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UNIFORM c-CONVEXITY OF L7, 0<p<1

Miroslav Pavlovié

Abstract.We extend a result of Globevnik by proving that LP spaces with 0 < p <1 are
uniformly c-convex. We also give the precise values for the moduli of c-convexity of LP. A short
proof of Globenik’s result is included.

1. Introduction. A result of Thorp and Whitley [8] states that L!-spaces
are strictly c-convex, although the unit sphere of L' (0, 1) does not possess exstreme
points. This results was strenghtened by Globevnik [1], who proved that L!-spaces
are uniformly c-convex. Further examples of uniformly c-convex normed spaces are
given in [6]. However, it seems that the case of quasi-normed spaces has not been
discussed yet. In this paper we present some results in this direction. Theorems 1,
2, 3 were proved by the author in [5].

Definition. A complex quasi-normed space X, i. e. a complex linear space with

a quasi-norm || - ||, is said to be uniformly ¢-convex if there exists a real function §
on [0,+400) such that d(¢) > 0 whenever € > 0, and
(1) 6(e) <sup{llz + Myl : Al <1} -1

for all z,y with ||z|| = 1, ||y|| > €. The supremum of all §, satisfying (1), is denoted
by 6% and is called the modulus of c-convexity of X.

We recall that a quasi-norm || - || on a linear space X has the following prop-
erties: 1. ||z|| > 0, 2. z = 0if ||z]| = 0, 3. [|Az|| =| A | ||z|| for all scalars A, 4.
there exists a K > 1 such that ||z + y|| < K(||z|| + ||y||) for all z,y € X. If the
quasi-norm is p-subadditive for some p, 0 < p < 1, 1. e. if ||z + y||P < ||z]|? + ||y|?,
then X is called a p-normed space.

We consider the complex Lebesgue space LP = LP(m), 0 < p < 1, where m
is a positive measure on a o-algebra of subset of a set S. The quasi-norm on LP? is
given by

. » 1/q
lell = lell, : = Bigi{ | |2 " dm
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The modulus of c-convexity of LP will be denoted by d,. Our main results is the
following theorem.

THEOREM 1. The space LP,0 < p < 1 is uniformly c-conver. Moreover,

1 27 ) 1/p
(2) Op(e) > Fp(e) :=—-1+ {2—/ | 1+ee [P dt} , €>0
T Jo

with equality if LP is infinite-dimensional.

The inequality (2) is a consequence of the following stronger result.

THEOREM 2 If z,y € LP, 0 < p <1, then

2 . 2
/ l|lz + ey||Pdt 2/
0 0

Note that the same inequality is valid for p €[1, 2]. A proof can be found in [7],
but the arguments given there cannot be applied in the case 0 < p < 1. On the
other hand, the proof of Theorem 2, which will be given in Section 2, works for
all p € (0,2]. It is a natural question whether the modulus é,, can be improved by
use an equivalent quasi-norm. The following theorem gives a partial answer to this
queston.

. p
llll + e“llyll | dt

THEOREM 3. Let the space LP, 0 < p < 1, be infinite-dimensional. If a
p-normed space X is isomorphic to LP, then 6% () < Fp(e) for every e > 0.

As an immediate consequence of Theorem 3 and the inequality Fj,(e) <
F,(e), p < q, € >0, we have the following well known fact.

COROLLARY. If an infinite-dimensional L7 space is isomorphic to LP, 0 <
p, q<1, thenp=gq.
In Section 3 we give some more applications of Theorem 3.

2. Proofs of the theorems. The proof of Theorem 2 is based on the
following lemma.

LEMMA 1. Let 0 < p < 1. Then the function ¢, given by
27 )
o(u,v) = / | ut/P 4 w/Pet P dt,
0

is convex on the set {(u,v) :u >0, v > 0}.

Proof. Since ¢ is continuous and ¢(cu,cv) = cp(u,v) for all ¢ > 0, it is
enough to prove that the function 1(g) : = ¢(1,¢) is convex on the interval [0, c0).
Suppose first that 0 < e < 1. Then

2w
v = [l aetetyr
0
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Hence, by Parseval’s formula applied to the function t — (1 4 £'/Peit)P/?2 =

T (et
Y(e) = 2w (1 + i <p7/12) 252"/p).

From this it follows that ¢ is convex on [0,1] as a sum of convex functions. Now
we can prove that 1 is convex on (1,400). Indeed, if € > 1, we use the equality
P(e) = e(1/e) to obtain 9" () = e 31" (1/e) > 0. Finally, it is enough to prove
that 1(¢) is differentiable for ¢ = 1.

Let

27
fle) =9(e?) = / (1 + &%+ 2ecos t)P/2dt, &> 0.
0
By Leibniz’s rule,
27
f'(e) = p/ (e + cos t)(1 + &2 + 2 cos t)P/> Ldt
0
if ¢ # 1. Since (¢ + cos t)? < (e + cos t)2 +sin’t = 1 4 &2 + 2e cos t we have
le+cos t|(14e+2ecos t)P/>" < [(e + cos t)* + sin® )P~/ < (sin>¢) P~ 1/2
=|sin ¢ [P7".
Hence, by the Lebesgue dominated couvergence theorem, lirri f(e) exist and is
e—

finite. This completes the proof.

Proof of Theorem 2. Let xz,y € LP, 0 < p < 1. Then the support of
| z | + |y | is of o-finite measure. So we can apply Fubini’s theorem to get

27 2
/IWH%Wﬁ=L%ﬁfIww%wﬁ=éwwWWWWh
0 0

where we have used the equality

2 . 2
/ |a:+e’ty|”dt:/
0 0

Hence, by Jensen’s inaquality and Lemma, 1,

2
/ m+wwwz4/mwmm/wwwﬂ
0 S S
2
=mmmmm=£

Remark. In the case of L' a short proof of Theorem 2 can be given in the
following way. Let z,y € L'. Then

27 ) 2w )
|l ettat= [ 1o +et 1y >
0 0

2m ) 2m
=[] [l ety ham|a= [
0 S 0

. P
|:c|+e’t|y|‘dt.

. p
el + e*llyll | .

[l +€*llyll | dt.
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Proof of Theorem 1. The inequality (2) follows easily from Theorem 2. To
prove the rest suppose that L? is infinite-dimensional. Then, by Proposition I. 5
of [3], L? contains an isometric copy of the sequence space. Thus the assertion
reduces to the case IP.

Let {ex}5° be the standard basis of IP. For a positive integer n let m =
2" ¢ >0 and

m=1 m=1
z=m"/P E ex, y=em /P E ekmi/me,
k=0 k=0

Since ||z|| = 1, |ly|| = €, we have

[1+6,(e)]” < glla_qllw + M7,

where we have used the fact that the function A — ||z + A\y||? is supharmonic. On
the other hand, one can choose t,, € [0,27/m] so that

m—1
max||z + Ay||? = m ! 1 + eeltm g2kmi/m 1p
maxla + Ay > |
k=0
Hence
m—1
[14d,(e)P < m~ ! z | 14 gett™k P,
k=0

where 2km/m < tpm < 2(k+1)w/m. Now the resuly follows from the fact that the
last sum tends to

27
(2m)! / |1+ ceit P dt.
0

For the proof of Theorem 3 we need the following propositio. It is an extension
of the corresponding result for the space [ [4, Proposition 2. e. 3].

ProproSITION 1. Let X be a p-normed space which is isomorphic to [P, 0 <
p < 1. Then, for every ¢ > 1, there exists a linear operator T : I, = X such that
¢ Hizll < [Tl < cllz]| for all z € IP.

Proof. The proof is the same as that of Proposition 3 e. 3 of [4]. Let S be
an isomorphism of /? onto X and assume, without loss of generality that «||Sz| <
||z|| < [|Sz||, for some @ > 0 and all z € IP. Let ¢ > 1 and let {P,}52; be the
projections induced by the unit vector basis {e,} of IP:

n o0
P,z = E ajej, T = E anen € IP.
j=1 n=1

For every n put A = sup{||z|| : ||Sz|| = 1, P,z = 0}. Then ), | X for some
A, @ < X< 1. Let N be such that Ay < Ay/c. By the definition of {\,} there
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are vectors {yx}52, such that, for all k, ||Syx|| = 1, Pnyr =0, [lyxl| > A//c and
supp(ym)Nsupp(yx) = @ for m # k. For every choice of scalars {a};2, we have

Py (2 akyk) =0
k=1

and hence, by the definition of Ay,

oo oo oo 1/p
[ aun | 255 S ane]| =23 (X 1ax P )
k=1 k=1 k=1
%} 1/p oo 1/p
2)\1—\,10_1/2)\(2 | ax |p) >t (Z | ax |p> .
k=1

k=1

On the other hand, since X is a p-normed space, we have

o0 P (o9} (e}
|5 ane]" < X 1ar 7 ISl = Y- 1an -
k=1 k=1 k=1

The desired operator is defined by Tey, = Syg, k =1,2,... .

Proof of Theorem 3. Let ¢ > 1 and let X be an infinite-dimensional p-normed
space isomorphic to LP. Since X contains an isomorphic copy of [P, there is a linear
operator T : [P — X such that ¢7!||z|| < ||Tz|| < c||z|| for all z € IP. For a fixed
g > 0 there are z,y € [P such that ||z|| = 1, ||y|| > c?¢ and

sup ||z + Ay|| < e[l + Fy(c%e)].

[Al<t
Let o' = Tz/||Tz||, y' = Ty/||Tz||- Then ||z'|| =1 and ||y'|| > €, because [|Tz| <
¢, ||Tyl| > ¢ t||y|| > ce. Hence, by the definition of §%,

14 05%(e) < sup ||z’ + Ay'||
[A<1

On the other hand, ||z’ + \y'|| < ||z + Ay|| < [1 + F,(c%e)]. This implies
14 85(0) < L1+ Fy()].
Since ¢ > 1 was arbitrary, we get 6% (¢) < Fp(¢).

3. Uniform c-convexity in 1P. In this section we given an extension of
Theorem 1 to subspaces of [P.

THEOREM 4. Let X be an infinite-dimensional subspaces of P, 0 < p < 1.
Then 6% (€) = 05 (e for all e > o.

In the case p = 1 this result follows directly from Theorem 3 and the fact
that for every closed infinite-dimensional subspace X of [P, 1 < p < oo, there is an
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isomorpism of /P into X [4 Propositional 2. a. 2]. To prove Theorem 4 for p < 1 we
use a similar but somewhat more general approach .

PROPOSITION 2. Let X be a closed infinite-dimensional subspace of IP, 0 <
p < oo. Then, for every ¢ > 1, there is a linear operator T : [P — X such that
¢ Hizll < |7l < cllz|| for all z € 17.

Proof.. We proceed in the same way as in [4, Propositions 1. a. 11 and 1.
a.9]. Let ¢ > I. For any b > 0 we find two sequences, {z,}52, and {yn}2,, such
that: 1. z, € X, 2.||zn|| = llynll = 1, 3.]|zn — ynl| < b/27, and 4. supp(ym, )N supp
(yn) = @ for m # n. From the last condition it follows that Y: = [y,]5%,, the
closed linear span of {y,}, isometrically isomorphic to [?. Thus it is enough to find
an operator S:Y — X such that c¢=t||y|| < [|Sy|| < c|lyl|, v € Y.

Let ¢ = min(p,1) and choose b so that b?(1 — 1/29)~! = 1 —1/c?. For
Y= 00 oanyn let Sy=>"° japz, and Uy =y — Sy. Then

oo oo
10119 <D an [* llzn = yall < 9110 Nz = yall” < 591 = 1/29) 7 ly|l%,

n=0 n=0

where we used the condition 3. Hence
ISyll* = lly — Uyll* < [yl + [[Uy[|* < *[ly]|"

On the other hand, since y = 32 | U"Sy, we have

oo
Iyl < ISyllT Y- U™ < et Syl|e.

n=0
This completes the proof.

Using Proposition 2 we can prove that Theorem 4 holds for every p > 0. If
X is closed, this can be done in the same way as in the proof of Theorem 3. If X
is not closed, one can not closed, one can use the equality §§ = J%,, where Y is the
closure of X. We note that, if p > 2, the modulus of c-convexity of [P is equal to
(14 &P)1/P — 1. This follows from Clarkson’s inequality [2]:

llz +yll” + [l — yll” > 2(|l=[1” + [l9ll"), =,y € L?, p> 2.

4. Remarks. One of simple ways to prove that LP(m) is uniformly c-convex
is to use the inequality

2m
(3) (277)_1/ |u+ve Pdt>(ul>+plvl|?/2)P? 0<p<?2,
0

valid for all complex numbers u,v. Indeed, if 0 < p < 2, the function N(u,v) : =
(| w|?? 4p | v [>/P /2)P/? is a norm and, consequently,

/SN(' @I 1y Pydm > N(/S |z |? dm, /5 PP dm) — (lel” + pllyl/2)7",
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where z,y € LP(m). Hence, by (3),

27
(27r)_1/0 Iz + ye||Pdt > (|l]|* + pllylI*/2)""*.

This gives the estimate d,(e) > (1 + pe?/2)'/? — 1.

To prove the inequality (3) we may assume that v = 1. Then, if | v |< 1, by
Parseval’s formula,

27
f(v)::(27r)_1/ | 14+vet |Pdt>1+p* |v> /4> 1 +p|ov|? /2)P/%
0

If | v |> 1, we have
F)=lv P f1j0) 2w ? A +p/ 2] 0 )PP > A +p|v]® /2)7.

After completing this paper the author has learned of a recent paper of Davis,
Garling and Tomczak-Jaegermann [9]. For a quasi-normed space X ( with some
additional propeties) they define the moduli H;(, 0<g<o0,and I (X), 0<
g <00, 2<r < o0, in the following way:

1 [ ] 1/q
v afe =ui{ (- [Cle+etlia) el =1, ol =ef, 20
0

I, -(X) is the largest non-negative A such that

1 27 N 1/q .
(g0 [l etylrar) > el + Mully

for all z,y € X.

In [9] the following problem is raised (Problem 4): Is it true that I, »(C) = ¢/2
for ¢ < 2, where C' is the complex plane? The preceding remarks show that the
answer is yes. Moreover, we have the following results.

THEOREM 5. Let X be an infinite-dimensional LP-space or an infinite-
dimensional subspace of I’, 0 < p < 2. Then: 1. HX(e) = Fy(e) if ¢ > p,
and 2. HX (e) = Fy(e) if 0 < ¢ < p.

The first equality follows from Theorems 1, 2 and 4 because H, qX increases
with ¢ and HX = §%. To prove the second equality one can use the inequality

27 ) 2 " q
/ Iz + ety||3dt > / Lzl + e Jyll, | dt
0 0

(g < p < 2), which follows from Theorem 2 and the fact that every finite-
dimensional LP-space is isometric to a subspace of L?(u), for some measure p [10,
Lemma 21. 1. 3.].

Note that if ¢ < 2 then Theorem 5 holds for every (non-trivial) LP-space.
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THEOREM 6. Under the hypothesis of Theorem 5 we have I, 2(X) = p/2 for

q>p, and I;5(X) = q/2 for ¢ <p.

(1]
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