ON CERTAIN CONDITIONS WHICH REDUCE A FINSLER SPACE OF SCALAR CURVATURE TO A RIEMANNIAN SPACE OF CONSTANT CURVATURE

B.B. Sinha and A.S. Matharoo

Abstract. We give certain conditions which reduce a Finsler space of scalar curvature to a Riemannian space of constant curvature.

1. Preliminaries. Let F_n be an n-dimensional Finsler space with the fundamental functional L(x, y), the positive definite metric tensor $g_{ij} = 1/2\dot{\delta}_i\dot{\delta}_jL^2$ and the angular metric tensor $h_{ij} = g_{ij} - l_i l_j$, where $l_i = \dot{\delta}_i L$, $\dot{\delta}_i = \delta / \delta y^i$.

For a Cartan connection $C\Gamma$, h-and ν -covariant derivatives of a finsler tensor field X_i^i are denoted by $X_{i|k}^i$ and $X_i^i|_k$. The h-, h\nu- and \nu-curvature tensors of $C\Gamma$ are R^i_{hjk} , P^i_{hjk} and S^i_{hjk} and the (ν) h-, (h) h ν - and (ν) h ν -torsion tensors of $C\Gamma$ are R^i_{jk} , C^i_{jk} and P^i_{jk} respectively. On the otherhand H^i_{hjk} and H^i_{jk} are h-curvature tensors and (ν) h- torsion, tensors of Berwald connection $B\Gamma$ respectively.

The following relations are well known [4]:

$$(1.1) H_{ijk}^h = \dot{\delta}_i H_{ik}^h$$

$$(1.2) P_{ijk} = C_{ijk|o},$$

where the index o stands for transvection by y and $C_{ijk} = 1/2\dot{\delta}_k g_{ij}$

(1.3)
$$H^{i}_{jk} = H^{i}_{ojk} = R^{i}_{jk} = R^{i}_{ojk},$$

(1.3)
$$H_{jk}^{i} = H_{ojk}^{i} = R_{jk}^{i} = R_{ojk}^{i},$$
(1.4)
$$H_{ijk}^{h} = R_{ijk}^{h} - C_{ir}^{h} R_{jk}^{r} + \{P_{ij|k}^{h} - P_{jr}^{h} P_{ki}^{r} - j \mid k\}.$$

where $j \mid k$ means interchange of indices j, k in the foregoing terms.

A hypersurface of F_n defined by the equation L(x,y) = 1, where the point $x = (x^i)$ is fixed and y^i are variables, is called indicatrix. We denote by p the projection of the tensor of the Finsler spaces on the indicatrix. For example, the projection of the tensor T_j^i of type (1,1) of F_n on the indicatrix is $p \cdot T_j^i = h_a^i T_b^a h_j^b$, where $h_a^i = \delta_a^i - l^i l_a$, $l^i = g^{ij} l_j = L^{-1} y^i$. A tensor T satisfying $p \cdot T = T$ is called an indicatric tensor. We have

(1.5)
$$\begin{aligned} \text{a)} & p \cdot l^i = p \cdot l_i = 0, \\ \text{c)} & p \cdot \dot{\delta}_k h^i_j = p \cdot h^i_j \big|_k = 0, \end{aligned} \qquad \begin{aligned} \text{b)} & p \cdot \delta^i_j = h^i_j, \\ \text{d)} & p \cdot \dot{\delta}_k h_{ij} = 2C_{ijk} \end{aligned}$$

2. A Finsler space of scalar curvature. A Finsler space of scalar curvature is characterized by [6] any one of the following equations:

(2.1a)
$$H_{jk}^{i} = L(Kl_{j} + K_{j}/3)h_{k}^{i} - j \mid k,$$

$$H_{hjk}^{i} = \left[\{l_{h}(Kl_{j} + K_{j}/3) + Kh_{hj} + 2K_{h}l_{j}/3 + K_{hj}/3\}h_{k}^{i} + l^{i}(Kl_{k} + K_{k}/3)h_{hj} + h_{h}^{i}l_{j}K_{k}/3\right] - j \mid k$$
(2.1b)

where $K_k = L\dot{\delta}_k K$, $K_{hj} = Lp \cdot \dot{\delta}_h K_j = K_{jh}$. Specially, if the scalar K is constant, then the space is called a Finsler space of constant curvature.

Proposition 2.1. A Finsler space $F_n(n \geq 3)$ of scalar curvature K satisfies

(2.2)
$$K_{ijk} + K_i h_{jk} - i \mid j = 0,$$

where $K_{ijk} = Lp \cdot \dot{\delta}_i K_{jk}$.

Proof. From (1.5) and (2.1b), we have

$$Lp \cdot \dot{\delta}_m H^i_{hjk} = (h_{hm} K_j/3 + K_m h_{hj} + 2LK C_{hjm} + 2K_h h_{jm}/3 + K_{mhj}/3) h^i_k + h^i_m K_k h_{hj}/3 + h^i_h h_{im} K_k/3 - j \mid k$$

Considering the skew-symmetric parp of the above equation in the indices h and m and using the fact $\dot{\delta}_m H^i_{hik} = \dot{\delta}_h H^i_{mik}$, we get

$$[(K_m h_{hj} + 2K_h h_{jm}/3 + K_{mhj}/3)h_k^i - j \mid k] - h \mid m = 0$$

which is simplified as

$$[(K_m h_{hi} + K_{mhi})h_k^i - j \mid k] - h \mid m = 0$$

Contracting (2.3) in indices i and k, we get (2.2).

Remark 2.1. Proposition 2.1. and the definition of K_j , K_{hj} and K_{ijk} imply that when any one of them is zero, then the other two are automatically zero. $K_j = 0$ means that K is independent of y. Thus K is constant (Matsumoto [4, Prop. 26.1]). If for a Finsler space F_n of scalar curvature any one of the tensors K_i , K_{hj} and K_{ijk} vanishes, F_n is of constant curvature.

Proposition 2.2. A Finsler space F_n of scalar curvature K with $P_{hij|0}=0$ satisfies

$$(2.4) h_{ih}(3KK_{im} - K_iK_m) + h_{ih}(3KK_{im} - K_iK_m) - h \mid m = 0$$

Proof. A Finsler space F_n of scalar curvature K satisfies [7]

(2.5)
$$L^{-1}P_{hij|0} + LKC_{hij} + (K_h h_{ij} + K_i h_{hj} + K_j h_{hi})/3 = 0.$$

Since, $P_{hij|0} = 0$, (2.5) leads to

(2.6)
$$LKC_{hij} + (K_h h_{ij} + K_i h_{hj} + K_j h_{hi})/3 = 0.$$

Differentiating the equation above partially with respect to y^m and applying p to the resulting equation and using (1.5) we get

$$3LK_mC_{hij} + 3L^2Kp \cdot \dot{\delta}_mC_{hij} + (2LC_{ijm}K_h + h_{ij}K_{hm} + 2LC_{jhm}K_i + h_{jh}K_{im} + 2C_{him}K_j + h_{hi}K_{jm}) = 0.$$

Considering skew symmetric part of the above equation in the indices h and m, we get

(2.7)
$$LC_{hij}K_m + h_{jh}K_{im} + h_{hi}K_{jm} - h \mid m = 0.$$

By virtue of (2.6) and (2.7), we obtain (2.4).

A Riemannian space is characterized by [4]:

$$(2.8) C_{hij} = 0.$$

Theorem 2.3. A Finsler space F_n of non-vanishing scalar curvature K with $P_{hij|0} = 0$ is a Riemannian space of constant curvature if

$$3KK_m^m - K^m K_m = 0,$$

where $K_i^i = g^{im} K_{mj}$, $K^i = g^{im} K_m$.

Proof. Transvecting (2.4) by $h^{ih} = q^{ih} - l^i l^h$ we get

$$(n-1)(3KK_{im} - K_iK_m) - (3KK_s^s - K^sK_s)h_{im} = 0$$

which leads to

$$(2.10) 3KK_{im} - K_iK_m = 0$$

because of (2.9).

Differentiating (2.10) partially with respect to y^h and applying p to the resulting equation, we have

$$(2.11) 3K_h K_{im} + 3K K_{him} - K_{hi} K_m - K_i K_{hm} = 0$$

Equations (2.10) and (2.11) give $K_m K_h K_i + 9K^2 K_{him} = 0$ which yields

(2.12)
$$K_{hjm} - h \mid j = 0 \quad K \neq 0,$$

By virtue of (2.2) and (2.12), we get $K_h h_{im} - h \mid j = 0$ which shows that

$$(2.13) K_h = 0.$$

On account of remark 2.1 and equations (2.6), (2.8) and (2.13), we have the theorem.

COROLLARY 2.4. A Finsler space F_n of non-vanishing constant curvature $(K_j = 0, K \neq 0)$ with $P_{hij|0} = 0$ is a Riemannian space of constant curvature.

Proof. Since F_n is of constant curvature, we get $K_j = K_{hj} = 0$. Thus all the conditions of theorem 2.3 are fulfilled. Hence the corollary.

The h-curvature tensor of Rund connection is defined as follows [4]:

$$(2.14) K_{hik}^i = R_{hik}^i - C_{hr}^i R_{ik}^r.$$

Theorem 2.5. A Finsler space $F_n (n \geq 3)$ of non-vanishing scalar curvature K is a Riemannian space of constant curvature if the h-curvature tensor of Berwald and Rund coincide.

Proof. From (1.4) and (2.14), we obtain $P_{ij|k}^h - P_{jr}^h P_{ki}^r - j \mid k = 0$ which implies $P_{ihj|k} - P_{jhr} P_{ki}^r - j \mid k = 0$. Considering symmetric part of the above equation in i and h, we have

$$(2.15) P_{ih\,i|k} - \supset |k| = 0$$

Also from (1.4), we get

$$(2.16) H_{ihjk} + H_{hijk} = -2C_{ihr}R_{ik}^r + 2(P_{ihj} - j \mid k)$$

Substitution of (2.15) in (2.16) gives

$$(2.17) H_{ihjk} + H_{hijk} = -2C_{hir}R_{jk}^r$$

By virtue of (2.1a) and (2.1b), we obtain

(2.18a)
$$p \cdot H_{ik}^i = LK_j h_k^i / 3 - j \mid k$$

(2.18b)
$$p \cdot H_{hijk} = (Kh_{hj} + K_{hj}/3)h_{ik} - j \mid k$$

Applying indicatric projection $p\cdot$ on (2.17) and using (2.18a) and (2.18b) we get

$$(2.19) K_{ij}h_{hk} + K_{hj}h_{ik} - j \mid k = -2LK_iC_{hik} - j \mid k.$$

Since $P_{ihi|0} = 0$ because of (2.15), using (2.5) and (2.19), we have

$$(3KK_{ij} - 2K_iK_j)h_{hk} + (3KK_{hj} - 2K_hK_j)h_{ik} - j \mid k = 0$$

(2.4) and (2.20) lead to $K_iK_jh_{hk} + K_hK_jh_{ik} - j \mid k = 0$. Transvecting the last relation by h^{hk} , we get

$$(2.21) (n-1)K_iK_j - K^mK_mh_{ij} = 0$$

Transvecting the relation above by K^iK^j , we obtain $(n-2)K^mK_mK^sK_s=0$, which implies $K^mK_m=0$. Hence $K_i=0$ identically. By definition $K_{hj}=0$ also. Thus all the conditions of theorem 2.3 are satisfied. Hence the Theorem.

T-tensor T_{hijk} is defined by [3]

$$(2.22) T_{hijk} = LC_{hij}|_{k} + l_{h}C_{ijk} + l_{i}C_{hjk} + l_{j}C_{hik} + l_{k}C_{hij}.$$

Ikeda [2] has proved that Finsler tensor field u^i sastisfies

$$(2.23) u_{j|0}^{i}|_{k} - u_{j|k}^{i} - u_{j}^{i}|_{k|0} = 0$$

Theorem 2.6. A Finsler space of non-vanishing scalar curvature with vanishing T-tensor and $P_{hij|0}=0$ is a Riemannian space of constant curvature if $C_{hij|k|0}=0$.

Proof. Since T = 0, (2.2) implies

(2.24)
$$LC_{hij|k} = -l_h C_{ijk} - l_i C_{hjk} - l_j C_{hik} - l_k C_{hih}.$$

Differentiating (2.24) h-covariantly and transvecting the resulting equation by y and using (2.23), we obtain

$$L(P_{hii}|_k - C_{hij}|_k) = l_h P_{ijk} - l_i P_{hjk} - l_j P_{hik} - l_k P_{hij}$$

Differentiating the equation above h-covariantly once again and transvecting the resulting equation by y and using (2.23), $P_{hij|0} = 0$ and $C_{hij|h|0} = 0$, we obtain

$$(2.25) P_{hij|k} = 0.$$

From (2.15) – (2.21) and (2.25) we have $K_i = 0$ and consequently $K_{hj} = 0$.

Thus the theorem follows in light of Theorem 2.3.

Acknowledgement. The second autor is thankful to C.S.I.R. for their financial support.

REFERENCES

- [1] H. Izumi and T.N. Srivastava, On R3-like Finsler spaces, Tensor (N.S.) 32 (1978), 339-348.
- [2] F. Ikeda, On two dimensional Landsberg space, Tensor (N.S.) 33 (1979), 43-48.
- [3] M. Matsumoto, V-transformation of Finsler spaces: I. Definition, infinitesimal transformation and isometries, J. Math. Kyoto Univ. 12 (1972), 479-512.
- [4] M. Matsumoto, Foundation of Finsler Geometry and Special Finsler Spaces, 1977.
- [5] H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin 1959.
- [6] T. Sakaguchi, On Finsler spaces of scalar curvature, Tensor N.S. 38 (1982), 211-19.
- [7] C. Shibata, On the curvature tensor R_{hijk} of Finsler spaces of scalar curvature, Tensor (N.S.) 32 (1978), 311-17.

Department of Mathematics Banaras Hindu University Varansi, 221005 India (Received 03 07 1985)