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INFLATION OF SEMIGROUPS

Stojan Bogdanovié¢ and Svetozar Mili¢

Abstract. We introduce the concept of an n-inflation of a semigroup. In particular, for
n = 1 we obtain the inflation introduced by Clifford [6], and for n = 2 the strong inflation
introduced by Petrich [10]. We also characterize n-inflations of unions of groups, of semilattices of
groups of unions of periodic groups, etc. In addition, we describe nilpotent semigroups of arbitrary
nilpotency class.

1. Introduction and preliminaries

Let S and T be two disjoint semigroups and suppose that 7" has a zero element.
A semigroup V is said to be an (ideal) extension of S by T if it contains S as an
ideal and the Rees factor semigroup V/S is isomorphic to T. If, in addition, there
is a partial homomorphism ¢ : T\ 0 — S such that for all A, B € T\ 0 and ¢,d € S:

p(A)p(B), if AB=0inT
Aoc=p(A)c, coA=cp(A), cod=rd

AB, if AB#0in T
AOB:

we say that extension V is determined by that partial homomorphism, [6].

Let V' be an extension of S. Than V is a retract extension if there exists a
homomorphism ¢ of V onto S and ¢(z) = x for all z € S. In this case we call ¢ a
retraction. Petrich [9] proved that an extension V of a semigroup S by a semigroup
T with zero is determined by a partial homomorphism if and only if V is a retract
extension of S. Here we give one more characterization of the retract extension.

ProrosiTioN 1.1. Let T be a semigroup. With each a € T associate a set 'Y,
such that

(1.1) a€Y,, Y,NY, =0 if a#hb.
Let
(1.2) (@b Y, x YV, = Yy
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(@) (2,b) = (¥ (a,y) = ab for all x € Y, and y € Y} be functions for which

(1.3) (90 (ol (2,4, 2) = (44 (2, o0 (y, 2))

and define a multiplication * on S = Y, by:

a€cT
w*y:go(“’b)(:c,y) ifxeY,, yey,.

Then (S,*) is a semigroup and S is o retract extension of T. Conversely, every
retract extension S of a semigroup T can be so constructed.

Proof. Suppose that S fulfills the conditions of the proposition. Let z € Y,
y €Yy, z € T,.. Then by (1.3) we have

(@ xy) x 2 = ¥ (z,y) x 2 = L) (P (2, y), 2)

_ (p(a,ba) (, <P(b’c) (y,2)) =z * cp(b’c) (y,2)
=z x(y x 2).

Hence (S, %) is a semigroup. Define a mapping ¢ : S = T by ¢(Y,) = a. It is clear
that ¢ is onto and that ¢(a) = a for a € T. Furthermore, for x € Y,, y € Y, we
have

pla+y) = o (2,y)) = ab = p(@)p(y)-
Thus ¢ is a homomorphism and by (1.2) T is an ideal of S. Therefore, S is a retract
extension of T'.

Conversely, let S be a retract extension of 7. Then there is a homomorphism
@ of S onto T such that ¢(a) = a for alla € T. For a € T assume that Y, = ¢~ !(a).
Then S = {J,cr Ya and for the sets Y, (a € T') the condition (1.1) is satisfied.

For any z,y € S there exist a,b € T such that z € Y,, y € Y}, so that
p(x) = a, ¢(y) = b. From this it follows that

p(zy) = p(z)p(y) = ab € Yy
i.e. zy € Y,p. Hence there exist the functions
(@) Y, x Yy = Yy

and it is clear that for these functions (1.3) holds. Since T is an ideal of S we
have (1.2).

Clifford [6, p. 98] gave a construction for a special retract extension of a
semigroup, the so-called inflation of a semigroup. A semigroup S is an inflation of
a semigroup T if T is a subsemigroupof S and there is a mapping ¢ of S onto T
such that ¢o(z) = ¢ for x € T and 2y = p(x)p(y) for z,y € S. For further results
concerning inflation of a semigroup, see [1], [3], [13], [14].

Petrich [10], [11], generalized Clifford’s result introducing the notion of strong
inflation.
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Let T be a semigroup. To each a € T we associate two sets X, and Y, having
the following properties:

a€ Xy XaNXo=Y,NYy =0 if a#b; X,NY,=0 (a,beT).

To every pair of elements z € Y,,y € Y}, we associate an element ¢(®?) (z,y) € X,p.
Now let Z, = X, UY, and define a multiplication * on S = |J Z, by: if
T € Zg,y € Zp, then

a€T

cp(“’b) (z,y) fzeY,yel,
TxyY = .
ab otherwise.

Then S is a retract extension of T and S2 C T. Conversely, every retract extension
S of a semigroup T such that S C T can be so constructed. Such a semigroup S is
called a strong inflation of a semigroup S. In particular for T = 0 nilpotent semi-
groups of nilpotency class < 3 are described, [12, p. 135]. Moreover, a semigroup
S in n-nilpotent if S* =0 (n € Z7).
In this paper we introduce the notion of an n-inflation of a semigroup. For
= 1 we obtain the inflation and for n = 2 we obtain the strong inflation of
semigroup. In Theorem 2.1. we describe an n-inflation of an arbitrary semigroup
by means ot retraction. In section 2, also, a description of a strong m-inflation
is given (Theorem 2.2.) and nilpotent semigroups of arbitrary nilpotency classes.
In addition, we give characterizations of n-inflations of some special semigroups:
unions of groups, semilattices of groups, unions of periodic groups and so on.

For undefined notions and notations we refer to [4], [6] and [12].

2. n-inflation of a semigroup
We introduce here the notion of an n-inflation of a semigroup.

LEMMA 2.1. Let T he a semigroup. To each a € T we associate a family of
sets X (i =1,2,...,n) such that a € X2 for somer € {1,2,...,n} and

(2.1) XinXi=0 ifi£j;XPNX0=0 ifa#b.

Let, for nonempty sets X and X]’-’,

o) Xpx X |J X2 ifi+i<n
v=i+j

(2.2) &) (z,y) =ab if i+j>n

i (@y) = 83 (@) = ab

be functions for which:

(ab, (a,b) _ lasbe) (b,c)
(2.3) (Vs> i+5)(vt>+k)a% (@(jj)( )z)_Q(;t;( L35 (y z))
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for all a,b,c € T, wherei+j<norj+k<nori+t<nors+k<n.
Let Y, = U, X? and define a multiplication x on S = |J,crYa by: for
T €Y,,y €Yy,

a€T

.Z'*y:’}g(:;b))(l',y) imeXi7y€Xb,1Si,an
Then (S, *) is a semigroup.
Proof. Let x,y,z € S. Then there exist a,b,c € T such that x € Y,, y €
Vi,2 € Yoiez € X2y € X]’-’,z € Xi for some 1 < 4,5,k < n. Assume that
t+7<mnandj+k<n. Then

(xy)xz =87 (@,y) * 2, o (z,y) € XY, i+j<s<n
_ glabe) [ g(asb)
=3ty (27 @), )

(wxy)x 2= 2% 800 (y,2), o) (y,2) € X[e, j+k<t<n
_ &labo) (b,c)
= <I>(;.’)t)c (xé(j,z) (y,z))

and by (2.3) we have associativity. In other cases it can be, in a similar way, proved
that the associativity holds. Therefore (.5, *) is a semigroup.

Definition 3.1. The semigroup S constructed in Lemma 2.1. is called an
n-inflation of a semigroup T.

It is obvious that 1-inflation is the inflation, and that 2-inflation in the strong
inflation. In those cases the condition (2.3) of Lemma 2.1 it not necessary.

The following theorem gives a characterization of an n-inflation of semigroups,
which shows that here we have the case of retract extensions.

THEOREM 2.1. A semigroup S is an n-inflation of a semigroup T if and only
if S"TY C T and S is a retract extension of T.

Proof. Let S be an n-inflation of a semigroup 7. Then by (2.2) T is an ideal
of S. Assume u € S"! e u =51 %83% - *8pq1, S, ZT (r=1,2,...,n+1).
Let s, € X{" where a, € T. Then

_ _ g (a1,a2)
u—81*$2*“‘*$n+1—¢(1’1) (81,82) * 83 % -+ % Spy1

If 2 > n, then <I>8’11’)GZ)(51, sy) =uy €T,sou€T.

If 2 < n, then
U=up k83 *---x5p41, up €X', 2<t<n.
:(I)(a1a2,as)

(1) (u1,83) %S4 % -+ % Spy1

If t; + 1 > n, then @g‘lljfgg’%)(ul, s3)=us €T,soueT.
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Ift; +1<nthenu=wug*s3%---x5,41, uz €X', 3<ty<m.

(a1..yan—1an)
(I)(t:—2,1) o

(Un_2,8,) = un_1 € T,s0u € T, and if t,_o +1 < n, then u = @Ef:;‘l')’a"a"“)-
“(Up—1,8n+1) € T, (since n +1 > n).

In other cases (» € X", 1 < k, < n) we have also that u € T. Thus
Sl C T.

Define a mapping @ : § =,y Yo = T by ®(Y,) = a. For any z,y € S there
exist a,b € T such that @ € Y,y € ¥}, i.e. # € X, y € X?, for some 1 < i,j < n.
So

Continuing this procedure we have that: if ¢,_2 + 1 > n, then

d(zxy) =% (@E?”;’))(m,y)) ) @E?”;’))(x,y) € X C Yy
forsomei+j<k<nifi+j<n,and ®(z*xy) =abif i +j > n. Now by the
definition of @ we have ®(z xy) = ab = ®(z)®(y). It is clear that ®(z) = z for all
x € T. Therefore, S is a retract extension of 7.

Conversely, let n be the smallest positive integer such that S*t! C T and let
® be a retraction of S onto T'. An arbitrary a € T is in one of the following sets
S\ 82, §2\83,...,8m"1\ 8", S". Forae S""\S" "t for some 0 <r <n-—1
we define the sets: Y, = ®71(a),

X =Y, N(S\S?
X$=Y,Nn(S*\ 5%

Xa _ Ya n (Snfrfl \Snfr)

n—r—1 —
X . =Y,nS"r
Xf1‘77'+1 = X1[$77'+2 == X’Zj = 0

It is clear that the conditions (2.1) hold for every X¢ and X]’-’ (1<i,j5<n).

Ifa € T, then Y, = Uj—; X{" and so S = U,er Ya. For z,y € S there exist
a,b € T such that z € Y,,y € Y}. So by Proposition 1.1. we have that
(24) Ya,)/b C Yab

Let # € X{',y € X},ae S" 7\ S" "t be S P\ S P where 0 < r,p <
n — 1. Then

re X! =Y,n(S\S™") and y € ij =Y,(S\S'*, 1<i<n-r, 1<j<n—p.

Then zy € S'S7 = S and if i +j < n we have that zy € N7_;, , X2, If i+j > n,
then xy = ab € T. For x € X?, b € T' we have that b = ab, bz = ba. In this way
functions @E?’;’)) from Lemma 2.1. are defined and the condition (2.3) holds.
Definition 2.2. If the first condition (2.2.) in the construction of an n-inflation
in replaced by: For 1 <i,j <n let thereexistsak € {i +4,i+j+1,...,n} and

)b
B X x X - X
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then the semigroup (S, %) is called the strong n-inflation of 7.

The following theorem is proved similarly as the previous one.

THEOREM 2.2. A semigroup S is a strong n-inflation of a simigroup T if
and only if S is an n-inflation of T and the relation determined by the following
partition {S\ S?,5%\ S3,...,8""1\ S", 8"} is a congruenre of S.

Ezample 1. The semigroup S given by the table 1 is a 4-inflation of T = {a, b}.
Here we have X{ = {d,g}, X3 = {f}, X3 = {e}, X¢ = {a,c}, X} = X} =
Xt =0, X} = {b}. S is not strong 4-inflation of T. Since d-d = a € X{ and
9-9=1[feXs.

llabcde fg 2/0abcd
alabaaaaa 0[]00000O0
blbabbbbbd al00000
clabaaaaa b|000aa
dlabaaaaa cl00abbd
elabaaaac dl00abbd
flabaaace

glabaace f

Example 2. The semigroup S gives by the table 2 is a strong 3-inflation of
T = {0}. Here we have X? = {c¢,d}, X9 = {b}, X = {0, a}.

In particular, if T = {0} then nilopent semigroups of nilpotency class <
n + 1 are described by the following theorem which is directly proved by means of
Theorem 2.1.

THEOREM 2.3. Let X;, i = 1,2,...,n be sets, let 0 be a fixcd element such
that € Xp,, XuNX; =0 ifi # j, and let

iy XixX;— |J Xy ifi+i<n, Bgp(zy)=0ifi+tji>n
v=i+j
be functions such that
(Vs > i+ §)(V > j+E)®sp) (i) (2,9), 2) = Bigy (P50 (, 2))

wherei+j<norj+k<nori+t<nors+k<n. Define a multiplication *
on S=U_, Xy by:

m*y:q)(z,])(may) Zf :EGXi:yEXja 1<4,j<n.

Then (S, ) is a semigroup and S™T' = 0 and conversely, every nilpotent semigroup
of nilpotency class <n +1 can be so constructed.
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3. n-inflation of a union of groups

In the preceding section we considered n-inflations of a semigroup T in the
general case. In this sections we give characterization for those cases when T is a
union of groups, a semilattice of groups, and so on.

THEOREM 3.1. The following conditions are equivalent on a semigroup S:
(i) S is an n-inflation of a union of groups;
(ii) (Vz,y € S)zS"~ty = 22S™y?%;

(iii) S™*! is a union of groups and

1
(Vz1,...,Tnt1 € S) (@I € Ge, = T1.. . Tpp1 = €1T1T2 ... Tpy1€nq1)-

Proof. (i)=(ii). Let S be an n-inflation of a union of groups T'. Then
S+l = T is an ideal of S and there exists a retraction ¢ : S — S"*! (Theorem
2.1.). For any z,22,23,...,2,,y € S there exists e, f € E(S) such that ¢(z) € G,
and ¢(y) € Gy, so

TT273 - - Ty = P(2)P(32)(73) - - - yp(T0)p(y)
= (" (@ )p(@2) - .. yp(Ta)e(y™)e(y
€ mn+1snyn+1 C $2S"y2.

n+1)

Thus 25"ty C 22S™y? C 25" 'y and therefore (ii) holds.
(ii)=(iii). Let =,y € S. Then

:cS”_ly — .’IJ2Sn 2 — (wn+1)25n(yn+1)2

so z"t € xSl = (x7 )25 (2712 ie. 2™ is completely regular (Lemma I,
5.1. [3]). So z™*! € G, for some e € E(S). Let u € S"*1. Then

U=518..np1 € 518" 541 = S?HS"SZLI = els?HS"SsﬂenH
where s{t! € Ge,, 8711 € Geny1, and e1,e,41 € E(S). Thus u = eju = uepy1.
This proves that the second condition of (iii) is fulfilled. Now

u=eu=eer...e;u € 15" u = e, 5™u? € Sn?

and similarly u € u2S. So u € u?Su?, i.e. S"*! is a union of groups (Lemma I 5.1.
[3)-

(iii)=>(i). Since S™*! is a union of groups we have that every regular element
from S is completely regular, i.e. S is a GV-semigroup. Now by Theorem X.1.1.
[3] (see also [I5]) we have that S is a semilattice Y of semigroups S,, where S,
is a nil-extension of a completely simple semigroup P,(a € Y). It is clear that

S+l = P,. Define a mapping ¢ : S = Soa =T =.cy Pa by

acY? acY

Vo=@ [ Sa:Sy— Py 0a(To) = To = Taeq, if 2" €G,,.
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Then ¢, maps S, onto P, and ¢(z,) = x4 for z, € P,. Furthermore

Va(a)ps(ys) = Taealypes = eatayses (by Theorem 1.4.3. [3]

= €n4€q---€aZals see, also [7])
= €q€q ---€aZals (by the hypothesis)
=€nlq .- -€q-. -Talpeas (since S is a semilattice Y and

= €aTaYB€afCas - - - €ap by the hypothesis)

= ZqYB€asap - - - Cap (by the hypothesis)
= TalypCap
= ¢ap(Tayp)
for all z, € Sa, yg € Sg. Thus S is an n-inflation of a semigroup |J,cy Pa, and

S, is an n-inflation of P,.

COROLLARY 3.1. A seimigroup S is an n-inflation of a completely simple
semigroup if and only if S™t! is completely simple and the second condition of (i)
of Theorem 3.1 holds.

Proof. By the proof of Theorem 3.1.

A subset B of a semigroup S is two-sided (m,n) pure if BNz1 ... TmSy—1-..Yn
=Z1...ZmByy ...y, holds for every x1,...,Tm,¥1,---,Yn € S. A semigroup S is
two-sided (m,n)-pure if every bi-ideal of S is a two-sided pure subset of S, [5].

LEMMA 3.1. Let S be a semigroup. If SPH1 s a semilattice of groups, then
the idempotent elements of S are central.

Proof. By the hypothesis we have that S is two-sided (n — k, k)-pure, 1 <
k<n-—1,n>2]5 Theorem 1]. So eSe (e € E(S9)) is a two-sided (n — k, k)-pure
bi-ideal of S. From this it follows that

re€xe...e-eSe-e...e=eSeNzxe...eSe...e CeSe

for every z € S. Thus ze = eae for some a € S and similarly ez = ebe for some
b e S. Now we have that

ze = eae = (ee)ae = e(eae) = e(xe) = (ex)e = (ebe)e = eb(ee) = ebe = ex.

THEOREM 3.2. The following conditions are equivalent on a semigroup S:
(i) S is an n-inflation of a semilattice of groups,
(ii) (Vz,y € S)(zS"H'y = y*S"x),

(iii) S™*! is a semilattice of groups.

Proof. (i)=(iii) By Theorem 3.1 we have that S™*! is a union of groups and
since the indempotents of S are central we have that S™*! is a semilattice of groups.



Inflation of semigroups 71
(iii) Rightarrow(ii). For every x,y € S we have that zS" 1y = 225"y? C
28" 1y? C 28" 1y [5, Theorem 1 ] i.e. 25" 1y = 2287192 = 22S"y. Thus
a:S"_ly — mn—i—lsmyn—i-l — (xn—i-l)—1(xn—i-l)QSn(yn—i-l)Q(yn—i-l)—l’
since 2"t € G, y"' € Gy for some e, f € E(S). By Lemma 3.1 we have that the
indempotents of S are central, so
xsnfly — yn+1 (y"“)flx"ﬂ Snyn+1 (Z_n+1)71$n+1
whence 5" 1y = y2S"z.
(if)=>(iii). By the hypothesis we have that
8"ty =y?S"r C y? S = 2?S™y? C xSy
for every x,y € S. So the condition (ii) of Theorem 3.1 holds. From this and The-

orem 3.1. we have that S™*! is a union of groups. Since § is weakly commutative,
so is $"*1. Thus S™*! is a semilattice of groups [2, Theorem,1.1].

(iii)=>(i). By Lemma 3.1 the idempotents of S are central. Thus ¢ : S — S"*!
defined by p(z) = ze if 2" € G, is a retraction.

COROLLARY 3.2. A Semigroup S is an n-inflation of a group T if and only if
gntl =T,

Proof. Trivial.

Remark. Semigroups from Theorem 3.2 are described in [5] by means ’ of
bi-ideals.

LEMMA 3.2. S™t! is a union of periodic groups if and only if

Va1, @2, -, Tpyr € 8)(Fm € Z1)m1my - Tngr = (B122 - Tpyr)™-

Proof. Trivial.

COROLLARY 3.3. A semigroup S is an n-inflation of a semilattice if and
only if
(Vo1, %2, s Tng1 € S)T1T2 .+ .. Tng1 = (Tnp1 a3 ... TnT1)?

Proof. Follows by Theorem 3.2 and Lemma 3.2.

THEOREM 3.3. A semigroup S is an n-inflation of a union of periodic groups
if and only if

1 1
(Vo1,...,Zp1 € S)Em € Z )z .. 2pg1 = 27" 2p 22l

Proof. Let S be an n-inflation of a union of periodic groups. Then 27! € G,
for every zi,...,zp41 € S, whence z* = e; for some m € Z%, (since G, are
periodic groups). Now by Theorem 3.1. we obtain

+1IL’ m—+1

m
L1Z2...Tp41 = €112 ... Tnt1 = €12122 .. Tp41€n+1 = Tq 2... .CL'n.'L'n+1 .
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Conversely, it is clear that S is periodic. Assume u € S™t1. Then

_ _ .m+1 m+1 _ _km+1 km+1
U =T1T2.--Tpt+1 = Tq .’1}2....73n$n+1 =Ty .’IJ2....CEn.’L'n+1
_ km+1 km+1
= €12 X2 ... $n$n+1 €n+1

where 2f™ € G.,, #¥™, € G.,,, (k € ZT), since S is periodic. Hence, u = ez =
yent1 for some z,y € S. So

u=eu=eer...cou=e...equTt =mt

Now by Lemma 3.2 we have that S™*! is a union of periodic groups. Since u =
erueny1, and 27 € G, ; for every 27"t € S™t! we have by Theorem 3.1 that the
assertion of the theorem holds.

COROLLARY 3.3. A semigroup S is an n-inflation of a semilattice of periodic

groups if and only if
(Vo1,..., 241 € S)Em € ZN)zy .. 2py1 = 20 22 .. 2T

Proof. Follows by Theorem 3.2. and 3.3.

Following Nordahl, [8], we say that S is an E —m semigroup if the identity
(zy)™ = 2™y™ (m > 2) holds in S.

THEOREM 3.4. The following conditions are equivalent on a semigroup S:

(i) S is an n-inflation of a band;

(i)
(iif)
Y ~ E(S)

(iv) (Va1,...Tp41 € S)T1Za ... Tpy1 = 23Ty ... TpT2 1 ;

S+ s a band and S is an E-(n + 1) semigroup;

S is a band Y of nilpotent semigroups Sy of nilpotency class < n and
Sn+1;

Proof. ()=(ii). Let S be an n-inflation of a band 7. Then by Theorem 2.1
S™+tl C T, T is an ideal of S and there is a retraction ¢ : S — T. It is clear that
Sntl = T. Then for every z,y € S,

()™ = o((zy)"t") = (e(@)p(y))" T = (z)p(y)

= (@) p(y)"t = @™ eyt = 2y

Y

Thus, S is an E-(n + 1) semigroups.

(ii)=(i). Clearly ¢(z) = 2"*! is a retraction from S onto S"*+1.

(ii)=>(iii). Since ¢(z) = "' is a homomorphism from S onto the band S™*!
we have that ker ¢ is a congruence S. Since z(ker ¢)z? for every € S we have that
ker ¢ is a band kongruence an the classes mod (ker ) are nilpotent semigroups
of nilpotency class < n. Clearly Y ~ E(S) = §"+1,

(iii)=(ii). This implication follows immediately.

(i)=(iv). This equivalence follows by Theorem 3.3.
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The following corollaries follow easily from the results already prove

COROLLARY 3.4. The following conditions are equivalent on a semigroup S:
(i) S is an n-inflation of a semilattice;
(ii) S™*! is a semilattice;

(iil) (V&1,...,%n41 € S)T1%2 ... Tpg1 = T2 1 Ta ... L.

COROLLARY 3.5. A semigroup S is an n-inflation of a rectangul band if and

only if
(V.Z'1, v, T3 € S).’E1:E2 v Tp43 = T123T4 - .- Tp41Tn+3
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