MERCERIAN THEOREMS FOR BEEKMANN MATRICES

Vladeta Vučković

To the memory of B. Martić

Abstract. A matrix $A=(a_{nk})$ is called normal if $a_{nk}=0$ for k>n and $a_{nn}\neq 0$ for all n. Such a matrix has a normal inverse $A^{-1}=(\alpha_{nk})$. If the inverse A^{-1} of a normal and regular matrix A satisfies the conditions $\alpha_{nk}\leq 0$ for k< n and $\alpha_{nn}>0$ for all n, we call such a matrix a Beekmann matrix. Beekmann introduced those matrices and proved that for such a matrix A, the matrix $B=(I+\lambda A)/(1+\lambda)$ is Mercerian for $\lambda>-1$. (I is the identity matrix.)

This paper extends Beekmann's theorem to the case of R_{β} -Mercerian matrices, $\beta > 0$.

1. Let $A = (a_{nk})$ be a normal matrix, i.e., such that

(1.1)
$$a_{nk} = 0 \text{ for } k > n \text{ and } a_{nn} \neq 0 \text{ for all } n.$$

Such a matrix has a normal inverse $A^{-1} = (\alpha_{nk})$, so that the transformations

(1.2)
$$y_n = \sum_{k=1}^n a_{nk} x_k \dots, \quad n = 2, \dots$$

and

(1.3)
$$x_n = \sum_{k=1}^n \alpha_{nk} y_k \dots, \quad n = 1, 2, \dots$$

are inverse one to the other.

If the inverse A^{-1} of a normal and regular matrix A satisfies the conditions

(1.4)
$$\alpha_{nk} \le 0 \text{ for } k < n \text{ and } \alpha_{nn} > 0 \text{ for all } n,$$

we shall call such a matrix a Beekmann matrix.

Beekmann introduced those matrices in [1] and proved that for such a matrix A, the matrix $B = (I + \lambda A)/(1 + \lambda)$ is Mercerian for $\lambda > -1$. (I is the matrix.)

AMS Subject Classification (1980): Primary 40C05.

The aim of this paper is to extend Beekmann's theorem to the case of R-Mercerian matrices, $\beta > 0$.

2. A sequence s is said to be regularly varying iff

(1.5)
$$\lim_{n \to \infty} (s_{[tn]}/s_n) = h(t)$$

exists for every t>0. ([x]= the greatest integer $\leq x$). Such sequences (and functions) were introduced by J. Karamata [2]; today they play an essential role in summability and probability. (1.5) implies that there is a real number β such that $h(t)=t^{\beta}$. The number β is called the *order* of s. In addition, a regularly varying sequence of "order 0" (i.e., for which the limit in (1.5) equals 1) is called a *slowly varying sequence*. It can be proved [2] that every regularly varying sequence s of order $\beta>0$ can be written in the form

$$(1.6) s_n = n^{\beta} L(n),$$

where L is a slowly varying sequence.

By R_{β} , $\beta > 0$, we denote the class of regularly varying sequences of order β , and by R_0 the class of slowly varying sequences.

At last, we say that a matrix A is R_{β} -regular $(\beta > 0)$ iff for every $s \in R_{\beta}$ and any sequence r

(1.7)
$$r_n \sim s_n \text{ implies } \sum_{k=1}^n a_{nk} r_k \sim s_n, \ n \to \infty$$

and it is called R_{β} -Mercerian iff

(1.8)
$$\sum k = 1^n a_{nk} r_k \sim s_n \text{ implies } r_n \sim s_n, \ n \to \infty$$

(Obviously, a matrix A is regular iff $r_n \to L$ implies $\sum_{k=1}^n a_{nk} r_k \to L$, and Mercerian iff $\sum_{k=1}^n a_{nk} r_k \to L$ implies $r_n \to L$, $n \to \infty$).

3. The R_{β} -regularity theorems for matrices were first established by M. Vuilleumier in [6]. The first R_{β} -Mercerian theorems for regular, invertible triangular matrices were established by S. Zimering in [3].

Using their results, B. Martić [5] proved the following.

Theorem M. Let $A=(a_{nk})$ be normal, nonnegative (i.e. $a_{nk}\geq 0$) and regular matrix which, for some $\gamma>0$, satisfies the condition.

(3.1)
$$\sum_{k=1}^{n} a_{nk} k^{-\gamma} = O(n^{-\gamma}), \ n \to \infty$$

Then the matrix $B = (I + \lambda A)/(1 + \lambda)$, where I is the unit triangular matrix, is R_0 -Mercerian for $|\lambda| < 1$.

(Martić supposed $\sum_{k=1}^{n} a_{nk} = 1$, but his proof is valid also in case $\sum_{k=1}^{n} a_{nk} \to 1$). Since, in case of a Beekmann matrix A, the conditions (1.4) imply

$$(3.2) a_{nk} \ge 0 \text{ for all } k < n \text{ and} a_{nn} > 0,$$

we can apply Martić's theorem and obtain

LEMMA. 3.1. If a Beekmann matrix A satisfies the condition (3.1) for some $\gamma > 0$, then the matrix $B = (I + \lambda A)/(1 + \lambda)$ is R_0 -Merceriun for $|\lambda| < 1$.

Lemma 3.1 reduces the proof of a general R_0 -Mercerian theorem for Beekmann matrices to the case $\lambda \geq 1$. However, a method used by Tanović-Miller [4] and based upon the relations

(3.3)
$$\beta_{nk} \leq 0 \text{ for } k < n \text{ and } \beta_{nn} > 0 \text{ for all } n,$$

$$(3.4) \sum_{k=1}^{n} \beta_{nk} \to 1, \ n \to \infty$$

and

(3.5)
$$\sum_{k=1}^{n} |\beta_{nk}| k^{-\gamma} = O(n^{-\gamma}), \ n \to \infty$$

for the inverse B^{-1} of B above supplies readily the proof in this case. Tanović-Miller considered non-negative, normal, normalized $(\sum_{k=1}^{n} a_{nk} = 1)$ matrices A, which satisfy the conditions

$$(3.6) a_{n1} > 0, a_{n+1,i}a_{nk} \le a_{ni}a_{n-1,k}$$

for $1 \le k \le i \le n-1$ and the condition (3.1). and from these derived (3.3)-(3.5). Once one has (3.3)-(3.5), the proof is a straightforward application of Theorem 4.1 of M. Vuillemier in [6].

Thus, if we prove that for a Beekmann matrix A, which satisfies (3.1), the inverse B^{-1} of $B=(I+\lambda A)/(1+\lambda)$ satisfies (3.3)-(3.5) for $\lambda>1$, Lemma 3.1 will be completed for all $\lambda>-1$.

4. Our main result is contained in

Theorem 4.1. If A is a Beekmann matrix and $B=(I+\lambda A)/(1+\lambda),$ then B is a Beekmann matrix for $\lambda>0.$

Proof. Let
$$A = (a_{nk}), A^{-1}(\alpha_{nk}), B = (b_{nk})$$
 and $B^{-1} = (\beta_{nk}).$

Let us remark that the transformations

$$(4.1) y_n = \sum_{k=1}^n b_{nk} x_k$$

and

$$(4.2) x_n = \sum_{k=1}^n \beta_{nk} y_k$$

are inverse.

Since $b_{nk} = \lambda a_{nk}/(I + \lambda)$ for k < n and $b_{nn} = (1 + \lambda a_{nn})/(1 + \lambda)$, $b_{nk} = 0$ for k > n, B is normal and obviously regular. Thus B^{-1} exists and it is normal. Moreover, (4.1) and (4.2) are inverse and (1.2) and (1.3) are inverse.

The case $\lambda = 0$ being trivial, let $\lambda > 0$, and let $\varepsilon = (1 + \lambda)/\lambda$. Obviously, $\varepsilon > 1$.

We have for any sequence x,

$$\sum_{k=1}^{n} a_{nk} x_k = \varepsilon b_{nk} - (\varepsilon - 1) x_n;$$

introducing the sequence y, defined by (4.1). this gives

(4.3)
$$\sum_{k=1}^{n} a_{nk} x_k = \varepsilon y_n - (\varepsilon - 1) x_n.$$

If in (1.2) we replace y_n by $\varepsilon y_n - (\varepsilon - 1)x_n$ and use (1.3), from (4.3) we obtain

$$x_n = \varepsilon \sum_{k=1}^n \alpha_{nk} y_k - (\varepsilon - 1) \sum_{k=1}^n a_{nk} x_k$$

which, using in the second sum on the right side formula (4.2), yields, after some elementary computations,

$$x_n = \sum_{k=1}^n \left\{ \varepsilon \alpha_{nk} - (\varepsilon - 1) \sum_{i=k}^n \alpha_{ni} \beta_{ik} \right\} y_k.$$

From this and (4.2) we obtain at once

(4.4)
$$\beta_{nk} = \varepsilon \alpha_{nk} - (\varepsilon - 1) \sum_{i=1}^{n} \alpha_{ni} \beta_{ik},$$

and, in particular, for $k = 1, 2, \ldots, n$,

$$\beta_{kk} = \{ \varepsilon / (1 + (\varepsilon - 1)\alpha_{kk}) \} \alpha_{kk}$$

and for k > 2

(4.6)
$$\beta_{k,k-1} = \varepsilon \alpha; pha_{k,k-1}/1(1+(\varepsilon-1)a_{kk})(1+(\varepsilon-1)\alpha_{k-1,k-1})$$

Now, solving (4.4) for β_{nk} and using (4.5) we obtain, for k = 1, 2, ..., n-2

$$(4.7) \quad \beta_{nk} = \frac{\varepsilon}{(1 + (-1)\alpha_{nn})(1 + (\varepsilon - 1)\alpha_{kk})} \alpha_{nk} - \frac{\varepsilon - 1}{1 + (\varepsilon - 1)\alpha_{nn}} \sum_{i=k+1}^{n-1} \alpha_{ni}\beta_{ik}.$$

Since $\alpha_{kk} > 0$ and $\alpha_{k,k-1} \le 0$ we conclude from (4.5) and (4.6) (with k = n) that $\beta_{nn} > 0$ for all n and $\beta_{n,n-1} \le 0$, for $n \ge 2$. Then, from (4.7) we conclude: if $\beta_{k+1,k}, \beta_{k+2,k}, \ldots, \beta_{n-1,k}$ are all ≤ 0 for k < n, then $\beta_{nk} \le 0$ too, for $k = 1, 2, \ldots, n-2$, which completes the proof of the theorem.

COROLLARY. 4.1.1. Let A be a Beekmann matrix which, for some $\gamma > 0$, satisfies the condition (3.1). Then B^{-1} , the inverse of $B = (I + \lambda A)/(1 + \lambda)$, satisfies the condition (3.5) for $\lambda \geq 0$.

Proof. We use notations of Theorem 4.1. If D is any matrix, by $(D)_{nk}$ we denote its element in n-th row and k-th column. δ_n^k denotes the Kronecker symbol (= 1 if k = n, 0 otherwise).

Since

$$\sum_{i=1}^{n} b_{ni} \beta_{ik} = (BB^{-1})_{nk} = \delta_n^k,$$

we have, for k < n,

$$\sum_{i=1}^{n-1} b_{ni}\beta_{ik} = -b_{nn}\beta_{nk},$$

and, since $\beta_{nn} = 1/b_{nn}$,

$$(4.8) -\beta_{nk} = \beta_{nn} \sum_{i=1}^{n-1} b_{ni} \beta_{ik}.$$

Taking into account the relations $\beta_{ik} \leq 0$ for $i \neq k$ (B is Beekmann, by Theorem 4.1), $b_{ni} \geq 0$ and $\beta_{kk} > 0$, we obtain from (4.8), for k < n

$$(4.9) -\beta_{nk} \le \beta_{nn} b_{nk} \beta_{kk} \le b_{nk} (1+\lambda)^2.$$

since

$$\beta_{nn}\beta_{kk} = \frac{1+\lambda}{1+\lambda a_{nn}} \cdot \frac{1+\lambda}{1+\lambda a_{kk}} \le (1+\lambda)^2.$$

Using the relations between the elements of A and B, the fact that B is Beekmann, (3.1) and (4.9), we have:

$$\sim_{k=1}^{n} |\beta_{nk}| k^{-\gamma} = \sum_{k=1}^{n-1} -\beta_{nk} k^{-\gamma} + \beta_{mn} n^{-\gamma} \le (1+\lambda)^{2} \sum_{k=1}^{n-1} b_{nk} k^{-\gamma} + \frac{1+\lambda}{1+\lambda a_{nn}} n^{-\gamma}$$

i.e.

$$\sum_{k=1}^{n} |\beta_{nk}| k^{-\gamma} \le \lambda (1+\lambda) \sum_{k=1}^{n-1} a_{nk} k^{-\gamma} + O(n^{-\gamma}),$$

which, by (3.1), gives (3.5).

COROLLARY 4.1.2. The matrix B^{-1} of Theorem 4.1 satisfies (3.4.).

Proof. From (4.9) follows

$$|\beta_{nk}| < (1+\lambda)^2 b_{nk}, k < n$$

i.e., (since B is regular) for every fixed k, $|\beta_{nk}| \to 0$, $n \to \infty$.

Also, by the same inequality and the fact that

$$\beta_{nn} = 1/b_{nn} = \frac{1+\lambda}{1+\lambda a_{nn}}, \quad \sum_{k=1}^{n} |\beta_{nk}| < (1+\lambda)^2 \sum_{k=1}^{n-1} b_{nk} + \frac{1+\lambda}{1+\lambda a_{nn}}$$

and since B is regular, there is M > 0 such that

$$(4.10) \qquad \sum_{k=1}^{n} |\beta_{nk}| \le M.$$

Set now in (4.1) $x_k = 1$ for all k, so that $y_n = \sum_{k=1}^n b_{nk}$ Then, by (4.2)

$$1 = \sum_{k=1}^{n} \beta_{nk} y_k$$

and so

$$1 - \sum_{k=1}^{n} \beta_{nk} = \sum_{k=1}^{n} \beta_{nk} (y_k - 1).$$

Since $y_k - 1 \to 0$, $k \to \infty$, by (4.10) and the fact that, for fixed k, $|\beta_{nk} \to 0$, $n \to \infty$ follows $\lim_{n \to \infty} \sum_{k=1}^n \beta_{nk} = 1$ in usual way.

Remark. A consequence of the content of Corollary 4.1.2 is that B^{-1} is a regular matrix. Contrary to this, A^{-1} does not need to be regular. For example, for the matrix $A=(1/n)_{k\leq n}$ of arithmetic means, $\alpha_{nk}=0$ for $k\leq n-2$, $\alpha_{n,n-1}=-(n-1)$, $a_{nn}=n$ and $\sum_{k=1}^{n}|a_{nk}|=2n-1$ is not bounded!

5. We are able now to prove the extensions of Beekmann's Mercerian Theorem to regularly varying functions.

THEOREM. 5.1. Let A be Beekmann matrix, such that, for some $\gamma > 0$,

(5.1)
$$\sum_{k=1}^{n} a_{nk} k^{-\gamma} = O(n^{-\gamma}), \ n \to \infty.$$

Then, for $\lambda > -1$, the matrix $B = (I + \lambda A)/(1 + \lambda)$ is R_0 -Mercerian.

Proof. Case $|\lambda| < 1$ by Lemma 3.1. For $\lambda \ge 1$, by Theorem 4.1 and its Corollaries, B^{-1} , the inverse of B, satisfies all the conditions (3.3) – (3.5). By the remark at the end of section 3, B is R_0 -Mercerian.

Since every regularly varying sequence s of order $\beta > 0$, satisfies (1.6), applying Theorem 5.1 to the sequence $\{s_n/n^{\beta}\}$, we obtain, in a similar way as Martić in [5],

Theorem. 5.2. Let A be a Beekmann matrix such that there are two numbers α and β , $0 < \alpha < \beta$, for which

$$\sum_{k=1}^{n} a_{nk} \left(\frac{k}{n}\right)^{\alpha} \to A_{\alpha}, \ \ and \ \ \sum_{k=1}^{n} a_{nk} \left(\frac{k}{n}\right)^{\beta} \to A_{\beta}, \ \ n \to \infty.$$

Then, for every λ such that $1 + \lambda A_{\alpha} > 0$ and $1 + \lambda A_{\beta} > 0$, the matrix $B_{\beta} = (I + \lambda A)/(1 + \lambda A_{\beta} eta)$ is R_{β} -Mercerian.

One should remark that conditions $1 + \lambda A_{\alpha} > 0$ and $1 + \lambda A_{\beta} > 0$ imply one another, depending on the sign of λ .

REFERENCES

- W. Beekmann, Mercer-Sätze für abschuittsbeschränkte Matrix-transformationen, Math. Zeit. 97 (1967), 154-157.
- [2] J. Karamata, Sur un mode de croissance régulière, Bull. Soc. Math. France 61 (1933), 55-62.
 [3] S. Zimering, Some Mercerian theorems for regularly varying sequences, Publ. Inst. Math. (Beograd) 15 (29) (1973), 791-177.
- [4] N. Tanović-Miller, A Mercerian theorem for slowly varying sequences, Publ. Inst. Math. (Beograd) 28 (42) (1980), 203-208.
- [5] B. Martić, Note on some Mercerian theorems, Publ. Inst. Math. (Beograd) 35 (49) (1984), 83-86
- [6] M. Vuillemier, Comportement asymptotique des transformations linéaires des suites, Thèse, Univ. de Genève, 1966.

University of Notre Dame Department of Mathematics Notre Dame, Indiana 46556 U.S.A. (Received 16 12 1985)