

4) Every bi-sequential space is biradial. The ordinal space [0,w;], where wy
is the first uncountable ordinal, is a biradial space which is not bi-sequential.

PROPOSITION 2.4. FEwvery bi-quotient image of a biradial space is biradial.
This follows by routine verification.

COROLLARY 2.5. Fuvery continuous image of a compact biradial space is
compact biradial space.

Remark 2.6. Biradial spaces are badly behaved with respect to products. As
the product [0,w1] x [0,w] shows, the Cartesian product of two biradial spaces is
not necessarily biradial, even if both of them are compact. Let us note that every
finite product of k-metrizable spaces is biradial, because every such product is k-
metrizable [11]. Next, k-box products of at most k¥ many k-metrizable spaces are
linearly uniformizable [4] and thus biradial spaces.

To characterize biradial spaces as the images of ordered spaces under bi-
quotient mappings, we begin with a lemma of Herrlich [5].

LEMMA 2.7. If z is a point of a space X so that Y = X{x} is disrrete
and {zo : a € L} is a well-ordered sequence such that the collection of all sets
Xo={2z}U{zp:0>a}, a €L, is alocal base at z, then X is orderable.

THEOREM 2.8 For a space X the following conditions are equivalent:
(1) X i.s biradial;

(2) X is a bi-quotient image of an ordered space;
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(3) X is a bi-quotient image of a topological sum of linearlv ordered spaces;

(4) X is a bi-quotient image of an lob-space.

Proof. (1) = (2) A (3) A (4). Let X be a biradial space. For each z € X
and filter base F accumulating at z, choose a chain C = {z, : @ € L} which
converges to x, such that every F' € F intersects in a cofinal subchain. (Without
loss of generality we may assume that L is well-ordered; see Remark 2.3.) Let
Y(z,F,C) = {z*} U{z% : @ € L} be a copy of the set {z} U {z, : a € L},
topologized so that every 27, is an isolated point and a base at «* is the collection
of all sets of the form {z*} U {z% : o > B}, B € L. Let Y be the topological sum
of all Y(z,F,C). By Lemma 2.7., Y is an orderable space (and a topological sum
of orderable spaces); on the other hand, it is clear that Y is an lob-space. Let us
define the natural surjection f : Y — X, f(2*) = z, f(2}) = 4. The map f is
continuous. Clearly, it suffices to show that f is continuous at each z*. Let V be
an arbitrary neighbourhood of f(z*) = z; if C = {z, : @ € L} is a chain which
converges to x, then there is a 8 € L such that x, € V whenever a > 3, and thus
U = {z*}u{z} : @ > B} is a neighbourhood of z* for which f(U) C V. Let us show
that f is bi-quotient. Suppose that F is a filter base accumulating at z in X; let
C ={z4 : a € L} be a chain which converges to z and let every F' € F intersect in
a cofinal subchain. Consider Y (x, F,C) and pick z%st € f~1(x). Obviously, every
element of f~1(F) intersects every member of the local base at z*, i.e. accumulates
at z*.

(2) V (3) V (4) = (1). This follows immediately from Proposition 2.4 and
the fact that every ordered and every lob-space is biradial (see Examples). This
completes the proof of the theorem.

COROLLARY 2.9. Every metrizable space (and erery lob-space) is a bi-quotient
image of an ordered space.

3. Some properties of biradial spaces

We have the following definition, analogous to Definition 6.5. in [1] of an
absolutely Fréchet-Urysohn space:

Definition 3.1. A completely regular space X is called absolutely radial if its
Stone-Cech compactification X satisfies the following condition: for every A C X
and every ¢ € X N clgx(A) there is an r-network at z in SX which meshes with

{A}.

PROPOSITION 3.2. FEvery bi-quotient image of an absolutely radial space is
absolutely radial.

Proof. Let f : X — Y be a bi-quotient mapping from an absolutely radial
space X onto a completely regular space Y. Let us take any subset B in Y and
a point y € Y Nclgy(B). Let f : BX — BY be the extension of the mapping f.
By Lemma 4.2. in [1], we have clgx (f~'(B)) N f{ — 1)(y) #= 0, i.e. there is an
z € X such that f(z) =y and z € clgx (f~'(B))NX. Since X is absolutely radial,
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there is an r-network S at z in 8X which meshes with {4} = { f~Y(B)}. Then,

as one can easily verify, f(S) is an r-network at y in Y which meshes with {B}.
Therefore Y is absolutely radial. Our proposition is proved.

THEOREM 3.3. FEvery T3% biradial space is absolutely radial.

Proof. Let A be subset of 58X, z € X Neclgx(A) and X biradial. We consider
only the non-trivial case x ¢ A. Let U be the family of all open subsets of 3X
such that U D Aand z ¢ U. Put F = {X NU : U € U}. Evidently, F is a filter
base in X. For every F € F, x € clg,(F'). Indeed, if V' is any neighbourhood of z,
then VN A # 0 and thus UNV # ( for every U € Y. Hence (UNV)NX # Die.
VN(XNU) # 0. Therefore F accumulates at x in X. By assumption X is biradial,
so there is an r-network S at x in X which meshes with 7. Now we claim that
S = {clgx(S) : S € S} is an r-network at = in BX which meshes with {4}. Since
the properties (i), (i) and (iii) of Definition 2.1. obviously hold, we need only check
that (iv) holds. We suppose that (iv) is false; then ANclgx (S) = @ for some S € S.
Let V = BX \ clgx(S). Clearly V € U, i.e. VN X € F; thus SN (VN X) # 0,
whirc is a contradiction. This proves that X is absolutely radial and Theorem 3.3.
is proved.

It is natural to ask when a biradial space is bi-sequential. The proof of the
following theorem is similar to the proof of Theorem 3 in [6] which states that every
pseudo-radial space of countable pseudocharacter is sequential.

THEOREM 3.4. Fuvery biradial space of countable pseudocharacter is bi-
sequential.

Proof. Let X be a biradial space of countable pseudocharacter, and a filter
base accumulating at a point z. Let {U; : i € N} be a family of open subsets of
X such that N{U; : ¢+ € N} = {z}. Since X is a biradial space there exists an
r-network S at x which meshes with F. We may suppose that z ¢ Fy for some
EFF (iftx € ({F : F € F} the proof is trivial). For each i € N let .S; be an element
of 8 such that z € S; C U;. We claim that § = {S; : i € N} is an r-network at
x which meshes with F. Clearly, we need only prove that (iii) in Definition 2.1.
holds, since, obviously, all the conditions (i), (ii) and (iv) hold. Let us suppose that
(iii) is not true. Then there exists a neighbourhood V' of  such that S; \ V # 0 for
every ¢ € N. On the other hand, there is an S* € S such that x € S* C V. Since
S is linearly ordered we have: S* C (\{S;:9i€ N} C {U; : i € N} = {z}. But,
S* N Fy # 0, and thus S* N (X \ {z}) # 0, which is a contradiction. Therefore the
claim is proved. In other words: there is a countable filter base § wich meshes with
F and converges to z. Thus X is a bi-sequential space. This completes the proof.
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