INFLATION OF SEMIGROUPS

Stojan Bogdanović and Svetozar Milić

Abstract. We introduce the concept of an n-inflation of a semigroup. In particular, for n=1 we obtain the inflation introduced by Clifford [6], and for n=2 the strong inflation introduced by Petrich [10]. We also characterize n-inflations of unions of groups, of semilattices of groups of unions of periodic groups, etc. In addition, we describe nilpotent semigroups of arbitrary nilpotency class.

1. Introduction and preliminaries

Let S and T be two disjoint semigroups and suppose that T has a zero element. A semigroup V is said to be an (ideal) extension of S by T if it contains S as an ideal and the Rees factor semigroup V/S is isomorphic to T. If, in addition, there is a partial homomorphism $\varphi: T \setminus 0 \to S$ such that for all $A, B \in T \setminus 0$ and $c, d \in S$:

$$A \circ B = \begin{cases} AB, & \text{if } AB \neq 0 \text{ in } T \\ \varphi(A)\varphi(B), & \text{if } AB = 0 \text{ in } T \end{cases}$$
$$A \circ c = \varphi(A)c, \quad c \circ A = c\varphi(A), \qquad c \circ d = re$$

we say that extension V is determined by that partial homomorphism, [6].

Let V be an extension of S. Than V is a retract extension if there exists a homomorphism φ of V onto S and $\varphi(x)=x$ for all $x\in S$. In this case we call φ a retraction. Petrich [9] proved that an extension V of a semigroup S by a semigroup S with zero is determined by a partial homomorphism if and only if V is a retract extension of S. Here we give one more characterization of the retract extension.

Proposition 1.1. Let T be a semigroup. With each $a \in T$ associate a set Y_a such that

$$(1.1) a \in Y_a, \quad Y_a \cap Y_b = \emptyset if a \neq b.$$

Let

AMS Subject Classification (1980): Primary 20M.

 $\varphi^{(a,b)}(x,b)=\varphi^{(a,b)}(a,y)=ab$ for all $x\in Y_a$ and $y\in Y_b$ be functions for which

(1.3)
$$\varphi^{(ab,c)}(\varphi^{(a,b)}(x,y),z) = \varphi^{(a,bc)}(x,\varphi^{(b,c)}(y,z))$$

and define a multiplication * on $S = \bigcup_{a \in T} Y_a$ by:

$$x * y = \varphi^{(a,b)}(x,y)$$
 if $x \in Y_a, y \in Y_b$.

Then (S,*) is a semigroup and S is a retract extension of T. Conversely, every retract extension S of a semigroup T can be so constructed.

Proof. Suppose that S fulfills the conditions of the proposition. Let $x \in Y_a$, $y \in Y_b$, $z \in T_c$. Then by (1.3) we have

$$(x * y) * z = \varphi^{(a,b)}(x,y) * z = \varphi^{(ab,c)}(\varphi^{(a,b)}(x,y),z)$$

= $\varphi^{(a,ba)}(x,\varphi^{(b,c)}(y,z)) = x * \varphi^{(b,c)}(y,z)$
= $x * (y * z).$

Hence (S,*) is a semigroup. Define a mapping $\varphi: S \to T$ by $\varphi(Y_a) = a$. It is clear that φ is onto and that $\varphi(a) = a$ for $a \in T$. Furthermore, for $x \in Y_a$, $y \in Y_b$ we have

$$\varphi(x * y) = \varphi(\varphi^{(a,b)}(x,y)) = ab = \varphi(x)\varphi(y).$$

Thus φ is a homomorphism and by (1.2) T is an ideal of S. Therefore, S is a retract extension of T.

Conversely, let S be a retract extension of T. Then there is a homomorphism φ of S onto T such that $\varphi(a)=a$ for all $a\in T$. For $a\in T$ assume that $Y_a=\varphi^{-1}(a)$. Then $S=\bigcup_{a\in T}Y_a$ and for the sets Y_a $(a\in T)$ the condition (1.1) is satisfied.

For any $x,y\in S$ there exist $a,b\in T$ such that $x\in Y_a,\ y\in Y_b$, so that $\varphi(x)=a,\ \varphi(y)=b$. From this it follows that

$$\varphi(xy) = \varphi(x)\varphi(y) = ab \in Y_{ab}$$

i.e. $xy \in Y_{ab}$. Hence there exist the functions

$$\varphi^{(a,b)}: Y_a \times Y_b \to Y_{ab}$$

and it is clear that for these functions (1.3) holds. Since T is an ideal of S we have (1.2).

Clifford [6, p. 98] gave a construction for a special retract extension of a semigroup, the so-called inflation of a semigroup. A semigroup S is an *inflation* of a semigroup T if T is a subsemigroup of S and there is a mapping φ of S onto T such that $\varphi(x) = x$ for $x \in T$ and $xy = \varphi(x)\varphi(y)$ for $x, y \in S$. For further results concerning inflation of a semigroup, see [1], [3], [13], [14].

Petrich [10], [11], generalized Clifford's result introducing the notion of strong inflation.

Let T be a semigroup. To each $a \in T$ we associate two sets X_a and Y_a having the following properties:

$$a \in X_a, X_a \cap X_b = Y_a \cap Y_b = \emptyset \text{ if } a \neq b; \quad X_a \cap Y_b = \emptyset \ (a, b \in T).$$

To every pair of elements $x \in Y_a, y \in Y_b$, we associate an element $\varphi^{(a,b)}(x,y) \in X_{ab}$. Now let $Z_a = X_a \cup Y_b$ and define a multiplication * on $S = \bigcup_{a \in T} Z_a$ by: if $x \in Z_a, y \in Z_b$, then

$$x * y = \begin{cases} \varphi^{(a,b)}(x,y) & \text{if } x \in Y_a, y \in Y_b \\ ab & \text{otherwise.} \end{cases}$$

Then S is a retract extension of T and $S^3 \subset T$. Conversely, every retract extension S of a semigroup T such that $S^3 \subset T$ can be so constructed. Such a semigroup S is called a strong inflation of a semigroup S. In particular for T=0 nilpotent semigroups of nilpotency class ≤ 3 are described, [12, p. 135]. Moreover, a semigroup S in n-nilpotent if $S^n=0$ $(n \in Z^+)$.

In this paper we introduce the notion of an n-inflation of a semigroup. For n=1 we obtain the inflation and for n=2 we obtain the strong inflation of semigroup. In Theorem 2.1. we describe an n-inflation of an arbitrary semigroup by means of retraction. In section 2, also, a description of a strong n-inflation is given (Theorem 2.2.) and nilpotent semigroups of arbitrary nilpotency classes. In addition, we give characterizations of n-inflations of some special semigroups: unions of groups, semilattices of groups, unions of periodic groups and so on.

For undefined notions and notations we refer to [4], [6] and [12].

2. n-inflation of a semigroup

We introduce here the notion of an n-inflation of a semigroup.

Lemma 2.1. Let T he a semigroup. To each $a \in T$ we associate a family of sets X_i^a (i = 1, 2, ..., n) such that $a \in X_r^a$ for some $r \in \{1, 2, ..., n\}$ and

$$(2.1) X_i^s \cap X_j^b = \emptyset \quad \text{if } i \neq j; X_i^a \cap X_j^b = \emptyset \quad \text{if } a \neq b.$$

Let, for nonempty sets X_i^a and X_i^b ,

(2.2)
$$\Phi_{(i,j)}^{(a,b)}: X_i^a \times X_j^b \to \bigcup_{\nu=i+j} X_{\nu}^{ab} \text{ if } i+j \le n$$

$$\Phi_{(i,j)}^{(a,b)}(x,y) = ab \text{ if } i+j > n$$

$$\Phi_{(i,j)}^{(a,b)}(a,y) = \Phi_{(i,j)}^{(a,b)}(x,y) = ab$$

be functions for which:

$$(2.3) \quad (\forall s \ge i+j) (\forall t \ge j+k) \Phi_{(s,k)}^{(ab,c)} \left(\Phi_{(i,j)}^{(a,b)}(x,y), z \right) = \Phi_{(i,t)}^{(a,bc)} \left(x, \Phi_{(j,k)}^{(b,c)}(y,z) \right)$$

for all $a, b, c \in T$, where $i + j \le n$ or $j + k \le n$ or $i + t \le n$ or $s + k \le n$.

Let $Y_a = \bigcup_{i=1}^n X_i^a$ and define a multiplication * on $S = \bigcup_{a \in T} Y_a$ by: for $x \in Y_a, y \in Y_b$,

$$x * y = \Phi_{(i,j)}^{(a,b)}(x,y)$$
 if $x \in X_i, y \in X_b, 1 \le i, j \le n$

Then (S, *) is a semigroup.

Proof. Let $x,y,z\in S$. Then there exist $a,b,c\in T$ such that $x\in Y_a,y\in Y_b,\,z\in Y_c$ i.e. $x\in X_i^a,\,y\in X_j^b,z\in X_k^c$ for some $1\leq i,j,k\leq n$. Assume that $i+j\leq n$ and $j+k\leq n$. Then

$$(x*y)*z = \Phi_{(i,j)}^{(a,b)}(x,y)*z, \qquad \Phi_{(i,j)}^{(a,b)}(x,y) \in X_s^{ab}, \quad i+j \le s \le n$$

$$= \Phi_{(s,k)}^{(ab,c)} \left(\Phi_{(i,j)}^{(a,b)}(x,y), z \right)$$

$$(x*y)*z = x*\Phi_{(j,k)}^{(b,c)}(y,z), \qquad \Phi_{(j,k)}^{(b,c)}(y,z) \in X_t^{bc}, \quad j+k \le t \le n$$

$$= \Phi_{(i,t)}^{(a,bc)} \left(x\Phi_{(j,k)}^{(b,c)}(y,z) \right)$$

and by (2.3) we have associativity. In other cases it can be, in a similar way, proved that the associativity holds. Therefore (S, *) is a semigroup.

Definition 3.1. The semigroup S constructed in Lemma 2.1. is called an n-inflation of a semigroup T.

It is obvious that 1-inflation is the inflation, and that 2-inflation in the strong inflation. In those cases the condition (2.3) of Lemma 2.1 it not necessary.

The following theorem gives a characterization of an n-inflation of semigroups, which shows that here we have the case of retract extensions.

Theorem 2.1. A semigroup S is an n-inflation of a semigroup T if and only if $S^{n+1} \subset T$ and S is a retract extension of T.

Proof. Let S be an n-inflation of a semigroup T. Then by (2.2) T is an ideal of S. Assume $u \in S^{n+1}$, i.e. $u = s_1 * s_2 * \cdots * s_{n+1}$, $s_r \neq T$ $(r = 1, 2, \ldots, n+1)$. Let $s_r \in X_1^{a_r}$ where $a_r \in T$. Then

$$u = s_1 * s_2 * \cdots * s_{n+1} = \Phi_{(1,1)}^{(a_1,a_2)}(s_1,s_2) * s_3 * \cdots * s_{n+1}$$

If
$$2 > n$$
, then $\Phi_{(1,1)}^{(a_1,a_2)}(s_1,s_2) = u_1 \in T$, so $u \in T$.

If $2 \leq n$, then

$$u = u_1 * s_3 * \dots * s_{n+1}, \quad u_1 \in X_{t_1}^{a_1 a_2}, \quad 2 \le t \le n.$$

= $\Phi_{(1,1)}^{(a_1 a_2, a_3)}(u_1, s_3) * s_4 * \dots * s_{n+1}$

If
$$t_1 + 1 > n$$
, then $\Phi_{(1,1)}^{(a_1 a_2, a_3)}(u_1, s_3) = u_2 \in T$, so $u \in T$.

If $t_1 + 1 \le n$ then $u = u_2 * s_3 * \cdots * s_{n+1}$, $u_2 \in X_{t_2}^{a_1 a_2 a_3}$, $3 \le t_2 \le n$.

Continuing this procedure we have that: if $t_{n-2} + 1 > n$, then $\Phi_{(t_{n-2},1)}^{(a_1,...,a_{n-1}a_n)}$. $\cdot (u_{n-2},s_n) = u_{n-1} \in T$, so $u \in T$, and if $t_{n-2} + l \leq n$, then $u = \Phi_{(t_n,1)}^{(a_1,...,a_na_{n+1})}$. $\cdot (u_{n-1},s_{n+1}) \in T$, (since n+1 > n).

In other cases $(r \in X_{k_r}^{a_r}, 1 < k_r \le n)$ we have also that $u \in T$. Thus $S^{n+1} \subset T$.

Define a mapping $\Phi: S = \bigcup_{a \in T} Y_a \to T$ by $\Phi(Y_a) = a$. For any $x, y \in S$ there exist $a, b \in T$ such that $x \in Y_a, y \in Y_b$, i.e. $x \in X_i^a, y \in X_j^b$, for some $1 \le i, j \le n$. So

$$\Phi(x*y) = \Phi\left(\Phi_{(i,j)}^{(a,b)}(x,y)\right), \qquad \Phi_{(i,j)}^{(a,b)}(x,y) \in X_k^{ab} \subset Y_{ab}$$

for some $i+j \le k \le n$ if $i+j \le n$, and $\Phi(x*y) = ab$ if i+j > n. Now by the definition of Φ we have $\Phi(x*y) = ab = \Phi(x)\Phi(y)$. It is clear that $\Phi(x) = x$ for all $x \in T$. Therefore, S is a retract extension of T.

Conversely, let n be the smallest positive integer such that $S^{n+1} \subset T$ and let Φ be a retraction of S onto T. An arbitrary $a \in T$ is in one of the following sets $S \setminus S^2$, $S^2 \setminus S^3, \ldots, S^{n-1} \setminus S^n$, S^n . For $a \in S^{n-r} \setminus S^{n-r+1}$ for some $0 \le r \le n-1$ we define the sets: $Y_a = \Phi^{-1}(a)$,

$$X_{1}^{a} = Y_{a} \cap (S \setminus S^{2})$$

$$X_{2}^{a} = Y_{a} \cap (S^{2} \setminus S^{3})$$

$$\vdots$$

$$X_{n-r-1}^{a} = Y_{a} \cap (S^{n-r-1} \setminus S^{n-r})$$

$$X_{n-r}^{a} = Y_{a} \cap S^{n-r}$$

$$X_{n-r+1}^{a} = X_{n-r+2}^{a} = \cdots = X_{n}^{a} = \emptyset.$$

It is clear that the conditions (2.1) hold for every X_i^a and X_j^b $(1 \le i, j \le n)$.

If $a \in T$, then $Y_a = \bigcup_{i=1}^n X_i^a$ and so $S = \bigcup_{a \in T} Y_a$. For $x, y \in S$ there exist $a, b \in T$ such that $x \in Y_a, y \in Y_b$. So by Proposition 1.1. we have that

$$(2.4) Y_a Y_b \subset Y_{ab}$$

Let $x\in X_i^a,y\in X_j^b,a\in S^{n-r}\setminus S^{n-r+1},b\in S^{n-p}\setminus S^{n-p+1}$ where $0\le r,p\le n-1.$ Then

 $x \in X_i^a = Y_a \cap (S^i \backslash S^{i+1}) \ \text{ and } \ y \in Y_j^b = Y_b(S^j \backslash S^{j+1}, \ 1 \leq i \leq n-r, \ 1 \leq j \leq n-p.$

Then $xy \in S^i S^j = S^{i+1}$ and if $i+j \leq n$ we have that $xy \in \cap_{\nu=i+1}^n X_{\nu}^{ab}$. If i+j > n, then $xy = ab \in T$. For $x \in X_i^a$, $b \in T$ we have that xb = ab, bx = ba. In this way functions $\Phi_{(i,j)}^{(a,b)}$ from Lemma 2.1. are defined and the condition (2.3) holds.

Definition 2.2. If the first condition (2.2.) in the construction of an *n*-inflation in replaced by: For $1 \le i, j \le n$ let there exists a $k \in \{i+j, i+j+1, \ldots, n\}$ and

$$\Phi_{(i,j)}^{(a,b)}: X_i^a \times X_j^b \to X_k^{ab}$$

then the semigroup (S, *) is called the strong *n*-inflation of T.

The following theorem is proved similarly as the previous one.

THEOREM 2.2. A semigroup S is a strong n-inflation of a simigroup T if and only if S is an n-inflation of T and the relation determined by the following partition $\{S \setminus S^2, S^2 \setminus S^3, \ldots, S^{n-1} \setminus S^n, S^n\}$ is a congruence of S.

Example 1. The semigroup S given by the table 1 is a 4-inflation of $T=\{a,b\}$. Here we have $X_1^a=\{d,g\},\ X_2^a=\{f\},\ X_3=\{e\},\ X_4^a=\{a,c\},\ X_1^b=X_2^b=X_3^b=\emptyset,\ X_4^b=\{b\}.$ S is not strong 4-inflation of T. Since $d\cdot d=a\in X_4^a$ and $g\cdot g=f\in X_2^a$.

1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
a	$a\ b\ a\ a\ a\ a\ a$	0 0 0 0 0 0
b	b a b b b b b	$a \mid 0 \ 0 \ 0 \ 0 \ 0$
c		$b \mid 0 \ 0 \ 0 \ a \ a$
d	$a\ b\ a\ a\ a\ a\ a$	$c \mid 0 \mid 0 \mid a \mid b \mid b$
		$d \mid 0 \mid 0 \mid a \mid b \mid b$
f	$a\ b\ a\ a\ a\ c\ e$	
g	$a\ b\ a\ a\ c\ e\ f$	

Example 2. The semigroup S gives by the table 2 is a strong 3-inflation of $T=\{0\}$. Here we have $X_1^0=\{c,d\},\,X_2^0=\{b\},\,X_3^0=\{0,a\}.$

In particular, if $T=\{0\}$ then nilopent semigroups of nilpotency class $\leq n+1$ are described by the following theorem which is directly proved by means of Theorem 2.1.

Theorem 2.3. Let X_i , $i=1,2,\ldots,n$ be sets, let 0 be a fixed element such that $\in X_n$, $X_i \cap X_j = \emptyset$ if $i \neq j$, and let

$$\Phi_{(i,j)}: X_i \times X_j \to \bigcup_{v=i+j}^n X_v \text{ if } i+j \le n, \quad \Phi_{(i,j)}(x,y) = 0 \text{ if } i+j > n$$

be functions such that

$$(\forall s \ge i+j)(\forall \ge j+k)\Phi_{(s,k)}\left(\Phi_{(i,j)}(x,y),z\right) = \Phi_{(i,t)}\left(x\Phi_{(i,k)}(y,z)\right)$$

where $i+j \leq n$ or $j+k \leq n$ or $i+t \leq n$ or $s+k \leq n$. Define a multiplication * on $S = \bigcup_{v=1}^{n} X_v$ by:

$$x * y = \Phi_{(i,j)}(x,y)$$
 if $x \in X_i, y \in X_j, 1 \le i, j \le n$.

Then (S,*) is a semigroup and $S^{n+1} = 0$ and conversely, every nilpotent semigroup of nilpotency class $\leq n+1$ can be so constructed.

3. n-inflation of a union of groups

In the preceding section we considered n-inflations of a semigroup T in the general case. In this sections we give characterization for those cases when T is a union of groups, a semilattice of groups, and so on.

Theorem 3.1. The following conditions are equivalent on a semigroup S:

- (i) S is an n-inflation of a union of groups;
- (ii) $(\forall x, y \in S)xS^{n-1}y = x^2S^ny^2$;
- (iii) S^{n+1} is a union of groups and

$$(\forall x_1, \dots, x_{n+1} \in S)(x_i^{n+1} \in G_{e_i} \Rightarrow x_1 \dots x_{n+1} = e_1 x_1 x_2 \dots x_{n+1} e_{n+1}).$$

Proof. (i) \Rightarrow (ii). Let S be an n-inflation of a union of groups T. Then $S^{n+1} = T$ is an ideal of S and there exists a retraction $\varphi : S \to S^{n+1}$ (Theorem 2.1.). For any $x, x_2, x_3, \ldots, x_n, y \in S$ there exists $e, f \in E(S)$ such that $\varphi(x) \in G_e$ and $\varphi(y) \in G_f$, so

$$xx_2x_3 \dots x_ny = \varphi(x)\varphi(x_2)\varphi(x_3)\dots y\varphi(x_n)\varphi(y)$$

= $\varphi(x^{n+1})\varphi(x^{-1})\varphi(x_2)\dots y\varphi(x_n)\varphi(y^{-n})\varphi(y^{n+1})$
 $\in x^{n+1}S^ny^{n+1} \subset x^2S^ny^2.$

Thus $xS^{n-1}y \subset x^2S^ny^2 \subset xS^{n-1}y$ and therefore (ii) holds.

(ii) \Rightarrow (iii). Let $x, y \in S$. Then

$$xS^{n-1}y = x^2S^ny^2 = (x^{n+1})^2S^n(y^{n+1})^2$$

so $x^{n+1} \in xS^{n-1}x = (x^{n+1})^2S^n(x^{n+1})^2$, i.e. x^{n+1} is completely regular (Lemma I, 5.1. [3]). So $x^{n+1} \in G_e$ for some $e \in E(S)$. Let $u \in S^{n+1}$. Then

$$u = s_1 s_1 \dots_{n+1} \in s_1 S^{n-1} s_{n+1} = s_1^{n+1} S^n S_{n+1}^{n+1} = e_1 s_1^{n+1} S^n S_{n+1}^{n+1} e_{n+1}$$

where $s_1^{n+1} \in G_{e_1}$, $s_{n+1}^{n+1} \in G_{e_{n+1}}$, and $e_1, e_{n+1} \in E(S)$. Thus $u = e_1 u = u e_{n+1}$. This proves that the second condition of (iii) is fulfilled. Now

$$u = e_1 u = e_1 e_1 \dots e_1 u \in e_1 S^{n-1} u = e_1 S^n u^2 \in Sn^2$$

and similarly $u \in u^2S$. So $u \in u^2Su^2$, i.e. S^{n+1} is a union of groups (Lemma I 5.1. [3]).

(iii) \Rightarrow (i). Since S^{n+1} is a union of groups we have that every regular element from S is completely regular, i.e. S is a GV-semigroup. Now by Theorem X.1.1. [3] (see also [15]) we have that S is a semilattice Y of semigroups S_{α} , where S_{α} is a nil-extension of a completely simple semigroup $P_{\alpha}(\alpha \in Y)$. It is clear that $S_{\alpha}^{n+1} = P_{\alpha}$. Define a mapping $\varphi: S = \bigcup_{\alpha \in Y}, S_{\alpha} \to T = \bigcup_{\alpha \in Y} P_{\alpha}$ by

$$\varphi_{\alpha} = \varphi \upharpoonright S_{\alpha} : S_{\alpha} \to P_{\alpha}; \qquad \varphi_{\alpha}(x_{\alpha}) = x_{\alpha} = x_{\alpha}e_{\alpha}, \text{ if } x_{\alpha}^{n+1} \in G_{e_{\alpha}}.$$

Then φ_{α} maps S_{α} onto P_{α} and $\varphi(x_{\alpha}) = x_{\alpha}$ for $x_{\alpha} \in P_{\alpha}$. Furthermore

$$\varphi_{\alpha}(x_{\alpha})\varphi_{\beta}(y_{\beta}) = x_{\alpha}e_{\alpha}y_{\beta}e_{\beta} = e_{\alpha}x_{\alpha}y_{\beta}e_{\beta} \qquad \text{(by Theorem I.4.3. [3])}$$

$$= e_{\alpha}e_{\alpha}\dots e_{\alpha}x_{\alpha}y_{\beta} \qquad \text{see, also [7])}$$

$$= e_{\alpha}e_{\alpha}\dots e_{\alpha}x_{\alpha}y_{\beta} \qquad \text{(by the hypothesis)}$$

$$= e_{\alpha}e_{\alpha}\dots e_{\alpha}\dots x_{\alpha}y_{\beta}e_{\alpha\beta} \qquad \text{(since S is a semilattice Y and }$$

$$= e_{\alpha}x_{\alpha}y_{\beta}e_{\alpha\beta}e_{\alpha\beta}\dots e_{\alpha\beta} \qquad \text{by the hypothesis)}$$

$$= x_{\alpha}y_{\beta}e_{\alpha\beta}e_{\alpha\beta} \qquad \text{(by the hypothesis)}$$

$$= x_{\alpha}y_{\beta}e_{\alpha\beta}$$

$$= \varphi_{\alpha\beta}(x_{\alpha}y_{\beta})$$

for all $x_{\alpha} \in S_{\alpha}$, $y_{\beta} \in S_{\beta}$. Thus S is an n-inflation of a semigroup $\bigcup_{\alpha \in Y} P_{\alpha}$, and S_{α} is an n-inflation of P_{α} .

COROLLARY 3.1. A seimigroup S is an n-inflation of a completely simple semigroup if and only if S^{n+1} is completely simple and the second condition of (i) of Theorem 3.1 holds.

Proof. By the proof of Theorem 3.1.

A subset B of a semigroup S is two-sided (m, n) pure if $B \cap x_1 \dots x_m S_{y-1} \dots y_n = x_1 \dots x_m B y_1 \dots y_n$ holds for every $x_1, \dots, x_m, y_1, \dots, y_n \in S$. A semigroup S is two-sided (m, n)-pure if every bi-ideal of S is a two-sided pure subset of S, [5].

Lemma 3.1. Let S be a semigroup. If S^{n+1} is a semilattice of groups, then the idempotent elements of S are central.

Proof. By the hypothesis we have that S is two-sided (n-k,k)-pure, $1 \le k \le n-1$, $n \ge 2$ [5, Theorem 1]. So eSe $(e \in E(S))$ is a two-sided (n-k,k)-pure bi-ideal of S. From this it follows that

$$xe \in xe \dots e \cdot eSe \cdot e \dots e = eSe \cap xe \dots eSe \dots e \subseteq eSe$$

for every $x \in S$. Thus xe = eae for some $a \in S$ and similarly ex = ebe for some $b \in S$. Now we have that

$$xe = eae = (ee)ae = e(eae) = e(xe) = (ex)e = (ebe)e = eb(ee) = ebe = ex.$$

Theorem 3.2. The following conditions are equivalent on a semigroup S:

- (i) S is an n-inflation of a semilattice of groups,
- (ii) $(\forall x, y \in S)(xS^{n+1}y = y^2S^nx),$
- (iii) S^{n+1} is a semilattice of groups.

Proof. (i) \Rightarrow (iii) By Theorem 3.1 we have that S^{n+1} is a union of groups and since the indempotents of S are central we have that S^{n+1} is a semilattice of groups.

(iii) Rightarrow (ii). For every $x,y\in S$ we have that $xS^{n-1}y=x^2S^ny^2\subset x^2S^{n-1}y^2\subset xS^{n-1}y$ [5, Theorem 1] i.e. $xS^{n-1}y=x^2S^{n-1}y^2=x^2S^ny$. Thus

$$xS^{n-1}y = x^{n+1}S^my^{n+1} = (x^{n+1})^{-1}(x^{n+1})^2S^n(y^{n+1})^2(y^{n+1})^{-1},$$

since $x^{n+1} \in G_e$, $y^{n+1} \in G_f$ for some $e, f \in E(S)$. By Lemma 3.1 we have that the indempotents of S are central, so

$$xS^{n-1}y = y^{n+1}(y^{n+1})^{-1}x^{n+1}S^ny^{n+1}(x^{n+1})^{-1}x^{n+1}$$

whence $xS^{n-1}y = y^2S^nx$.

(ii)⇒(iii). By the hypothesis we have that

$$xS^{n-1}y = y^2S^nx \subset y^2S^{n-1}x = x^2S^ny^2 \subset xS^{n-1}y$$

for every $x, y \in S$. So the condition (ii) of Theorem 3.1 holds. From this and Theorem 3.1. we have that S^{n+1} is a union of groups. Since S is weakly commutative, so is S^{n+1} . Thus S^{n+1} is a semilattice of groups [2, Theorem,1.1].

(iii) \Rightarrow (i). By Lemma 3.1 the idempotents of S are central. Thus $\varphi: S \to S^{n+1}$ defined by $\varphi(x) = xe$ if $x^{n+1} \in G_e$ is a retraction.

Corollary 3.2. A Semigroup S is an n-inflation of a group T if and only if $S^{n+1} = T$.

Proof. Trivial.

 $\it Remark.$ Semigroups from Theorem 3.2 are described in [5] by means ' of bi-ideals.

Lemma 3.2. S^{n+1} is a union of periodic groups if and only if

$$(\forall x_1, x_2, \dots, x_{n+1} \in S)(\exists m \in Z^+)x_1x_2\dots x_{n+1} = (x_1x_2\dots x_{n+1})^m.$$

Proof. Trivial.

Corollary 3.3. A semigroup S is an n-inflation of a semilattice if and only if

$$(\forall x_1, x_2, \dots, x_{n+1} \in S) x_1 x_2 \dots x_{n+1} = (x_{n+1} x_2 x_3 \dots x_n x_1)^2$$

Proof. Follows by Theorem 3.2 and Lemma 3.2.

Theorem 3.3. A semigroup S is an n-inflation of a union of periodic groups if and only if

$$(\forall x_1, \dots, x_{n+1} \in S)(\exists m \in Z^+)x_1 \dots x_{n+1} = x_1^{m+1}x_2 \dots x_n x_{n+1}^{m+1}$$

Proof. Let S be an n-inflation of a union of periodic groups. Then $x_i^{n+1} \in G_{e_1}$ for every $x_1, \ldots, x_{n+1} \in S$, whence $x_i^m = e_i$ for some $m \in Z^+$, (since G_{e_i} are periodic groups). Now by Theorem 3.1. we obtain

$$x_1 x_2 \dots x_{n+1} = e_1 x_1 x_2 \dots x_{n+1} = e_1 x_1 x_2 \dots x_{n+1} e_{n+1} = x_1^{m+1} x_2 \dots x_n x_{n+1}^{m+1}$$

Conversely, it is clear that S is periodic. Assume $u \in S^{n+1}$. Then

$$u = x_1 x_2 \dots x_{n+1} = x_1^{m+1} x_2 \dots x_n x_{n+1}^{m+1} = x_1^{km+1} x_2 \dots x_n x_{n+1}^{km+1}$$
$$= e_1 x_1^{km+1} x_2 \dots x_n x_{n+1}^{km+1} e_{n+1}$$

where $x_1^{km} \in G_{e_1}$, $x_{n+1}^{km} \in G_{e_{n+1}}$ $(k \in Z^+)$, since S is periodic. Hence, $u = e_1 x = y e_{n+1}$ for some $x, y \in S$. So

$$u = e_1 u = e e_1 \dots e_1 u = e_1 \dots e_1 u^{m+1} = {m+1}$$
.

Now by Lemma 3.2 we have that S^{n+1} is a union of periodic groups. Since $u = e_1 u e_{n+1}$, and $x_i^{n+1} \in G_{e_1}$; for every $x_i^{n+1} \in S^{n+1}$ we have by Theorem 3.1 that the assertion of the theorem holds.

Corollary 3.3. A semigroup S is an n-inflation of a semilattice of periodic groups if and only if

$$(\forall x_1, \dots, x_{n+1} \in S)(\exists m \in Z^+)x_1 \dots x_{n+1} = x_{n+1}^{m+1}x_2 \dots x_n x_1^{m+1}.$$

Proof. Follows by Theorem 3.2. and 3.3.

Following Nordahl, [8], we say that S is an E-m semigroup if the identity $(xy)^m = x^m y^m \ (m \ge 2)$ holds in S.

Theorem 3.4. The following conditions are equivalent on a semigroup S:

- (i) S is an n-inflation of a band;
- (i) S^{n+1} is a band and S is an E-(n+1) semigroup;
- (iii) S is a band Y of nilpotent semigroups S_{α} of nilpotency class $\leq n$ and $Y \simeq E(S) = S^{n+1}$;

(iv)
$$(\forall x_1, \dots x_{n+1} \in S) x_1 x_2 \dots x_{n+1} = x_1^2 x_2 \dots x_n x_{n+1}^2$$
;

Proof. (i) \Rightarrow (ii). Let S be an n-inflation of a band T. Then by Theorem 2.1 $S^{n+1} \subseteq T$, T is an ideal of S and there is a retraction $\varphi: S \to T$. It is clear that $S^{n+1} = T$. Then for every $x, y \in S$,

$$(xy)^{n+1} = \varphi((xy)^{n+1}) = (\varphi(x)\varphi(y))^{n+1} = \varphi(x)\varphi(y)$$
$$= \varphi(x)^{n+1}\varphi(y)^{n+1} = \varphi(x^{n+1})\varphi(y^{n+1}) = x^{n+1}y^{n+1}.$$

Thus, S is an $E_{-}(n+1)$ semigroups.

- (ii) \Rightarrow (i). Clearly $\varphi(x) = x^{n+1}$ is a retraction from S onto S^{n+1} .
- (ii) \Rightarrow (iii). Since $\varphi(x) = x^{n+1}$ is a homomorphism from S onto the band S^{n+1} we have that $\ker \varphi$ is a congruence S. Since $x(\ker \varphi)x^2$ for every $x \in S$ we have that $\ker \varphi$ is a band kongruence an the classes $\mod(\ker \varphi)$ are nilpotent semigroups of nilpotency class $\leq n$. Clearly $Y \simeq E(S) = S^{n+1}$.
 - (iii)⇒(ii). This implication follows immediately.
 - (i)⇒(iv). This equivalence follows by Theorem 3.3.

The following corollaries follow easily from the results already prove

COROLLARY 3.4. The following conditions are equivalent on a semigroup S:

- (i) S is an n-inflation of a semilattice;
- (ii) S^{n+1} is a semilattice;
- (iii) $(\forall x_1, \dots, x_{n+1} \in S) x_1 x_2 \dots x_{n+1} = x_{n+1}^2 x_2 \dots x_n$.

COROLLARY 3.5. A semigroup S is an n-inflation of a rectangul band if and only if

$$(\forall x_1, \dots, x_{n+3} \in S) x_1 x_2 \dots x_{n+3} = x_1 x_3 x_4 \dots x_{n+1} x_{n+3}$$

REFERENCES

- [1] J.E. Ault, Semigroups with midunits, Trans. Amer. Math. Soc. 190(1974),375-384.
- [2] S. Bogdanović, Q_r-sensigroups, Publ. Inst. Math. **29(43)** (1981), 15-21.
- [3] S. Bogdanović, Semigroups with a System of Subsemigroups, Inst. of Math., Novi Sad 1975.
- [4] S. Bogdanović, Inflation of a union of groups, Mat. Vesnik, to appear.
- [5] S. Bogdanović and T. Malinović, (m, n)-two sided pure semigroups, to appear.
- [6] A.H. Clifford and G.B. Preston, Theory Algebraic Theory of Semigroups, Vol. I., Amer. Math. Soc., 1977.
- [7] W.D. Munn, Pseudoinverses in semigroups, Proc. Cambridge. Phil. Soc. 57 (1961), 247–250.
- [8] T.E. Nordahl, Semigroups satisfying $(xy)^m = x^m y^m$, Semigroup Forum 8 (1974), 332–345.
- [9] M. Petrich, On extension of semigroups determined by partial homomorphism, Nederl. Akad. Wetensch. Indag. Math. 28 (1966), 49-51.
- [10] M. Petrich, Sur certaines classes de demi-groupes, III, Acad. Roy. Belg. Cl. Sci. 53 (1967), 60-73.
- [11] M. Petrich, Structure des semi-groupes et anneaux distributifs, C.R. Acad. Sci. Paris, Ser. A. 268 (1969), 849–852.
- [12] M. Petrich, Lectures in Semigroups, Acad.-Verlag, Berlin, 1977.
- [13] M.S. Putcha and J. Weissglass, Semigroup satisfying variable identities, Semigroup Forum 3 (1981), 64-67.
- [14] T. Tamura, Semigroups satisfying xy = f(x, y), Pacific J. Math. 31 (1969), 513-521.
- [15] M.L. Veronesi, Sui semigruppi quasi fortemente regolari, Riv. Mat. Univ. Parma (4) 10 (1984), 319-329.

Matematički institut Knez Mihailova 35 11000 Beograd Jugoslavija (Received 15 05 1986)