NOTE ON GENERALIZING PREGROUPS

Seymour Lipschutz

Abstract. Let P be a pree which satisfies the first four axioms of Stallings' pregroup. Then the following three axioms are equivalent:

- [K] If ab, bc and cd are defined, and (ab)(cd) is defined, then (ab)c or (bc)d is defined.
- [L] Suppose V = [x, y] is reduced and suppose y = ab = cd where xa and xc are defined. Then $a^{-1}c$ is defined.
- [M] Suppose W = [x, y, z] is reduced. Then W is not reducible to a word of length one.
- **1. Introduction.** Let P be a pree that is, let P be a nonempty set with a partial operation $m: D \to P$ where $D \subset P \times P$. [We say pq is defined if $(p,q) \in D$ and we will usual denote m(p,q) by pq]. The universal group G(P) of the pree P is the group with the following presentation:
 - G(P) = gp[P; z = xy where xy is defined and z = m(x, y)].

In other words, the generators of G(P) are the elements of P and the defining relations of G(P) come from the partial operation m on P. A pree P is said to be group-embeddable if P can be embedded in its universal group G(P). (See Rimlinger [2].)

Stallings in [4] defined a collection of press, called pregroups, which guarantees such an embedding. Specifically, a pree P is a pregroup if it satisfies the following five axioms:

- [P_1] There exists an identity element $1 \in P$ such that, for all $p \in P$, 1p and p 1 are defined and 1p = p = p 1.
- $[P_2]$ For each $p \in P$ there exists $p^{-1} \in P$ such that pp^{-1} and $p^{-1}p$ are defined and $pp^{-1} = p^{-1}p = 1$.
- $[P_3]$ If pq is defined, then $q^{-1}p^{-1}$ is defined and $(pq)^{-1} = q^{-1}p^{-1}$.
- $[P_4]$ Supposing ab and bc are defined, then a(bc) is defined if and only if (ab)c is defined, in which case the two are equal.

78 Lipschutz

 $[P_5]$ If ab, bc and cd are defined, then either (ab)c or (bc)d are defined.

Kusher and Lipschutz in [1] generalized Stallings' result by weakening his last axiom $[P_5]$. Specifically, they proved that a pree P is group-embedable if it satisfies axioms $[P_1]$ through $[P_4]$ and the following two axioms:

- [Q_5] If a_1a_2 , a_2a_3 , a_3a_4 and a_4a_5 are defined, then at least one of $(a_1a_2)a_3$, $(a_2a_3)a_4$, $(a_3a_4)a_5$ is defined.
- [K] If ab, bc and cd are defined and (ab)(cd) is defined, then (ab)c or (bc)d is defined.

Example 1. Let A and B be groups which intersect in a subgroup H. The amalgam $P = A \cup_H B$ is the classical example of a pregroup. Here G(P) is the free product of A and B with H amalgamated.

Example 2. Let A,B,C be groups where A and B intersect in a non-trivial subgroup H, and B and C intersect in a nontrivial subgroup K. Also, suppose $B=H\oplus K$. Consider the amalgam $P=A\cup_H B\cup_K C$. Then P is not a pregroup. For example, let $a\in A-H$, $h\in H$, $k\in K$, $c\in B-K$ where $h\neq 1$ and $k\neq 1$. Then ah,hk and kc are each defined, but neither (ah)k nor (hk)c is defined. On the other hand, P does satisfy axioms $[P_1]$ through $[P_4]$ and $[Q_5]$ and [K]. Moreover, G(P) is the tree product of the A,B and C with H and K amalgamated.

Example 3. Let $T_n = (A_i; H_{rs})$ be a tree graph of groups with vertices A_i with edges H_{st} , and with diameter n. (Here H_{st} is a subgroup of groups A_s and A_t). Let $P = \bigcup_i A_i$ be the amalgam of the groups in T_n . It is known (cf. Serre [3]) that P is group-embedable where G(P) is tree product of the groups A_i with the semigroups H_{st} amalgamated.

The group-embeddable pree P in Example 3 is neither a pregroup nor satisfies axiom $[Q_5]$. However, it does satisfy axiom [K] and the following axiom:

[T_k] If a_1a_2 , a_2a_3 ,..., $a_{n+1}a_{n+2}$ are defined, then at least one of $(a_1a_2)a_3$, $(a_2a_3)a_4$,..., $(a_na_{n+1})a_{n+2}$ iz defined.

The question of whether axioms [K] and $[T_n]$, together with axioms $[P_1]$ through $[P_4]$, are sufficient to guarantee that a pree P is group-embeddable is still an open question. This paper concerns axiom [K] and the following two axioms:

- [L] Suppose V = [x, y] is reduced and suppose y = ab = cd where xa and xc are defined. Then $a^{-1}c$ is defined.
- [M] Suppose W = [x, y, z] is reduced. Then W is not reducible to a word of length one

Specifically, we prove the following theorem.

MAIN THEOREM: Let P be a pree which satisfies axioms $[P_1]$ through $[P_4]$. Then axioms [K], [L] and [M] are equivalent.

In other words, if P satisfies one of [K], [L], [M], then it satisfies all three axioms. (We emphasize that the pree P in the Main Theorem need not satisfy axiom $[P_5], [Q_5]$ or $[T_n]$ for [K], [L] and [M] to be equivalent).

2. Notation, Preliminaries. Throughout this section P denotes a pree which satisfies axioms $[P_1]$ through $[P_4]$.

Let $X = [x_1, x_2, \dots, x_n]$ be an *n*-tuple of elements of P. Then X is called a word of length n. The word X is said to be reduced if no pair $x_i x_{i+1}$ is defined. On the other hand, if some $x_i x_{i+1}$ is defined, then $Y = [x_1, \dots, x_i x_{i+1}, \dots, x_n]$ is said to be obtained from X by an elementary reduction.

The *triple abc* is said to be defined if ab and bc are defined and either (ab)c or a(bc) is defined. (By $[P_4]$, if abc is defined, then abc = (ab)c = a(bc).)

Suppose $X = [x_1, x_2, \dots, x_n]$ and $A = [a_1, a_2, \dots, a_{n-1}]$ are words such that each triple $a_{i-1}^{-1}x_ia_i$ iz defined (where $a_0 = a_n = 1$). Then the *interleaving* of X by A, denoted by X * A, is said to be defined and

$$X * A = [x_1 a_1, a_1^{-1} x_2 a_2, \dots, a_{n-1}^{-1} x_n]$$

We write X * A * B for (X * A) * B.

A word X is said to be *reducible* to a word Z if Z can be obtained from X by a sequence consisting of interleavings and elementary reductions. [Observe that if X is reducible to Z then X and Z represent the same element in the universal group G(P) of P.]

Stallings proved the following in [4]:

Lemma A. Suppose P satisfies axioms $[P_1]$ through $[P_4]$. Then:

- (1) $(x^{-1})^{-1} = x$ for every x in P.
- (2) If ax is defined, then $a^{-1}(ax)$ is defined and $a^{-1}(ax) = x$. Dually, if xa is defined, then $(xa)a^{-1}$ is defined and $(xa)a^{-1} = x$.
- (3) If xa and $a^{-1}y$ are defined, then xy is defined if and only if $(xa)(a^{-1}y)$ is defined; in which case $xy = (xa)(a^{-1}y)$.

A word X in P is said to be *fully reduced* if X is reduced and $X * A_1 * A_2 * \cdots * A_m$ is reduced whenever defined. Every word X of length n = 1 is automatically reduced and fully reduced. Lemma A(3) immediately implies:

Lemma B. X = [x, y] is reduced if and only if X is fully reduced.

Example 4. Consider groups $A=F\oplus G,\ B=G\oplus H$ and $C=H\oplus F$, where F,G,H are nontrivial subgroups. Let $P=A\cup B\cup C$. Then P is a pree which satisfies axioms $[P_1]$ through $[P_4]$. Let $f_1,f_2\in F,g\in G,\ h\in H$ be nontrivial elements. Then $X=[f_1g^{-1},gh,h^{-1}f_2]$ is a reduced word of length three. Let $A=[g,h^{-1}]$. Then $X*A=[f_1,1,f_2]$ is reducible to a word $Z=f_1f_2$ of length one. Thus, by our Main Theorem, P does not satisfy any of the axioms [K], [L] or [M].

3. Proof of Main Theorem. First we show that [K] is equivalent to [M]. Suppose [M] does not hold. Then there exists a reduced word X of length three which is reducible to a word Z of length one. Thus there exist words A_1, \ldots, A_m and B such that:

80 Lipschutz

(1) $Y = X * A_1 * \cdots * A_m$ is reduced (2) Y * B is not reduced and, after an elementary reduction, Y * B is reducible to Z.

Suppose Y = [x, y, z] and B = [a, b]. Then $Y * B = [xa, a^{-1}yb, b^{-1}z]$ is not reduced. Say $(xa)(a^{-1}yb)$ is defined. By Lemma A(3), $(xa)(a^{-1}yb) = x(yb)$. By Lemma B,

$$[(xa)(a^{-1}yb), b^{-1}z] = [x(yb), b^{-1}z]$$

is reducible to Z if and only if $(x(yb))(b^{-1}z)$ is defined. The 4-tuple

$$[x, yb, b^{-1}, z]$$

satisfies the hypothesis of axiom [K]. If axiom [K] holds then either

$$x(yb)b^{-1} = xy$$
 or $(yb)b^{-1}z = yz$

iz defined. This contradicts the fact that Y is reduced. Thus [K] cannot hold. Accordingly, [K] implies [M].

On the other hand, suppose [K] does not hold. Then there exist a, b, c, d such that ab, bc, cd and (ab)(cd) are defined but neither (ab)c nor (bc)d are defined. By $[P_4]$, a(bc) is not defined. Thus X = [a, bc, d] is reduced. Let $A = [b, c^{-1}]$. Then

$$X * A = [ab, b^{-1}(bc)c^{-1}, cd] = [ab, a, cd]$$

is reducible to a word of length one. Thus [M] does not hold. Accordingly, [K] and [M] are equivalent.

Next we show that [K] and [L] are equivalent. Suppose [K] holds. Furthermore, suppose V=[x,y] is reduced and suppose y=ab=cd where xa and xc are defined. By Lemma $A(2),\ c^{-1}(cd)=c^{-1}(ab)$ is defined. By $[P_3],c^{-1}x^{-1}$ is defined, and by Lemma $A(2),(c^{-1}x^{-1})x=c^{-1}$ is defined. Thus the 4-tuple

$$[c^{-1}x^{-1}, x, a, b]$$

satisfies the hypothesis of axiom [K]. The second triple xab = xy is not defined since V is reduced. Thus the first triple $(c^{-1}x^{-1})xa = c^{-1}a$ is defined. Thus [K] implies [L].

On the other hand, suppose [L] holds. Suppose ab, bc, cd and (ab)(cd) are defined, and (ab)c is not defined. We need to show that b(cd) is defined for [K] to hold. Note that

$$X = [ab, c] = [ab, (cd)d^{-1}] = [ab, b^{-1}(bc)]$$

is reduced where (ab)(cd) and $(ab)b^{-1}$ are defined. By axiom $[L], (b^{-1})^{-1}(cd) = b(cd)$ is defined. Thus [L] implies [K]. Therefore [K] and [L] are equivalent.

Accordingly, [K], [L] and [M] are equivalent and our main theorem is proved.

REFERENCES

- [1] H. Kushner and S. Lipschutz, A generalization of Stalling's pregroup, J. Algebra ${\bf 119}$ (1988), 163–172.
- [2] F. S. Rimlinger, Pregroups and Bass-Serre Theory, AMS Memories Series 361 (1987).
- [3] J. P. Serre (with H. Bass), Trees, Springer-Verlag, 1980.
- [4] J. R. Stallings, Group theory and three-dimensional manifolds, Yale Monograps 4 (1971).

Department of Mathematics Temple University Philadelphia, PA 19122, USA (Received 26 05 1988)