A REVERSED KAKUTANI'S FIXED POINT THEOREM

Rade Živaljević

Abstract. A many-to-one version of the Kakutani's fixed point theorem is proved.

Well known Kakutani's fixed point theorem states that for every multivalud function from a compact convex set $K \subset \mathbb{R}^n$ to itself there exists a point $x \in K$ such that $x \in f(x)$, provided $f(x) \subset K$ is compact and convex for all $x \in K$ and the graph of f, $\Gamma(f) := \{(x,y) \mid y \in f(x)\} \subset K \times K$ is closed.

In this short note we want to show that a many-to-one version of this theorem still holds. More precisely, let C be a compact convex set in the convex cone of all compact convex subsets of \mathbb{R}^n . The topology on C is induced by the Hausdorff metric. Since both the Brouwer's and Kakutani's fixed point theorem hold only for self maps of a compact convex set we need an appropriate concept for many-to-one maps.

Definition. A map $f: C \to \mathbb{R}^n$ is called a "selfmap" if $(\forall x \in \operatorname{Ran}(f))(\exists K \in C)K \ni x$ or equivalently if $\operatorname{Ran}(f) \subset \bigcup \{K \mid K \in C\}$.

Theorem. Let $f:C\to R^n$ be a continuous "selfmap". Then there exists a set $K\in C$ such that $f(K)\in K$.

Proof. Let us define a multi-valued function $g:C\to C$ as follows $g(K):=\{L\in C\mid f(K)\in L\}$. Obviously, g(K) is a nonempty convex subset of C for all $K\in C$. Let us show that the graph of g is closed. $\Gamma(g)=\{(K,L)\mid f(K)\in L\}=(f\times 1)^{-1}\{(z,L)\mid z\in L\}$ is closed since the relation \in is closed and $f\times 1:C\times C\to R^n\times C$ is continuous. Since, Kakutani's theorem is still true for compact convex subsets of linear topological spaces (Ky Fan [1]) there exists $K\in C$ such that $K\in g(K)$ or in other words $f(K)\in K$. Q.E.D.

154 Živaljević

REFERENCES

- [1] K. Fan, Fixed-point and minimax theorems in locally convex topological spaces, Proc. Nat. Acad. Sci. U.S.A. **38** (1952), 121–126.
- [2] S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math. J. $\mathbf{8}$ (1941), 457–459.

Matematički Institut Knez Mihailova 35/1 11000 Beograd Yugoslavia

(Received 03 12 1987)