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MERCERIAN THEOREMS FOR BEEKMANN MATRICES
Vladeta Vuékovié

To the memory of B. Martié

Abstract. A matrix A = (a,) is called normal if a,; = 0 for k > n and ann # 0 for all
n. Such a matrix has a normal inverse A~! = (). If Ihe inverse A~! of a normal and regular
matrix A satisfies the conditions a,; < 0 for £ < n and ann > 0 for all n, we call such a matrix
a Beekmann matrix. Beekmann introduced those matrices and proved that for such a matrix A,
the matrix B = (I + AA)/(1 + A) is Mercerian for A > —1. (I is the identity matrix.)

This paper extends Beekmann’s theorem to the case of Rg-Mercerian matrices, 8 > 0.

1. Let A = (ank) be a normal matrix, i.e., such that
(1.1) ank =0 for k> n and apy, # 0 for all n.

Such a matrix has a normal inverse A=! = (a,y), so that the transformations

(1.2) yn:Zankmk..., n=2,...
k=1

and
n

(1.3) wn:Zankyk..., n=12,...
k=1

are inverse one to the other.
If the inverse A~! of a normal and regular matrix A satisfies the conditions

(1.4) ank <0 for kK <n and ay,, >0 for all n,

we shall call such a matrix a Beekmann matriz.

Beekmann introduced those matrices in [1] and proved that for such a matrix
A, the matrix B = (I + AA)/(1 + X) is Mercerian for A > —1. (I is the matrix.)
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The aim of this paper is to extend Beekmann’s theorem to the case of R-
Mercerian matrices, 8 > 0.

2. A sequence s is said to be regularly varying iff
(1.5) i (sfgny/50) = h(1)

exists for every t > 0. ([z] = the greatest integer < z). Such sequences (and
functions) were introduced by J. Karamata [2]; today they play an essential role in
summability and probability. (1.5) implies that there is a real number 3 such that
h(t) = 8. The number J is called the order of s. In addition, a regularly varying
sequence of “order 0” (i.e., for which the limit in (1.5) equals 1) is called a slowly
varying sequence. It can be proved [2] that every regularly varying sequence s of
order 8 > 0 can be written in the form

(1.6) sn =nPL(n),

where L is a slowly varying sequence.

By Rg, B > 0, we denote the class of regularly varying sequences of order 3,
and by Ry the class of slowly varying sequences.

At last, we say that a matrix A is Rg-regular (8 > 0) iff for every s € Rz and
any sequence r

n
(1.7) Tn ~ S, implies Zankm ~ Sp, T —> 00
k=1

and it is called Rg-Mercerian iff
(1.8) Z k =1"a,,ry ~ s, implies r, ~ s,, N — ©

(Obviously, a matrix A is regular iff r, — L implies >,_, anrry — L, and
Mercerian iff 2221 ankrr, — L implies 1, = L, n = 00).

3. The Rgp-regularity theorems for matrices were first established by M.
Vuilleumier in [6]. The first Rg-Mercerian theorems for regular, invertible triangu-
lar matrices were established by S. Zimering in [3].

Using their results, B. Marti¢ [5] proved the following.

THEOREM M. Let A = (ani) be normal, nonnegative (i.e. anr > 0) and
reqular matriz which, for some v > 0, satisfies the condition.

(3.1) Z ank™ T =0(n""), n > ©
k=1

Then the matriz B = (I + AA)/(1+ X\), where I is the unit triangular matriz,
is Ro-Mercerian for |\ < 1.
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(Marti¢ supposed Yy _;an; = 1, but his proof is valid also in case
> h_iGnk — 1). Since, in case of a Beekmann matrix A, the conditions (1.4)
imply

(3.2) ank > 0 for all k <n anday, > 0,
we can apply Martié¢’s theorem and obtain

LEMMA. 3.1. If a Beekmann matriz A satisfies the condition (3.1) for some
v > 0, then the matriz B = (I + MA)/(1 + A) is Ro-Merceriun for |\| < 1.

Lemma 3.1 reduces the proof of a general Rp-Mercerian theorem for Beek-
mann matrices to the case A > 1. However, a method used by Tanovié-Miller [4]
and based upon the relations

(3.3) Bnk <0 for k <n and B,, >0 for all n,
(3.4) > Bk =1, n = o0
k=1
and
(3.5) > Bkl =0(n™"), n = oo
k=1

for the inverse B! of B above supplies readily the proof in this case. Tanovié-
Miller considered non-negative, normal, normalized (}°_, anx = 1) matrices 4,
which satisfy the conditions

(3.6) an1 >0, G100k < Aniln=1k

for 1 <k <i<n—1and the condition (3.1). and from these derived (3.3)-(3.5).
Once one has (3.3)-(3.5), the proof is a straightforward application of Theorem 4.1
of M. Vuillemier in [6].

Thus, if we prove that for a Beekmann matrix A, which satisfies (3.1), the
inverse B~ of B = (I + AA)/(1+ )) satisfies (3.3)-(3.5) for A > 1, Lemma 3.1 will
be completed for all A > —1.

4. Our main result is contained in

THEOREM 4.1. If A is a Beekmann matriz and B = (I + AA)/(1 + A), then
B is a Beekmann matriz for A > 0.

Proof. Let A = (ank), A=Y ank), B = (bnx) and B~ = (Bnr)-
Let us remark that the transformations

(4.1) Un =Y bnrTk
k=1
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and
k=1

are inverse.

Since bpr = Aank/(I + A) for k < n and by = (14 Aaps) /(1 4+ A), by, =0
for k > n, B is normal and obviously regular. Thus B~! exists and it is normal.
Moreover, (4.1) and (4.2) are inverse and (1.2) and (1.3) are inverse.

The case A = 0 being trivial, let A > 0, and let € = (1 + A)/A. Obviously,
e>1.

We have for any sequence z,

n
Zankxk =ebpr — (6 — 1)zy;
k=1

introducing the sequence y, defined by (4.1). this gives
(4.3) Z kT = €Yn — (€ — D)y,.
k=1

If in ( 1.2) we replace y,, by ey, — (¢ — 1)z, and use ( 1.3), from (4.3) we
obtain

n n
Tn =2 iy — (€= 1)) ankk
k=1 k=1

which, using in the second sum on the right side formula (4.2), yields, after some
elementary computations,

n n
Tn=) {Eank —(e—1) Zaniﬂik}yk-
k=1 ik

From this and (4.2) we obtain at once

n
(4.4) Bk = Eatni, = (€ = 1) Y anifBir,
i=k
and, in particular, for k =1,2,...,n,
(4.5) Bre = {e/(1+ (€ — 1)ak) ok
and for k > 2

(4.6) Br,k—1 = ea; phag k—1/1(1 + (€ — Vagx)(1 + (€ — D)ag—1,5-1) }-

Now, solving (4.4) for B, and using (4.5) we obtain, for k =1,2,...,n—2

n—1

€ e—1
AT ot = o (= Do) ™™~ T4 = a2, ™
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Since agr > 0 and a x—1 < 0 we conclude from (4.5) and (4.6) (with k = n)
that Bp, > 0 for all n and B, p—1 <0, for n > 2. Then, from (4.7) we conclude:
if Br+1,k> Br+2,ks -+ Bn—1,; are all < 0 for k& < n, then By, < 0 too, for k =
1,2,...,n — 2, which completes the proof of the theorem.

COROLLARY. 4.1.1. Let A be a Beekmann matrixz which, for some v > 0,
satisfies the condition (3.1). Then B!, the inverse of B = (I + AA)/(1 + X),
satisfies the condition (3.5) for A > 0.

Proof. We use notations of Theorem 4.1. If D is any matrix, by (D)nr we
denote its element in n-th row and k-th column. 6% denotes the Kronecker symbol
(= 1if k =n, 0 otherwise).

Since

> bniBir = (BB ') = 05,
i=1

we have, for k < n,
n—1
Z bnzﬁzk = _bnn/@nk;
i=1

and, since B, = 1/bnn,
n—1
=1

Taking into account the relations B < 0 for ¢ # k (B is Beekmann, by
Theorem 4.1), b,; > 0 and S, > 0, we obtain from (4.8), for k < n

(49) _/Bnk < /Bnnbnkﬂkk < bnk(]- + /\)2

since

1+ 1+ <L+

ﬂnnﬁkk = 1+ )\ann : 1+ )\akk >

Using the relations between the elements of A and B, the fact that B is
Beekmann, (3.1) and (4.9), we have:

n—1 n—1
1+
n -y — — — 2 — —
~i—1 | Bk = Z —Bnkk™ " + Bpnn T < (14 A) ankk T+ mn "
k=1 k=1
i.e.
n n—1
D 1Bkl kT S AA+ X)) ankk™ +0(n7Y),
k=1 k=1

which, by (3.1), gives (3.5).

COROLLARY 4.1.2. The matriz B=! of Theorem 4.1 satisfies (3.4.).
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Proof. From (4.9) follows
|/8nk| < (1 + /\)zbnk, k<n

i.e., (since B is regular) for every fixed k, |Bnr| — 0, n — 0.
Also, by the same inequality and the fact that

1+A - 1+
ﬁnn—l/bnn—1+)\ Zlﬁnk|< 1+)\ ank+1+/\ann

and since B is regular, there is M > 0 such that

(4.10) > Bkl < M.

k=1

Set now in (4.1) = = 1 for all k, so that y,, = >_,_; bnx Then, by (4.2)

n
1= Buyn
k=1
and so

1= " Buk =Y Burlyr — 1).
k=1 k=1

Since yr, — 1 — 0, k¥ — oo, by (4.10) and the fact that, for fixed k, |Bnr — 0,
n — oo follows lim > h—1 Bnk =1 in usual way.
n—oo

Remark. A consequence of the content of Corollary 4.1.2 is that B! is a
regular matrix. Contrary to this, A~! does not need to be regular. For example,
for the matrix A = (1/n)r<n of arithmetic means, any = 0for k <n—2, app_1 =
—(n—1), app =n and Y_;_; |ank| = 2n — 1 is not bounded!

5. We are able now to prove the extensions of Beekmann’s Mercerian Theorem
to regularly varying functions.

THEOREM. 5.1. Let A be Beekmann matriz, such that, for some v > 0,
(5.1) X:anklf7 =0(n""), n— .

Then, for A > —1, the matriz B = (I + AA)/(1 4+ \) is Ro-Mercerian.

Proof. Case |A\| < 1 by Lemma 3.1. For A > 1, by Theorem 4.1 and its
Corollaries, B~!, the inverse of B, satisfies all the conditions (3.3) — (3.5). By the
remark at the end of section 3, B is Ryo-Mercerian.



Mercerian theorems for Beekmann matrices 89

Since every regularly varying sequence s of order 8 > 0, satisfies (1.6), apply-
ing Theorem 5.1 to the sequence {s,/n®}, we obtain, in a similar way as Martié¢ in
[5];

THEOREM. 5.2. Let A be a Beekmann matrixz such that there are two numbers
a and B, 0 < a < B,for which

n k [e] n k I¢]
Za"k (E) — Ao, and Za"k (;) — Ag, n— oo.
k=1 k=1
Then, for every A such that 1 + AA, > 0 and 1 4+ AAg > 0, the matriz Bg =
(I +XA)/(1+ NApeta) is Rz-Mercerian.
One should remark that conditions 1 + A4, > 0 and 1 + AAg > 0 imply one
another, depending on the sign of A.
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